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Abstract—Inverse scattering problems suffer from ill-posedness
and ill-conditioning, necessitating the use of regularization meth-
ods to get meaningful solutions. Commonly used regularizations
are L2 norm based, but these generate over-smooth solutions. We
propose a regularization method using both the L1 and L2 norms
to obtain sharp object boundaries, while also achieving good inte-
rior reconstruction of the object permittivity. Knowledge about
the permittivity can also be used as a priori information. The
applicability of the method is demonstrated on synthetically gener-
ated data for two-dimensional (2-D) microwave imaging using the
Born-iterative method (BIM). The optimization routine systemati-
cally estimates all parameters, while minimizing the cost function.
Different objects chosen to represent realistic features have been
considered to evaluate the performance. The reconstructed images
indicate that the method can produce accurate object localization,
shape identification, and good permittivity estimation.

Index Terms—Born-iterative method (BIM), compressive
sensing, electromagnetic tomography, inverse problems, inverse
scattering, microwave imaging, regularization.

I. INTRODUCTION

A N INVERSE scattering problem estimates the distribu-
tion of key physical parameters based on the measured

samples of the scattered field. An electromagnetic inverse prob-
lem typically estimates permittivity and conductivity, whereas
an acoustic inverse problem estimates, e.g., compressibility
and density. Medical imaging, diffraction tomography, buried
object detection, nondestructive testing, and industrial imaging
are few examples where an inverse problem needs to be solved
[1]. The electromagnetic inverse problem is usually formulated
using the volume integral equation. The equation is nonlinear in
general, since the electric field is a function of medium’s prop-
erties and the internal fields of the object appear in the integral.
A common practice is to use local optimization strategies and
linearize the problem iteratively, solving for the parameters and
the field at each iteration [2], [3]. Global optimization methods
have also been considered but are generally less popular due to
large computational costs [4].
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In local optimization methods, a linear approximation of the
inverse problem can be described by an unconstrained opti-
mization problem with the objective: min

x
‖y −Ax‖, where y

denotes measurements of the scattered field, A is the system
matrix (which is a function of the internal fields), and x denotes
the unknown parameter of interest, such as the dielectric con-
trast. Generally, the system is underdetermined as there are
fewer measurements than the number of unknowns. In addition,
the linear problem is ill-posed and ill-conditioned. To obtain a
meaningful solution out of a multiplicity of solutions, various
regularization schemes have used; generally inserted as a con-
straint or as a priori information. Regularization restricts the
search space and thus reduces the degree of freedom in the
solution. It also lessens the effect of noise, which is particu-
larly important since the matrix A is usually ill-conditioned.
L2 norm-based regularizations are commonly used ([5]–[8],
among many), the Tikhonov method, L curve, and singular
value decomposition (SVD) being examples of such meth-
ods [9], [10]. This type of regularization is known to produce
an oversmooth solution [5], blur the edges/boundaries of the
objects, overestimate the size of the object [11], and rescale the
solution [12].

Since the recent advent of compressive sensing [13], L1
norm-based methods have gained popularity, showing promis-
ing results when the signal (x, in our case) is sparse in some
basis, or is compressible [14], [15] and the system matrix obeys
the restricted isometric property (RIP). In such cases, the solu-
tion has sharp edges and preserves discontinuities [11]. Work on
compressive sensing in inverse scattering problems started with
point-like targets [16]–[21], and moved on to small-size objects
of smaller size [22]–[25]. In the latter, the inverse scattering
problem was formulated as a Bayesian compressive sensing
problem, and was shown to work without the need to satisfying
RIP. However, their approach did not consider complex-valued
matrices, thus obstructing the use of the colocations sparsity of
real and imaginary values of the unknown vector. Other studies
on compressive sensing in inverse scattering include total vari-
ation (TV)-based approach and sparsifying the domain using a
wavelet transform [26]. The TV-based approach requires RIP
to hold in order to get exact recovery [27], which does not nec-
essarily hold true usually [28]. A recent article [29] based on
this approach recovers the dielectric contrast within the Born
approximation, although if the object has a smoothly varying
profile of contrast, the assumption on sparsity fails.

In this paper, an innovative joint norm-based approach—
based on the use of L1 and L2 norms as regularization—is
proposed and is applied to a two-dimensional (2-D) microwave
tomographic imaging problem. We utilize the Born-iterative
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method (BIM) to recover contrasts higher than those allowed
under the Born approximation. The joint norm-based approach
can satisfy the RIP, if the L2 regularization parameter is
set correctly. The proposed method estimates the regulariza-
tion parameters and updates them as and when required. The
approach exhibits the features of both norms—sharp at edges
and smooth everywhere else.

The main contributions of this work are as follows: 1) the
derivation of a joint norm-based inverse scattering strategy that,
unlike similar state-of-art methods [23]–[25], [29], effectively
handles complex valued matrices and vectors for contrasts
higher than the Born approximation and objects larger than
point-like objects; 2) the introduction of an L2 norm regularizer
in the compressive sensing framework in order for electromag-
netic imaging problems to satisfy RIP; and 3) an extension to
the spectral gradient method by applying bound constraints and
incorporating L2 norm regularization.

This paper is organized as follows. In Section II, the prob-
lem formulation is detailed and discussed in two sections.
Section III discusses the applicability of compressive sensing
for inverse scattering problems and Section IV describes the
joint norm formulation and outlines the inversion algorithm.
Evaluation of the algorithm on simulated data is performed in
Section V. Finally, conclusion and future directions are drawn
in Section VI.

II. BASIC THEORY AND INVERSE PROBLEM

FORMULATION

A. Inverse Scattering Problem

The scattering problem is governed by the following scalar
electric field volume integral equation, expressed for a hetero-
geneous, isotropic, nonmagnetic medium in a region D, with
measurement points on a surface S that encloses D, as [30]

Es(r) = k2b

∫
D

G(r, r′)χ(r′)E(r′) dv′, r ∈ S, r′ ∈ D (1)

where Es(r) = E(r)− Ei(r) is the scattered electric field in
terms of the total field E(r) and the incident field Ei(r),
G(r, r′) is the Green’s function, kb is the wavenumber of the
background medium with lossless permittivity, εb is the loss-
less relative permittivity of a background medium, and χ(r) =
[εr(r

′)/εb − 1]− j[(σ(r′)− σb)/(εbε0ω)] is the dielectric con-
trast in terms of the permittivity and conductivity contrast,
where the subscript r denotes the relative permittivity and σb is
the background conductivity. In what follows, we assume a z-
independent 2-D scatterer and the electric field to be polarized
along the z-direction, corresponding to a transverse magnetic
(TM) polarization.

The inverse problem deals with determining the dielectric
contrast, χ(r), r ∈ D, of an unknown medium, given some
observations of the scattered field, Es(r), r ∈ S. Due to the
presence of the electric field under the integral sign, (1) is
nonlinear, which can be linearized by using an estimate of
the electric field. This leads to a matrix equation of the form
y = Ax that can be solved in an iterative manner; the BIM
[31] is one such method. Here, y ∈ C

m contains m measure-
ments of the scattered field, x ∈ C

n is the dielectric contrast

for a domain discretized into n unknown values of contrast
(in the pixel basis), and each element of A ∈ C

m×n contains
the product of the Green’s function of the background and the
estimated field. The linearized inverse problem is still ill-posed
and ill-conditioned, and requires regularization for successful
solution.

B. Forward Problem

At every iteration of the BIM, we compute the electric field
based on the current estimate of the dielectric contrast. For solv-
ing the forward electromagnetic scattering problem, we use a
2-D vector element-based finite-element method (FEM) [32].
In this implementation of the FEM, we employ first-order
Whitney edge elements as basis functions for the total electric
field, and a first-order absorbing boundary condition to termi-
nate the computational domain. This results in a sparse set of
equations that is solved very efficiently using a direct solver.

III. APPLICABILITY OF COMPRESSIVE SENSING

In the compressive sensing framework, an accurate recon-
struction of a sparse signal x can be obtained in the following
reconstruction problem:

min ‖x‖1 s.t. ‖Ax− y‖ ≤ εn (2)

if the RIP holds, where εn bounds the amount of the noise in
the data. The RIP is defined as [27]: given a matrix A and δs ∈
(0, 1), if the following relation holds:

(1− δs)‖xs‖22 ≤ ‖Axs‖22 ≤ (1 + δs)‖xs‖22 (3)

for all s-sparse vectors xs, A is said to obey the RIP to order s
with a restricted isometry constant δs.

To validate the RIP for the inverse scattering problem in
more rigorous way, we use the properties of the matrix norm.
Rearranging the terms in (3), we can express the RIP as

smax := max
‖Axs‖22
‖xs‖22

≤ (1 + δs)

smin := min
‖Axs‖22
‖xs‖22

≥ (1− δs).

(4)

Given that the vector xs is s-sparse, smin is the square of the
minimum singular value of all m× s submatrices [15] of A. It
is known that in inverse-scattering problems, the singular val-
ues of A rapidly decay after a certain threshold, so the minimum
singular value is close to zero [33]. As the number of nonzero
entries in x increases (i.e., s increases), the minimum singular
value decreases and for some s, the second condition in (4) is
violated. We note in passing that in related literature on sparse
targets (i.e., small values of s), RIP may hold if the sth singu-
lar value (when the singular values are arranged in decreasing
order) is in a range similar to the maximum singular value.

IV. JOINT NORM FORMULATION

If we can modify the matrix A in such a manner that the
minimum singular value of all submatrices can satisfy (4), the
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RIP can be satisfied. One of the ways to achieve it is by using
Tikhonov regularization. A Tikhonov regularized cost function
is written as

J1(x) = ‖Ax− y‖22 + λ2‖x‖22
J1(x) = ‖Ax− y‖22

(5)

where we use the notation:A :=
[
A
√
λ2I
]T

and y :=
[
y 0
]T

,
and λ2 is a regularization parameter.

The regularization boosts the minimum singular value by√
λ2, so for an appropriate value of λ2, RIP can hold for the

matrix A. The updated conditions of (4) for the new matrix
become

λ2 + smax ≤ (1 + δs)

λ2 + smin ≥ (1− δs).
(6)

There is an upper bound [27] of
√
2− 1 on the value of δs

for the exact recovery of the reconstruction problem in (2). For
any δs <

√
2− 1, if λ2 is selected within [1− δs − smin, 1 +

δs − smax], (6) is satisfied and thus RIP holds.
As an example, choose s = ‖x‖0 for the unknown vector x

of the geometry in Example 1 of Section V. The average values
(over many submatrices of A) of smax and smin converge to 0.55
and 2.1× 10−6, respectively. Clearly, the RIP is not satisfied
for this smin. For the matrix A, if we choose δs =

√
2− 1, the

range for λ2 is [0.59, 0.86]. Picking a value of λ2 as 0.65, we
get sAmax = 1.20 and sAmin = 0.65, and these values satisfy the
conditions in (4).

In this paper, we justify the need of the joint norm and extend
our previous work [34] with additional a priori information by
means of placing box constraints on the unknown permittiv-
ity. For example, we assume that the relative permittivity of
materials of interest must be greater than that of vacuum. Real
part of the contrast is a relative measure with respect to the
background and the background can have a value higher than
that of the object. Thus, by considering two extreme values
for background, namely lowest (vacuum) and highest (εb,max),
the range of permittivity contrasts for all materials we get is
(−1 + 1/εb,max, εmax − 1]. Similarly, the range for conductiv-
ity contrast is [−σmax/ε0ω, 0]. Here, εmax and σmax represent
the maximum relative permittivity and the maximum conduc-
tivity of the domain, respectively. Thus, our cost function
becomes

J(x) = ‖Ax− y‖22 + λ1‖x‖1, x ∈ X (7)

where λ1 is a regularization parameter of the L1 constraint, and
X is the feasible set for the unknown vector x. It should be
noted that the λ1 and λ2 parameters are not related in any way,
and are assumed to take any values in R

+. Our solution strat-
egy is essentially to estimate one parameter by minimizing the
residue, while holding the other parameter constant.

Our approach to solve the optimization problem is based
on the ability to efficiently solve Lasso problems such as (7)
(where a least-squares solution is sought with a constraint on
the L1 norm of the solution) using the spectral projected gra-
dient method [35] with range constraints and to update the λ2

Algorithm 1. Inverse scattering algorithm

procedure JOINT NORM REGULARIZED ALGORITHM (A,
x, y, τ , λ2, γ, δ, ε, δr, lm)

set initial r0 ← Ax− y
set initial g0 ← AHr0
set initial l← 0
set fl ← ‖r0‖22
define f̂l = Δf/fl
define x̂l = Δx/xl

X is the feasible set
while (fl ≥ γ ‖ l < lm) do

if f̂l ≤ δ ‖ f̂l ≤ δr‖rl‖2 then % update τ
τ ← τ +Δτ

end if
if f̂l ≤ δ & ‖x̂l‖1 ≤ ε then % updateλ2

estimate λ2

update A
end if
estimate α % Barzilai− Borwein step length

gl ← AHrl
xl+1 ← ΠX(xl − αgl) % residue min.
rl+1 ← Axl+1 − y
set fl+1 ← ‖rl+1‖22
l← l + 1

end while
end procedure

parameter if and when necessary. This problem when solved
as a Lasso problem is similar to [36] and [37]. However,
those approaches can be thought of as a special case of our
generalized approach (no box constraints and λ2 = 0).

Let us define ‖x‖1 = τ . The value of τ is related to λ1 as
follows. As the value of τ increases, the value of λ1 should be
decreased to keep the contribution of the L1 norm term to J(x)
at a minimum. Thus, for appropriate choices of the parameters,
solving the problem using τ or using λ1 is equivalent. We con-
sider the first approach (fixing ‖x‖1 = τ ) to solve our problem.
Hence, the cost function becomes

J(x) = ‖Ax− y‖22 s.t. ‖x‖1 ≤ τ, x ∈ X. (8)

The overall approach we use for solving this optimization
problem is outlined in Algorithm 1 and elaborated further
below. The key symbols are listed in Table I. In the algorithm,
γ, δ, ε, and δr are error thresholds and lm is the maximum
number of iterations. The algorithm has three key steps, which
are iterated until a convergence criterion is satisfied: 1) updat-
ing the L1 norm constraint τ ; 2) minimizing the residue using
the projected gradient method by deploying the joint norm
regularization; and 3) estimating the parameter λ2.

A. Update of the L1 Norm Constraint τ

Assume that at a given iteration, we have an estimate of x
for a given τ , but that the residue still needs reduction, i.e., the
convergence criterion has not been satisfied. In such a case, τ
has to be updated, generally to a larger value. We follow the
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TABLE I
KEY SYMBOLS USED IN THE PAPER

method described in [36], where τ is expressed as a differ-
entiable, convex, and strictly decreasing function φ1(τ). The
function represents an L1 constrained minimization problem
(min

x
‖Ax− y‖2 s.t. ‖x‖1 ≤ τ ) in a dual-norm formulation

[38]. Mathematically, the function is written for a variable
z ∈ C

n as follows:

φ1(τ) = inf
x

(
‖Ax− y‖2 + sup

z

(
xHz − τ‖z‖∞

))
. (9)

For the optimum value of x := x̃ at a given τ , this func-
tion (called φ̃1(τ)) becomes ‖A x̃− y‖2. This monotonically
decreasing function can be solved using Newton’s root find-
ing method [39]. At each iteration, we update our previously
estimated τ with an increment

Δτ = −φ1(τ)

φ′
1(τ)

=
φ̃1(τ)

2

‖AH(A x̃− y)‖∞ .

B. Minimize the Residue Using Projected Gradient Method

Given the parameters τ and λ2, the given optimization
problem becomes

minimize
x

‖Ax− y‖22 s.t. ‖x‖1 ≤ τ, x ∈ X. (10)

We rely on a projected subgradient method to get a feasi-
ble solution [35]. Projected subgradient methods minimize a
function in the variable x subject to a constraint x ∈ X , by
generating a sequence xl via

xl+1 = ΠX(xl − αgl) (11)

where gl is the subgradient (gradient for nondifferentiable func-
tion (L1 projection) [40]) of the function, α is the step length
and ΠX(x) is projection of x on X . Here, the projection also
encompasses the L1 constraint. This minimization has two
steps to perform: 1) minimize the residue using the gradi-
ent method and 2) project the estimate from the previous on
the feasible set. For step 1), at every iteration, the functional
‖Ax− y‖2 is minimized by moving in the opposite direction of
the gradient and estimating the step length (computed using the
method in [37]). For step 2), the unconstrained update cl+1 :=
xl − αgl has to be projected, which is discussed subsequently.

C. Projection on a Feasible Set

The projection has to be performed in a way that the esti-
mated xl+1 satisfies the L1 norm constraint and is within the
bounds. We want to estimate xl+1 from the current gradient
estimate cl+1 by solving the following optimization problem:

min
x
‖c− x‖22 s.t. ‖x‖1 ≤ τ, xi,min ≤ xi ≤ xi,max,

i = 1, . . . , n

(12)

where the iteration number has been omitted for better read-
ability, xi,min ∈ C and xi,max ∈ C are bound constraints on
xi, which defines the feasible set X . Both are assigned based
on a priori information. Different constraints for each xi can
incorporate more priors than constant bounds. The priors could
include, apart from obvious range restriction on xi, positions
and electric properties of the background medium. It can also
include solutions of other methods.

We solve this problem by formulating in the Lagrangian
form and considering the first-order Karush–Kuhn–Tucker
(KKT) conditions. Each element of x, xi is estimated using the
following relations, where bi is one of the bounds, chosen based
on sign of ci, and θ is the Lagrangian parameter corresponding
to the L1 constraint (refer to Appendix for details)

xi =

⎧⎪⎨
⎪⎩
0, if |ci| ≤ θ

bi, if |ci| > bi + θ

|ci| − θ, if θ < |ci| ≤ bi + θ.

(13)

D. Update of the Parameter λ2

As mentioned earlier, the value of λ2 has to be chosen in
an interval as per (6). However, this interval is not known a
priori for all values of the sparsity parameter s and moreover,
the value of s itself is unknown. So, rather than fixing s or using
the same interval for all cases, we obtain the interval from the
current estimate of x, and then select one value from it.

There are various methods in the literature which describe
the estimation of λ2 and also solve the Euclidean norm problem
[5], [41], [42]. We use a method described in [43] because it can
be easily altered to estimate λ2 within a given interval.

Mead [43] extended Rao’s fundamental theorem [44] to L2
regularized cost functions, stating that when model covariance
matrix C is available, we may choose the data (x in our case)
inverse covariance matrix C−1

x such that the cost function fol-
lows a χ2 distribution with mean mχ, as closely as possible. If
we assume C−1

x = λ2In, then our cost function in (8) (without
the L1 norm constraint) for the current estimate of x can be
equivalently written as φ2(λ2) = (Ax− y)

H
C−1(Ax− y) +

λ2‖x‖22. To satisfy Mead’s theorem, the cost function should
stay within the following range:

mχ −
√

2mχzα/2 < φ2(λ2) < mχ +
√

2mχzα/2 (14)

where zα/2 is the z-value for a standard normal distri-
bution having (1− α) confidence interval. If the tolerance
related to confidence interval parameter α is low, the above
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inequality approximately equals the following equation after
some algebra:

φ2(λ2)

= rH

⎛
⎝(L−1)HU diag

⎛
⎝ 1

1 +
σ2
i

λ2

⎞
⎠UHL−1

⎞
⎠ r −mχ ≈ 0

(15)

where L is Cholesky factorization matrix of C, U is the matrix
corresponding to the SVD of L−1A as UΣV H , and σi, i =
1, . . . ,m are the singular values of L−1A.

The equation is monotonically increasing as λ2 varies from
0 to ∞. It is solved using the Newton root finding algorithm,
where we search for λ2 within the current estimate of the inter-
val. If the root exists and is positive, it is unique [43]. There
are two other possibilities: 1) φ2(0) > 0, which effectively sug-
gests that the equation does not need any regularization and
we set λ2 = 0; and 2) φ2(∞) < 0, which indicates that no root
exists. Here, we choose not to assign any value to λ2 and use
the previously estimated value.

The advantage of this approach is that model parameters
come directly from the experiment, thus avoiding any tuning
parameters. It also considers statistical information available to
define a physically meaningful regularization.

E. Undoing the Effect of Regularization

An L2 norm-based solution scales the solution and an L1
norm-based solution translates the solution [12]. Since the
parameters are updated throughout the minimization, we con-
sider the final values of the parameters as the scale/translation
factors and use them to undo the effect. The scaling factor is
not known a priori and is not easy to determine, so we apply
the same factor which is known for the orthonormal case, i.e.,
(1 + λ2). The translating factor is θ, which is the same θ as in
(13). Generally, τ is higher than ‖x‖1 and therefore θ is zero.
Therefore, we do not apply any correcting factor for the L1
regularization.

V. NUMERICAL ANALYSIS AND RESULTS

We performed several experiments to validate the proposed
method. In the reported numerical results, scattered field data
have been obtained by using the FEM. In order to avoid inverse
crime, the mesh used for solving the forward problem has been
chosen finer than that used for the inverse problem.

The simulation configuration is as follows: The transmitting
and receiving antennas are located at 20◦ apart from each other
on the circumference of the circular domain of radius 1.5λ
(free-space wavelength). The operating wavelength is 14.28 cm
and the domain is meshed at λ/100 to maintain the error in field
calculation within bound.

The object domain used for calculating scattered field is a cir-
cular domain of radius 1λ. The domain is meshed at λ/17 for
the “measured” scattered field integral and at λ/50 for the for-
ward solver. This gives an image size of 34× 34 pixels inscrib-
ing the circular domain and thus the number of unknowns
(only in the circular domain) for the inverse problem has

2 ∗ 912 = 1824 pixels. The total number of measurements is
18 ∗ 18 = 324, making the inverse problem underdetermined.

When we estimate λ2, the model covariance matrix C is con-
sidered to be the identity matrix (because noise is zero). The
bound for x is uniform for all pixels. Initially, the value for τ
is set to zero. The starting point for vector x is the minimum
energy solution (AHy) and λ2 is estimated using this residue.
Each image is formed with seven iterations of BIM. An iteration
consists of one run of the forward solver and up to 150 gradient
iterations. The computation time to run a single forward solver
is approximately 60 s for code written in C++ and average time
to run inverse problem is approximately 80 s for code written
in MATLAB on a Linux desktop with a Xeon processor and
24-GB RAM.

Example 1: Circular cylinder: Here, the object under test is a
homogeneous circular cylinder located at the center. The cylin-
der is 0.8λ in diameter and has a relative permittivity of 2.5.
The background is air. The reconstructed cylinders are shown
in Fig. 1. The actual object and its real and imaginary permit-
tivities are shown in Fig. 1(a) and (e), respectively. We compare
the reconstruction performance by the joint norm to the perfor-
mance by using only L2 norm. As discussed in Section IV-D,
any method can be incorporated for λ2 estimation. To make a
fair comparison, we have used the same method as has been
used in our joint norm, i.e., set λ1 = 0, and apply positivity
bound constraints for the real part of x and negativity con-
straints for the imaginary part of x. Fig. 1(b) and (f) shows the
reconstruction of real and imaginary parts of the permittivity,
respectively, using just L2 norm. As expected and can be seen,
the objects in the images are smoothened and also the imaginary
part has nonzero values. Fig. 1(c) and (g) shows the recon-
struction of the permittivity using joint norm with the same
constraints as using just L2 norm. These figures clearly show
the improvement in the sparsity of the background. The energy
leakage in the imaginary part can be understood by the facts
that y is not in the range of A in the linearized BIM approach
and the system is a highly underdetermined system.

If we have a priori information that the domain is lossless,
bound on permittivity can be set to [1 + j0, 3.5 + j0]. The cor-
responding images are shown in Fig. 1(d) and (h). The real part
image has recovered higher contrast and image of the imagi-
nary part remains as is. In all of the cases, the object is detected
at the correct location and its shape has been recovered with
sharp boundaries. The peak relative permittivity at last iteration
is approximately 2.72. Fig. 2 shows the cross-sectional (hori-
zontal) view of the actual and reconstructed permittivity using
joint and just L2 norm. Only L2 norm-based reconstruction
underestimates the contrast and has nonzero values in back-
ground. The joint norm method estimates a reasonably good
contrast and also produces a background that is very close
to zero.

To quantify our observations, we used the following perfor-
mance metric: Co (Ci) is the ratio of the number of pixels from
outside (inside) the object classified as background (object) to
total number of pixels outside (inside) the object. We have used
two thresholds to determine the class of each pixel: 1) lower
threshold (1% in our case): all pixels below this level are
classified as background; and 2) upper threshold (we took this
to be 30% of the contrast): all pixels above this value are
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Fig. 1. Relative permittivity distribution for (a) actual object, (b) using just L2 norm with positivity constraint, (c) using joint norm with positivity constraint,
and (d) using joint norm with permittivity bound of [1, 3.5]. Imaginary part of permittivity for (e) actual object, (f) using just L2 norm with negativity constraint,
(g) using joint norm with negativity constraint, and (h) using joint norm being zero. Imaginary part is shown as −Im.

Fig. 2. Horizontal cross-sectional view from the center of the cylinder; the plot
of real part of permittivity versus image points. Blue dotted line corresponds to
actual profile, red line corresponds to joint norm, and black line corresponds to
L2 norm.

classified as object. The metric is applied to both permittivity
images separately. Table II shows the performance values for all
reconstructed objects. In the ideal case, Co and Ci are 1. As can
be seen from Table II, the reconstruction of imaginary part of
permittivity using joint norm is ideal. The contrast leakage into
the background for L2 norm-based approach is captured by a
very small value of Co. The improvement in contrast estimation
using joint norm is evidenced by the high value of Ci.

The effect of noise on the quality of reconstruction has also
been analyzed. We added white Gaussian noise with zero mean.

TABLE II
QUANTITATIVE MEASUREMENT OF THE RECONSTRUCTED IMAGES

Fig. 3 reports the errors (whole domain) for several values of
SNR (defined with respect to the scattered field as in [29]). The
quantity χmed represents the normalized median value of the

relative permittivity. Mathematically, χmed =
median(εlr)

εor
, where

εlr is the estimated relative permittivity at l object points and εor
is the average value of the original relative permittivity of the
object. As can be seen, contrast recovery is almost constant after
10-dB SNR, whereas Ci reaches a maximum value of 1 for the
no-noise case. Co keeps its value around 90% for all SNR val-
ues. Overall, the contrast is very well recovered for all SNRs
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Fig. 3. Performance at various SNR values.

Fig. 4. Plot for performance of the reconstruction versus the ratio of the number
of measurements to total number of unknowns.

and the object is also localized correctly showing that noise at
these levels does not have a major impact on the performance.
We have also analyzed the effect of the number of measure-
ments on the reconstruction quality. Fig. 4 shows the plot for
Ci, Co, and χmed values for various values of S. The quantity S
is the proportion of the number of measurements to total num-
ber of unknowns. As the number of measurements increase,
the quality of reconstruction becomes better. However, we do
not always have the luxury of having a large number of mea-
surements in practice. Still, we still have reasonable accuracy
for S = 8%. Next, using the same geometric parameters, we
have formed an image of a cylinder having the imaginary part
of permittivity−1.5 as shown in Fig. 5(a) and (d). The complex
permittivity recovery is shown in Fig. 5(c) and (f). The object is
detected with good estimated conductivity contrast. The recon-
struction using just L2 norm is also shown in Fig. 5(b) and (e).
We have used the same constraints for both cases: positivity
for real part and negativity for imaginary part. The conductiv-
ity contrast is underestimated for just L2 norm. The real part is
zero everywhere for joint norm, which is significantly different

Fig. 5. Distribution of real part of permittivity for (a) original configuration,
(b) just L2 norm recovery, (c) joint norm recovery. Distribution of the negative
of imaginary part of permittivity for (d) original configuration, (e) just L2 norm
recovery, (f) joint norm recovery.

Fig. 6. Original geometry for (a) rectangular cylinder, (b) triangular cylinder.
Distribution of relative permittivity recovered using the joint norm for (c) rect-
angular shape object, (d) triangular shape object. The colormap shows the
relative permittivity.

from that for L2 norm. Minimum L1 norm-based constraint has
played a role to make it sparse.

Example 2: Other shape cylinders: The object is a homoge-
neous rectangular cylinder located at the center of the domain.
The rectangle is 0.5λ× 0.8λ [shown in Fig. 6(a)] and has a
relative permittivity of 2.5. The reconstructed distribution is
shown in Fig. 6(c). As can be seen, there is a good agreement
with the actual configuration. Corresponding values for Co and
Ci are reported in Table II. The bound is [1 + j0, 3.5 + j0].
The cross-sectional view of the recovery for joint norm and L2
norm is shown in Fig. 7(a). The edge of the rectangular cylin-
der is detected at the correct positions for joint norm, whereas
L2 norm-based approach fails to localize the object. Next,
when the object is not loss-less and has complex permittivity
(1.6− j0.5), joint norm-based approach is still able to recover
both parts correctly. The reconstruction quality is shown in
Fig. 8 and the quantitative values are reported in Table II. Here,
the bound is [1− j1.5, 3.5 + j0]. Next, we have considered a
cylinder having the shape of a triangle, which is also located at
the center [Fig. 6(b)]. The equilateral object has a side-length of
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Fig. 7. Cross sectional view of relative permittivity retrieval for (a) rectangular
cylinder and (b) triangular cylinder.

Fig. 8. Complex permittivity retrieval for rectangular cylinder. (a) real part of
permittivity, (b) negative of imaginary part of permittivity.

Fig. 9. (a) Actual chili-shaped object. The reconstructed distribution of (b) real
part of permittivity, (c) negative of imaginary part of permittivity. The colormap
shows the relative permittivity.

0.866λ and has a relative permittivity of 2.5. The reconstruction
after seven BIM iterations is shown in Fig. 6(d). The triangle’s
edges are well localized. The recovered peak relative permit-
tivity is 2.62. The bound is also the same as the bound used
in recovering only relative permittivity for the circular cylinder.
The localized quality shown in Fig. 7(b) is also supported by
having high values for performance metric (Table II).

Example 3: Chili-shaped object: In this example, the object
is composed of three ellipses placed close to each other to gen-
erate an irregular “chilli”-shaped object as shown in Fig. 9(a).
The complex permittivity is (1.6− j0.7) at head and toe of
the object and (2.1− j0.3) at remaining places. Fig. 9 shows

Fig. 10. (a) Original image for three objects configuration, (b) original image
for two void holes in the box. Distribution of the recovered relative permittivity
for (c) three objects and (d) void holes in a box. The colormap shows the relative
permittivity.

reconstructed permittivity distribution. The peak values are 1.9
and−0.6, respectively, for real and imaginary parts. The bound
for permittivity is [1− j1, 3.5 + j0].

Example 4: Three objects: A more complicated object is
considered here, consisting of three objects: circular, elliptical,
and rectangular. Their sizes are 0.3λ in diameter, 0.4λ× 0.3λ
axial length, and 0.2λ× 0.3λ side length, respectively. Their
relative permittivities are 2.5, 1.9, and 2.1, respectively. The
reconstruction distribution is shown in Fig. 10(c). As can be
seen from Fig. 10(a), there is good agreement with the actual
configuration.

Example 5: Two rings in the box: The box is characterized by
relative permittivity = 2.5, length = 0.85λ, and width = 0.4λ.
The circular void holes (background permittivity) of radius
0.15λ and centers at (0,−0.2λ) and (0, 0.2λ), respectively, are
present inside the box cylinder. The reconstructed distribution
is shown in Fig. 10(d). Comparing it with Fig. 10(b), the pro-
posed approach provides quite good results. In particular, the
algorithm is able to detect the edges of box correctly and also
the location and size of the circles.

Example 6: Limits: We use sparsity-based constraints, so that
if we do not apply any compressible transformations to con-
vert nonsparse objects into sparse objects, the recovery may
not be accurate. The recovery of the nonsparse object depends
on the number of measurements and the size of the object.
The higher the number of measurements, the larger the size
of the object that can be recovered. As an example, we tried
to recover the triangular cylinder of 1.4λ side length (instead
of 0.866λ) and kept the same number of the measurements
(324) and unknowns (1824). The permittivity was set to 2.5.
The recovered object is shown in Fig. 11(a). The algorithm was
not able to recover the shape but contrast has recovered rea-
sonably well. Since the object is big, the valid range for λ2

in some iterations is not feasible so the recovery is as good
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Fig. 11. (a) Large object, (b) permittivity 3, (c) permittivity 3.5, (d) permittivity
4, and (e) permittivity 6. The boundary of the actual object is overlaid (black
line). The colormap shows the relative permittivity.

as just using L2 norm (see Table II). There are two possi-
ble ways to address the problem: 1) increasing the number of
measurements and reconstruction domain so that it becomes
similar to previous examples; or 2) applying a transformation
(wavelet, Fourier, TV, etc.) and solving the problem in that
domain (in this case, the elements of the unknown vector x
become the coefficients in the transformed domain). However,
the bounds cannot be known in the transformed domain and
need further study. We attempted to recover a circular cylin-
der having a very high contrast (maximum permittivity = 6).
The reconstruction results for permittivity values 3, 3.5, 4, and
6 are shown in Fig. 11(b)–(e). It is a well-known fact that
the BIM-based linearized approach cannot recover very high
contrasts and multiple scattering effects cannot be well incorpo-
rated in the first-order approximation. Generally, the observed
limit on acceptable recovery of absolute value of permittivity
is around 2.5. In our case also, the reconstruction algorithm
fails to recover the shape and contrast of the object, when the
contrast is higher in similar range. We can adopt DBIM or
some other technique here but we are more interested to see
if the sparsity constraint can recover higher contrast than other
regularized methods.

Example 7: Comparative assessment: To make a fair compar-
ison with a state-of-art TV-based compressive sensing method
for inverse-scattering problem, we selected one of their results
as a reference. The method is valid only in the BA region [29] so
we restricted our method to run only for one iteration. We keep

Fig. 12. (a) Square dielectric object at center; the image reprinted from
Fig. 6(d) of [29] (true values), (b) reconstruction results using TV; the image
reprinted from Fig. 6(g) of [29], and (c) recovery using the joint norm. The
colormap shows the permittivity contrast.

the number of measurements, the geometry, and SNR same, but
the synthetic data are generated using FEM with the triangu-
lar mesh. Each side of the pixel in the reconstruction domain
has the length same, λ/6, as used in the TV-based method.
The images of [29], reprinted in Fig. 12(a) and (b), are the
original image and the image recovered using the TV-based
constraint. The image reconstructed using our method is shown
in Fig. 12(c). As can be seen, the joint norm-based method
has more accurate and sparse reconstruction. Quantitatively, the
error index ξtot, metric used in [29] to quantify the error, drops
from 1.5% to 0.7%. The size of the object considered in this
experiment is bigger than other experiments mentioned in the
article. The reason for achieving better result for the large object
is the use of larger number of measurements. We also tested
the performance of the joint norm method for other examples
in [29], but in the interest of space, we are not putting all the
graphs but just mentioning that the joint norm method performs
better than the TV-based method. It recovers the contrast much
better, keeps the most of the background to zero, and also has
the better definition of edges.

VI. CONCLUSION

We presented a joint L1–L2 norm-based regularization for
inverse scattering. The proposed approach is based on sparsity
and smoothness, which allows obtaining the solutions without
oversmoothening at discontinuities. The joint norm can pre-
serve the sufficient condition for the sparse recovery, if the
parameters are chosen appropriately. The algorithm can also
incorporate a priori information about the upper and lower
bounds of the range of contrasts. The reconstructed images for
various shapes showed very good shape recovery, localization,
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and contrast estimation up to a contrast of about 2.5. Some the-
oretical open issues still exist and need further consideration. In
particular, bound constraints for large objects need to be inves-
tigated, if the objects are represented in a sparsifying domain.
Furthermore, recovery for higher contrasts must be analyzed.
Future work includes evaluating the performance of the method
on experimental data.

APPENDIX

Before starting to solve (12), let us consider the optimization
problem without box constraints and also make all vectors real

minimize
x

‖c− x‖22 s.t. ‖x‖1 ≤ τ. (16)

We note that if ‖c‖1 ≤ τ , then the optimization problem is
trivial and the solution is x = c. Therefore, from now on, we
assume that ‖c‖1 ≥ τ , which means that the optimal solution is
on the boundary of the L1 ball, i.e., ‖x‖1 = τ . Lemma 3 from
Duchi et al. [45] states that each element of the optimal solution
x̃ shares the same sign as each element of the given vector c. In
other words, x̃ and c are in the same orthant (quadrant for 2-D) .
Therefore, solving the absolute value problem is equivalent to
solving a sign value problem. Equation (16) can be expressed as

minimize
x

‖|c| − x‖22 s.t. ‖x‖1 ≤ τ, xi ≥ 0 (17)

and solution of (16) is x̃ = sgn(c)Tx.
Our optimization problem is an extension of the above and it

has been shown that Lemma 3 of [45] can also be applicable for
a real vector’s projection on a constrained box [46], provided
that necessary geometric transformation has been applied. If
both bounds are in the same orthant, we can apply the geometric
transformation such that the bound close to zero is shifted to the
origin. We also update τ by τ − |xmin|1 if bounds are positive
or by τ − |xmax|1, if they are negative. When both bounds are
in the different orthant, we select the upper bound based on the
sign of ci so that x̃i is close to ci. The upper bound is −xi,min,
if ci < 0 or it is xi,max, if ci > 0. For all cases, the lower bound
is always zero. Let us call the upper bound as bi; the equivalent
problem then becomes

minimize
x

‖|c| − x‖22 s.t. ‖x‖1 ≤ τ, 0 ≤ xi ≤ bi,

i = 1, . . . , n. (18)

The vector x is estimated by expressing the above optimiza-
tion problem in Lagrangian form

L(x, θ, ζ, η) =
1

2
‖|c| − x‖22 + θ

(
n∑

i=1

xi − τ

)

− ζTx+ ηT (x− b) (19)

where θ ∈ R
+ and ζ, η ∈ R

n
+ are Lagrangian parameters.

Differentiating with respect to xi and comparing it with zero
gives optimality condition

∂L

∂xi
= −|ci|+ xi + θ − ζi + ηi = 0. (20)

The complementary slackness conditions for parameters [38]
are

ζixi = 0, ηi(xi − bi) = 0. (21)

To satisfy all of the conditions, we get the following relations.
1) When 0 < xi < bi, ζi = 0 and ηi = 0. This gives−|ci|+

xi + θ = 0. ∴ xi = |ci| − θ.
2) When xi = 0, ηi = 0. This gives −|ci|+ θ − ζi = 0.

Since ζi ≥ 0 we get |ci| ≤ θ.
3) When xi = bi, ζi = 0. This gives −|ci|+ bi + θ + ηi =

0. Since ηi ≥ 0 we get |ci| ≥ bi + θ.
4) If |ci| > bi and ηi > 0, the distance between |ci| and xi

is minimum when xi = bi. This is only true if ηi > 0
because in general |ci| > bi can be projected inside box
also.

Summarizing the relations in known variables gives the
unknown xi as in (13).

The only unknown θ is estimated similar to an unbounded
problem and is detailed in [45]. The above solution for box
constraints is derived assuming that ‖c‖1 ≥ τ . When ‖c‖1 ≤ τ ,
we still have to ensure that x is within bounds, unlike the
unbounded case. The solution, when ‖c‖1 ≤ τ and box con-
straints are active, is exactly the same as (13) except that now
θ = 0.

For inverse scattering, the system of equations are com-
plex valued. The concept used for the real vector, which stated
that the distance between the original and projected vectors is
the lowest, if they are in the same orthant, can extend to the
complex domain. Complex numbers have a phase instead of a
simple sign. We define sign function for a complex number z as
sgn(z) = z

‖z‖ , ∀z ∈ C (we consider positive sign for z = 0).
When we apply the sign function to a complex number, the
function projects the vector on the unit circle of a complex
domain (phase of a vector). Therefore, we can use the same
projection method as we have applied to the real vector to a
complex vector. Though the method can work very well for this
polar representation of complex-valued vectors, we can alterna-
tively use the Cartesian (real and imaginary) representation of
the same vectors. We get additional sparsity if any of the two
(real or imaginary) components is zero. It should be noted that
the entire problem can be solved in the complex domain, while
still performing projections using real and imaginary expansion
of the complex vector (c ∈ C

n).
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[9] R. A. Renaut, I. Hnětynková, and J. Mead, “Regularization parameter
estimation for large-scale Tikhonov regularization using a priori infor-
mation,” Comput. Statist. Data Anal., vol. 54, no. 12, pp. 3430–3445,
2010.

[10] L. Reichel and H. Sadok, “A new l-curve for ill-posed problems,”
J. Comput. Appl. Math., vol. 219, no. 2, pp. 493–508, 2008.

[11] C. Estatico, M. Pastorino, and A. Randazzo, “A novel microwave imag-
ing approach based on regularization in Banach spaces,” IEEE Trans.
Antennas Propag., vol. 60, no. 7, pp. 3373–3381, Jul. 2012.

[12] R. Tibshirani, “Regression shrinkage and selection via the LASSO,”
J. Roy. Stat. Soc., B, vol. 58, no. 1, pp. 267–288, 1996.

[13] E. Candes et al., Compressive Sensing Resources, May 2015 [Online].
Available: http://www.dsp.rice.edu/cs

[14] R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag.,
vol. 24, no. 4, pp. 118–121, Jul. 2007.

[15] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[16] L. Ségui, “Sur un problème inverse en diffraction d’ondes-identification
des permittivités complexes d’un matériau à partir de données en champ
proche,” 2000.

[17] E. A. Marengo, “Compressive sensing and signal subspace methods
for inverse scattering including multiple scattering,” in Proc. IEEE Int.
Workshop Comput. Adv. Multi-Sensor Adapt. Process., 2008, pp. 7–11.

[18] E. Marengo, R. Hernandez, Y. Citron, F. Gruber, M. Zambrano, and
H. Lev-Ari, “Compressive sensing for inverse scattering,” in Proc.
25th URSI Gen. Assem., Chicago, IL, USA, 2008 [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.1913&
rep=rep1&type=pdf

[19] G. Oliveri, P. Rocca, and A. Massa, “A Bayesian-compressive-sampling-
based inversion for imaging sparse scatterers,” IEEE Trans. Geosci.
Remote Sens., vol. 49, no. 10, pp. 3993–4006, Oct. 2011.

[20] L. Pan, X. Chen, and S. P. Yeo, “A compressive-sensing-based phaseless
imaging method for point-like dielectric objects,” IEEE Trans. Antennas
Propag., vol. 60, no. 11, pp. 5472–5475, Nov. 2012.

[21] L. Poli, G. Oliveri, and A. Massa, “Microwave imaging within the
first-order born approximation by means of the contrast-field Bayesian
compressive sensing,” IEEE Trans. Antennas Propag., vol. 60, no. 6,
pp. 2865–2879, Jun. 2012.

[22] L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive
sensing approaches for the reconstruction of two-dimensional sparse
scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sens.,
vol. 51, no. 5, pp. 2920–2936, May 2013.

[23] L. Poli, G. Oliveri, F. Viani, and A. Massa, “MT–BCS-based microwave
imaging approach through minimum-norm current expansion,” IEEE
Trans. Antennas Propag., vol. 61, no. 9, pp. 4722–4732, Sep. 2013.

[24] F. Viani, L. Poli, G. Oliveri, F. Robol, and A. Massa, “Sparse scatterers
imaging through approximated multitask compressive sensing strategies,”
Microw. Opt. Technol. Lett., vol. 55, no. 7, pp. 1553–1558, 2013.

[25] L. Poli, G. Oliveri, and A. Massa, “Imaging sparse metallic cylinders
through a local shape function Bayesian compressive sensing approach,”
J. Opt. Soc. Amer., vol. 30, no. 6, pp. 1261–1272, 2013.

[26] L. Guo and A. Abbosh, “Microwave imaging of non-sparse domains
using born iterative method with wavelet transform and block sparse
Bayesian learning,” IEEE Trans. Antennas Propag., vol. 63, no. 11,
pp. 4877–4888, Nov. 2015.

[27] E. J. Candès and M. B. Wakin, “An introduction to compressive sam-
pling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, Mar.
2008.

[28] G. Oliveri, P. Rocca, and A. Massa, “Reliable diagnosis of large lin-
ear arrays—A Bayesian compressive sensing approach,” IEEE Trans.
Antennas Propag., vol. 60, no. 10, pp. 4627–4636, Oct. 2012.

[29] G. Oliveri, N. Anselmi, and A. Massa, “Compressive sensing imag-
ing of non-sparse 2D scatterers by a total-variation approach within the
born approximation,” IEEE Trans. Antennas Propag., vol. 62, no. 10,
pp. 5157–5170, Oct. 2014.

[30] C. A. Balanis, Advanced Engineering Electromagnetics. Hoboken, NJ,
USA: Wiley, 1989, vol. 20.

[31] Y. Wang and W. Chew, “An iterative solution of the two-dimensional
electromagnetic inverse scattering problem,” Int. J. Imag. Syst. Technol.,
vol. 1, no. 1, pp. 100–108, 1989.

[32] U. Khankhoje, J. van Zyl, and T. Cwik, “Computation of radar scattering
from heterogeneous rough soil using the finite-element method,” IEEE
Trans. Geosci. Remote Sens., vol. 51, no. 6, pp. 3461–3469, Jun. 2013.

[33] O. Bucci and T. Isernia, “Electromagnetic inverse scattering: Retrievable
information and measurement strategies,” Radio Sci., vol. 32, no. 6,
pp. 2123–2137, 1997.

[34] P. Shah, U. Khankhoje, and M. Moghaddam, “Joint L1-L2 regulariza-
tion for inverse scattering,” in Proc. Antennas Propag. Soc. Int. Symp.
(APSURSI), 2014, pp. 868–869.

[35] D. P. Bertsekas, Nonlinear Programming. Belmont, MA, USA: Athena
Scientific, 1999.

[36] E. Van Den Berg and M. P. Friedlander, “Probing the Pareto frontier for
basis pursuit solutions,” SIAM J. Sci. Comput., vol. 31, no. 2, pp. 890–912,
2008.

[37] E. G. Birgin, J. M. Martínez, and M. Raydan, “Nonmonotone spectral
projected gradient methods on convex sets,” SIAM J. Optim., vol. 10,
no. 4, pp. 1196–1211, 2000.

[38] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2009.

[39] W. H. Press, Numerical Recipes 3rd Edition: The Art of Scientific
Computing. Cambridge, U.K.: Cambridge Univ. Press, 2007.
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