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Natural frequencies
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characteristic equation: Assume solution is est and substitute in differential equation.
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Solve for roots of the characteristic equation and get natural frequencies
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s2t, s1, s2are the natural frequencies
Equivalently,
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Roots of the denominator polynomial (poles) are the natural frequencies

* Independent of input - roots depends on R,L,C⇒ property of the system and nothing
to do with input.

* unforced network; set all input = 0 (short voltage source, open circuit current sources);
solve for all branch currents/ voltages using initial conditions.
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zero-input solution: solve k1, k2, . . . kn using initial voltages across capacitors and currents
through inductors. If there is a initial condition such that ki , 0 then si is a natural fre-
quency.
The number of independent initial conditions that can be specified in the network deter-
mines the number of natural frequencies.

RC1 C1
initial condition for both capcitors
can not be specified independently
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Denominator polynomial determines the natural frequencies. Given by the determinant of
the network matrix. To get natural frequencies solve for roots of D = 0. Note that Both I1
and I2 have same denominator polynomial.
The natural frequencies of any response in the circuit will belong to the set given by roots
of D = 0. All network variables need not have all the natural frequencies.
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Note:
zero input solution: k1, k2, . . . kn is determined from initial conditions.
Natural response: k1, k2, . . . kn is determined using both inputs and initial conditions.
When initial conditionas are zero, the zero input reponse is zero, but the natural response
is not zero.
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Node basis Network matrix (admittance matrix)

D = 3s2 + 4s+ 1, s = −1,−1/3

All capacitor voltages cannot be specified independently.

Vc = V1 −V2

=
s+ 1
D

a− s+ 1
D

b

D = (s+ 1)(s+ 1/3)

Vc has only one natural frequency; s = −1/3

i,v will have same natural frequency

i = C
dV
dt

V = L
di
dt

same natural frequency

d
dt

es1t = s1e
s1t∫

es1t =
1
s1
es1t

eigenfunction

For all three elements, i and v have the same natural frequencies (Eigenfunction prop-
erty).
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