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Objectives of this talk are:

1 Describe a new, efficient method of computing radar backscatter from

random rough surfaces using FEM

2 Quantify the uncertainty in radar backscatter due to variability in soil

moisture

Usage scenario

A fieldwork campaign in support of a SAR mission measures soil moisture

to calibrate inversion models. How accurate must these measurements be?
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Computing backscatter by Monte Carlo

1 Surface is modelled as a stochastic process

(gaussian/exponential correlation functions used).

Parameters1 rms roughness kh, correlation length kl

2 To simulate what the radar observes, multiple computations on

multiple surface instances needed & ensemble average

3 How much is good enough? Specify: confidence level (CL) &

confidence interval (CI) to estimate statistical significance

e.g. CI = 1 dB at CL = 95%

i.e. 19 out of 20 ensemble averages will bracket true mean within 1 dB

1k = 2π/λ, where λ is radar wavelength
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Random surface description

1 Traditionally: Filter a sequence of random points by the F.T. of the

correlation function2

2 Instead: Kosambi-Karhunen-Loeve (KL) expansion3 is widely used to

represent random processes: s(x, θ) = s0(x) +
∑∞

k=1

√
ηkfk(x)zk(θ)

I s0(x) is the mean of the random process

I η, f solve this eigenvalue problem:
∫
C(i, j)fk(j)dj = ηkfk(i) where

C(i, j) = cov(zi, zj) is the correlation between two RVs, zi, zj
I z(θ) represents mutually uncorrelated normal RVs (〈zk〉 = 0)

I Expansion truncated to d terms in practice

2Thorsos, J. Acoust. Soc. Amer., 83(1), 1988
3M. Loeve, Probability Theory, 1977.
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Random surface description : applied to FEM mesh

KL expansion: s(x, θ) = s0(x) +
∑d

k=1

√
ηkfk(x)zk(θ)

Discretize this to get a sequence of points:

x

y

Apply to whole mesh:
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Handle the rough surface intelligently4

Partition the domain into parts that move & those that don’t

C D 

A B 

E F 

ℎ𝑡 
 
ℎ𝑏 

 

Γ P Q 
𝐸𝑖  

Move each node smoothly within
‘sandwich’ region: y → y + ∆y

∆y =

{
s(x)(ht−y

ht
), 0 < y < ht

s(x)(y+hb
hb

),−hb < y < 0

CD will deform to rough surface

Zero deformation by the time
y = ht or y = −hb

4Khankhoje et al. , ‘Stochastic solutions to rough surface scattering using the finite
element method’, IEEE TAP 65(8), 2017
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Motivations of this study

1 In fieldwork campaign, soil moisture measured at few locations

2 This data is used to calibrate an inversion algorithm, but how

sensitive is backscatter σ to errors in measuring mv?

Earlier we wrote σ =
∑n

i=1
1
nσi(z

(i)
1 , z

(i)
2 , . . . , z

(i)
d ,mvo)

Now: make mv stochastic, e.g. normal distr. mv = N (mvo,∆mv) and

compute σ̄ =
∑n′

i=1
1
n′σi(z

(i)
1 , z

(i)
2 , . . . , z

(i)
d ,mv(i))

Ask: How are σ, σ̄ related as a function of ∆mv?

How does it depend on the values of kh, kl, mvo?
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Setup of numerical experiments

Strategy

Fix: kh, l/h, mvo, and see {σ, σ̄} for different ∆mv

Combinations of following parameters were simulated:

kh l/h mvo • ∆mv

0.05 5 5 0

0.1 20 25 4

0.3 200 - 10

Note: Entire domain gets the
same (random) value of soil
moisture for one simulation

Covers a variety of roughness, correlation lengths, and soil moisture values.
Fixed soil composition to {sand=0.51, clay=0.13, silt=0.36}, Hallikainen
model5 to convert soil moisture to permittivity.

5Hallikainen et al. , IEEE TGRS 23(1), 1985
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Results of numerical experiments – 1

kh = 0.3, l/h = 5

∆mv →
↓ mv

0 4

5 -13.5 -14

25 -10.2 -10

∆mv →
↓ mv

0 4

5 -10 -10.2

25 -3.87 -3.87

← HH →

← VV →

kh = 0.3, l/h = 20

∆mv →
↓ mv

0 4

5 -25.5 -25.3

25 -21.8 -21.8

∆mv →
↓ mv

0 4

5 -24.8 -24.8

25 -19.9 -19.9

Recall that all results are within a CI of 1 dB at 95% CL

=⇒ no statistical significance of backscatter variation for rough soils!
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Results of numerical experiments – 2

kh = 0.1, l/h = 20

∆mv →
↓ mv

0 10

5 -22.1 -22.3

25 -18.2 -18.5

∆mv →
↓ mv

0 10

5 -18.8 -19

25 -12.6 -13

← HH →

← VV →

kh = 0.05, l/h = 500

∆mv →
↓ mv

0 10

5 -26.2 -24.6

25 -22 -21.8

∆mv →
↓ mv

0 10

5 -25.4 -24

25 -20.9 -20.4

Recall that all results are within a CI of 1 dB at 95% CL

=⇒ Tiny statistical significance to backscatter variation for smooth soils!
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Inferences and implications – 1

1 Random rough surface: s(x, θ) = s0(x) +
∑d

k=1

√
ηkfk(x)zk(θ)

→ Large number (d > 10) of random variables for characterization

→ Surface randomness swamps out randomness in soil moisture

2 Radar backscatter sensitive only to average soil moisture

→ Sufficient to measure s.m. at a few points and average

→ ∆mv not very significant, so ultra high accuracy not required
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Inferences and implications – 2

1 Only possibility of statistical difference between σ and σ̄ is when

surface is ultra smooth (i.e. small d or large l)

→ Unlikely that s.m. is the physical QoI in such cases

Estimating s.m. from SAR doable if effect of roughness can be undone!

2 Interesting future extension: What is the impact on radar backscatter

if soil moisture is spatially inhomogeneous?

Much larger number of random variables → might compete better

with rough surface random variables!

BUT, computationally intense.
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