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Abstract—We present a new online method to diagnose faulty
elements in an antenna array quickly and reliably while a wireless
communication system is under regular operation. Existing
methods for fault diagnosis do not usually allow simultaneous
operation and diagnosis, leading to downtime, which becomes a
severe constraint for modern wireless systems. Our approach
is based on exploiting an extra degree of freedom available
in the frequency domain in modern multicarrier hybrid/digital
precoding architectures by allocating a very small part of the
available spectrum for diagnosis while the rest is used for
regular operation. Measurements can be made in a single shot
by using optimized inputs, thereby minimally disrupting regular
operation. We address both fully and partially connected RF
precoding architectures of hybrid precoders and introduce one
and two-stage fault diagnosis procedures, respectively. While
the faulty antennas for fully connected hybrid architectures or
digital architectures are diagnosed employing ideas from sparse
recovery, additional ideas from block-sparse recovery are used
in the case of a partially connected architecture. Our results
indicate that online array fault diagnosis is possible in both digital
and hybrid precoding architectures by introducing simple digital
operations into the system and by using a single fixed receiver
measurement setup.

Index Terms—Compressed sensing, Fault diagnosis, Antenna
arrays, Precoding, OFDM, MIMO communication

I. INTRODUCTION

W ITH the rise of communication technologies such as
massive MIMO [1], antenna systems are becoming

more and more complex, and arrays with a large number
of radiating elements are becoming commonplace. This also
means the reliability of these systems comes into question
since their performance is dependent on whether each of these
antennas is working as expected. Undetected faults due to
environmental exposure in a large system could prove costly,
necessitating efficient techniques to detect and diagnose faulty
elements.
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Since the number of faulty antennas can be assumed to
form a small fraction of the total number of elements in
large arrays, compressed sensing-based techniques [2]–[4] for
fault diagnosis using a few far-field measurements have been
developed, mainly in the context of phased arrays. Later works
[5]–[12] were aimed at simplifying the measurement method
(e.g., using a fixed receiver probe instead of measurements at
multiple locations), and overcoming modelling assumptions.

An important observation here is that while efforts have
been made to improve the reliability of fault diagnosis under
various conditions, all existing techniques involve making
measurements while the system is not in regular operation.
However, modern wireless systems such as 5G cannot afford
disruptions in services for maintenance to perform diagnosis.
Hence, it is imperative to develop techniques for online fault
diagnosis while the system is still transmitting data to its users.

This paper proposes a novel fault diagnosis technique to
address this problem by exploiting an extra degree of freedom
in the frequency domain available in modern multicarrier
precoding systems.

A. Motivation

Massive MIMO systems require spatial multiplexing capa-
bilities and therefore employ precoding systems, either digital
or hybrid. Hybrid architectures are more practical in the near
term due to lower cost and hardware complexity, in contrast
to fully digital ones that require dedicated RF chains for
each antenna. Further, for mmWave communication, spatial
multiplexing precoding algorithms for wideband mmWave sys-
tems become important. This involves multicarrier frequency-
selective precoding in the digital domain [13]–[18].

These precoding systems open the avenue of digitally
leveraging a small part of the spectrum for fault diagnosis.
The core idea of our approach is to use a small part of the
spectrum for fault diagnosis, while the rest is used for regular
operation. This idea is analogous to allocating a part of the
spectrum for a user – in this case, for fault diagnosis. This
would result in minimal disruption in the services of antenna
systems deployed on-field. Fig. 1 provides a visual summary
of our fault diagnosis strategy. A single fixed receiver probe
is used for measurements, while the spectral input to the RF
chains is manipulated in the digital domain (shown in red).
The part of the received spectrum used for diagnosis serves
as our measurement for fault diagnosis.
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Fig. 1. FAST AND ONLINE ARRAY FAULT DIAGNOSIS - Fault Diagnosis scheme for a multicarrier wireless system being used for data transmission. The
spectral content on " ({"0 , ..., "1 }) out of the  subcarriers on the RF chains is modified by ‘injecting’ optimized spectral components X, that replace
a part of the digitally precoded signals. This causes the antennas to carry a known spectral ‘signature,’ of which a few (shown dotted) are faulty. Observe
that the system continues to serve the UEs through the rest of the spectrum, while fault diagnosis measurements are taken. The measurement by the single
fixed probe, y is the corresponding " subcarrier components of the received signal, described by the forward model A, where n represents noise, and 12 the
complementary fault vector to be recovered. The engineered excitations X enable A (which is a function of X) to be optimized for efficient sparse recovery.
These replace only few of the available subcarriers, thereby drastically simplifying measurement without affecting communication services.

It is worth pointing out why this is not feasible using
analog (RF)-based precoding systems. Since the RF precoding
is frequency-flat, each spectral bin will provide the same pro-
jection of the underlying fault state of the antennas, providing
only redundant information in the received spectrum. Instead,
it will require a sequence of spectral measurements, each
with a different RF precoding, to perform fault diagnosis.
With digital/hybrid precoders, this is no longer a constraint
since each spectral bin can provide a different projection of
the underlying fault states, enabling measurements in parallel
rather than sequentially.

B. Related Work

Compressed sensing has been used for fault diagnosis by
several works [2]–[4], [19], [20], using measurement of the
far-field at several points in space. The measurements made
by a receiver antenna at each spatial position, when subtracted
from the reference measurements (of a healthy, i.e. fault-free
array) contains information that is used to recover the positions
of faulty antennas using compressed sensing. Later works [5],
[7], [21] performed fault diagnosis using a fixed receiver, by
varying the excitations to each of the array elements, instead of
the spatial location of the receiver, significantly simplifying the
measurement process. Optimizing these excitations resulted in
further improvements in sparse recovery, first demonstrated
in [7], and subsequently generalized to include the effect of
mutual coupling between antenna elements [12]. All these
methods are targeted at analog precoding-based systems using
a single frequency, use sequential measurement strategies for
fault diagnosis, and do not address multicarrier precoding-
based systems.

The methods proposed in this work employ optimized
transmit signals to modify the spectral input to the antennas.
This is similar, in principle, to the transmit of optimized
sequences in communication, e.g. for peak-to-average-power

ratio (PAPR) reduction [22], [23], and precoding techniques
[24], [25]. What is different, however, is that our optimization
objective is targeted at making our spectral measurement more
suitable for efficient sparse recovery.

Our fault diagnosis method follows in line with the strate-
gies of previous methods using reference measurements, and
assumes the channel is known. There have also been inno-
vative contributions towards removing the need for channel
information or reference measurements of a healthy array [6],
[9] and complete diagnosis of hybrid beamforming systems
[8]. We do not try to tackle these issues with our approach and
instead focus on making a step towards performing online fault
diagnosis by exploiting the extra degree of freedom available
in modern wireless systems.

C. Contributions

The following are the contributions of this paper:
• Firstly, we open the avenue of performing online fault di-

agnosis, i.e., performing fault diagnosis while the system
is still in operation, allowing for continuous service with
minimal disruptions.

• Secondly, by adapting the array fault diagnosis problem
formulation to multicarrier systems, we introduce the idea
of using a small part of the spectrum for diagnosis while
the rest is used for regular operation. To our knowledge,
this is the first work to exploit this extra degree of
freedom available in modern wireless systems.

• We also introduce the paradigm of two-stage diagnosis for
systems involving partially connected RF precoders, first
identifying faults at the level of subarrays using block-
sparsity, followed by pinning down the exact locations of
faults within the subarray(s).

Though previous work proposed diagnosis during beam steer-
ing [21], it is dependent on the scanning angle used and
is targeted at conventional phased array systems. While we
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Fig. 2. A block diagram of the OFDM-MIMO based Hybrid Precoder Architecture with new injected input vectors, x(:) , for fault diagnosis. A total of #(
data streams enter the baseband digital precoder, which then feed #'� RF chains, which are finally emitted by #C broadband antennas after going through
the RF precoder. A single receiver used for fault diagnosis is shown on the right.

address hybrid precoders (both partially [26], [27] and fully
connected) in detail, our approach trivially works (as a special
case) for fully digital architectures.

Our results are limited to multipath-free channels and re-
quire reference measurements of a healthy array. We expect
that further work on this problem by combining ideas from
[6], [9] could create a robust online fault diagnosis technique
that can be implemented on-field, for which our work provides
a strong base. The rest of this paper is organized as follows.
Section II develops the forward measurement model of the
diagnosis setup for a multicarrier hybrid precoding system.
This is then used to solve for the faulty elements, as described
in Section III, and matrix optimization methods described in
Section IV. Finally, we show our simulations and analyses in
Section V and discuss the outlook of the paper in Section VI.

Notation

A denotes a matrix, a a vector and 0, � scalars. A � B is
the element-wise Hadamard product. AT, A† and A∗ denote
the transpose, hermitian (conjugate-transpose) and element-
wise complex conjugate respectively. a[8] denotes the 8th
‘block’ of the vector a =

[
aT [1] aT [2] . . . aT ["]

]T, while
A[8] denotes the 8th block of the matrix A, consisting of a
contiguous set of columns from A. 08 is the 8th element of a.
|Γ| refers to the size of a set Γ.

II. FAULT DIAGNOSIS MEASUREMENT MODEL

The system we consider (Fig. 2) is a base station (BS)
antenna array with an orthogonal frequency-division multi-
plexing (OFDM) based hybrid precoding system, similar to the
architecture described in [13], and a single fixed measurement
probe.

The BS consists of #C antennas and #RF RF chains,
communicating via #( data symbol blocks, each of length  .
For simplicity, let the number of subcarriers available also be
equal to  ; in other words, all the subcarriers are being used
for transmission. The #( (≤ #RF ≤ #C ) data symbols for the
:th subcarrier s(:) (: ∈ {1, ..,  }) are first precoded by the
#RF × #( subcarrier-dependent digital precoding matrix F(:)BB ,
and transformed to the time domain using the  -point inverse
fast Fourier transform (IFFT) blocks, and a cyclic prefix added.

The precoding in RF is performed using phase shifters,
represented by the #C × #RF matrix FRF, which has all of its
entries either of the form 4 9 q=,< , with unit magnitude or zero.
The RF precoder is the same for all the subcarriers, unlike the
digital precoder.

The #C equivalent complex baseband signals applied at the
antennas for subcarrier : , z(:) , can therefore be written as [13]

z(:)
#C×1 = (FRF)#C×#RF

(
F(:)BB

)
#RF×#(

s(:)︸                 ︷︷                 ︸
=x(:)

, (1)

defining x(:) to restrict our attention to the stages after the
digital precoder.

To represents faults, we define a #C length fault vector 1,
multiplied element-wise with z(:) . An antenna that is nearly
dead, for example, would have d8 close to zero, and a healthy
one would have d8 equal to unity. If the #C ×1 channel vector
for the :th subcarrier is represented by h(:) , then the :th
subcarrier of the received spectrum [7] can be written as

Ĥ (:) = h(:) †
(
1 � z(:)

)
+ =̂(:) (2)

where =̂(:) is the complex noise for the :th subcarrier.

A. Measurement using engineered inputs

Let us say that " subcarriers (shown in red in Fig. 2),
Λ = {"0,..,"1}, out of the  available are used for diagnosis1

(" = "1−"0 +1), while the rest ({1, ...,  }−Λ) are used for
normal communication. By disengaging the subcarriers "0 to
"1 , the block size of data is therefore reduced to  − " .

The core strategy of our approach is to replace the digitally
precoded vectors x(:) for the subcarriers "0 to "1 with our
own engineered vectors x("0) to x("1) . We elaborate on the
choice of these vectors later, in Section IV. As we can see
from Fig. 2, we are effectively substituting new intermediate
‘symbols’ for those specific subcarriers. Our ‘measurement’ in
turn, becomes the " ‘symbols’ obtained on these subcarriers
at the receiver probe.

1Not necessarily contiguous. These could, for example be one ‘resource
block’ (12 subcarriers) that is allocated to a user.
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For each of the subcarriers, the forward model (2) applies.
We formulate this as a linear system for which each measure-
ment (row) corresponds to each subcarrier. Let X and Z be the
matrices with x(:)T and z(:)T respectively as its rows for the
subcarriers used for diagnosis (: ∈ {"0, ..., "1}). Therefore,
we have (using (1))

Z"×#C = X"×#RF

(
FT

RF

)
#RF×#C

. (3)

Similarly, using the channel vector defined for each of the
subcarriers h(:) we can construct a ‘channel-frequency’ matrix
H with h(:) † as its rows:

H =


h("0) †
...

h("1) †

"×#C
(4)

Note that this is not to be confused with the ‘channel matrix’
used in MIMO systems.

The regions marked in red in Fig. 3 schematically show the
elements of X and Z, which behave like ‘injected’ symbols.
If we vertically stack the measurements Ĥ (:) , : ∈ {"0, ..."1}
from (2), we obtain our measurement vector, ŷ consisting of
the " FFT components of the received signal. Using (3), we
form the measurement vector as:

ŷ = (H � Z)1 + n̂
= (H � (XFT

RF))1 + n̂
= A1 + n̂, (5)

where A is referred to as the ‘forward model’ as also indicated
in Fig. 1. Subtracting this from the reference measurement of
the healthy array, ỹ, (where 1 = 1), we have the measurement
vector, y = ỹ − ŷ, for the system of equations to be solved,
which has a sparse solution since 1− 1 has only few non-zero
elements, corresponding to faults:

y = A(1 − 1) + n (6)

where n represents the total noise. The estimate of the fault
vector can be expressed as the solution to a sparse recovery
problem, formulated as an unconstrained non-convex mini-
mization problem using the ? quasi-norm (0 < ? ≤ 1) [28],
[29], following the approach in [7], [21], [30], given by

12,4BC = arg min
1

1
2
‖y − A12 ‖22 + _‖12 ‖

?
? . (7)

This is a relaxation of the theoretical ℓ0 minimization, which
is NP-hard, and often replaced by the convex ℓ1 norm for
compressed sensing [31]. [28] provides an empirical review
of the superiority of the non-convex ℓ? over ℓ1 minimization.
For clarity, 1−1 has been replaced with 1c , the complementary
fault vector. We present our solution approach in section III.
It is important to emphasize here that in general, we will only
require " � #C subcarriers to perform sparse recovery. Since
typically  > #C , we will require only a small part of the
available spectrum for diagnosis.

Fully ConnectedPartially Connected

RF Precoder

RF Chain

RF Chain

RF Precoder

RF Chain

RF Chain

Fig. 4. Partially and Fully Connected architectures

B. Partial and Fully connected RF precoders

We address broadly two types of RF precoders (shown
in Fig. 4) that determine the nature of FRF, influencing our
solution approach. In a partially connected structure (PCS),
each antenna is connected to only one RF chain, whereas, in
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Algorithm 1: Iterative Reweighted ℓ1 (IRL1), [28]
Input: A, y
Output: 12,4BC

1 Let ; = 0, 1c
(;) ← 0

2 while ; < ;<0G do
3 1 (;+1)2 = arg min12

1
2 | |A12 − y| |22 + _

∑
8 E8 |12,8 |,

4 where E8 =
?

( |1 (;)
2,8
|+n ) (1−?)

5 ADMM implementation of weighted ℓ1
6 Let : = 0, initialize w: ← 1 (;)2 , z: ← 0, u: ← 0
7 while : < :<0G do
8 w:+1 = arg minw

1
2 | |Aw− y| |22 +

d

2 | |w− z: + u: | |22
9 z:+1 = arg minz _

∑
8 E8 |z8 | +

d

2 | |w
:+1 − z + u: | |22

10 u:+1 = u: + w:+1 − z:+1
11 end while
12 1 (;+1)2 ← w: ; ; ← ; + 1
13 end while

Fig. 5. Iterative Reweighted ℓ1 (IRL1) (based on [28, Algorithm 2])

a fully connected structure (FCS), every antenna is connected
to all the RF chains through phase-shifters. FRF for a PCS will
have the specific structure as shown below [26]

FRF =


v1 0 . . . 0
0 v2 0
...

. . .
...

0 0 . . . v#RF

#t×#RF

, (8)

where v= ∈ C%×1, = ∈ {1, 2, . . . , #RF}, (% = #C/#RF) and
the <th element v=,< = 4 9 q(=,<) , < ∈ {1, 2, . . . , %}. q (=,<)
represent the corresponding phase shifts. In contrast, a FCS
(Fig. 4), as in [13] corresponds to a dense matrix of the same
size, with no zeroes (all unit-magnitude entries). Also note that
fully digital architecture can be considered a special case of
hybrid architectures where FRF is an identity matrix, I#C×#C .

III. FAULT DIAGNOSIS USING SPARSE RECOVERY

As evident from (5), the matrix A depends on the structure
of FRF, which in turn is constrained by the RF precoding archi-
tecture used (see Section II-B). Depending on the architecture,
we use two different solution approaches for these cases for
the reasons described below.

A. Fault Diagnosis for Fully Connected Structures

For an FCS (and fully digital architectures), we solve for
the complementary fault vector 1c in (7) using an iterative
reweighted ℓ1 (IRL1) approach, which solves an ℓ1 optimiza-
tion in each iteration (see Algorithm 1). We solve the ℓ1
minimization step using the alternating direction method of
multipliers (ADMM) [32].

To obtain good recovery, we desire the mutual coherence,
`(A) [33], [34] of A (the largest absolute normalized inner
product among the columns of A) to be small as possible.
For an FCS, it is possible to engineer x(:) for good mutual
coherence properties of A, as shown in Section IV.
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Fig. 6. Optimized Gram Matrix of A, i.e., A†A with a PCS

However, this runs into a fundamental problem in the case
of PCS, which we deal with using an alternative strategy
described next.

B. Fault Diagnosis for Partially Connected Structures

From (3) and (8) that define Z and FRF respectively, it is
easily inferred that for a PCS, multiplication of X by F)RF leads
to Z having ‘blockwise’ coherent columns, i.e., the first %
columns of Z are simply scaled versions of the first column of
X, similarly for the next % and so on. This results in Z having
unit coherence, rendering A with high coherence, as illustrated
in the example shown in Fig. 6. Whatever optimization we do
on X, the mutual coherence achievable for A is constrained
by the nature of FRF. This is fundamentally due to the sub-
connected nature of the array which is not a problem in the
FCS and fully digital cases. It, therefore, does not appear to
be useful for sparse recovery.

While it is true that sparse recovery of the exact position of
faults using (7) is not a realistic proposition, identifying the
subarray in which the fault(s) are present is possible. This
bypasses the mutual coherence condition for an alternative
criterion that is easily optimized for A with a PCS. In this way,
we propose a ‘two-stage’ diagnosis method where the second
stage, described in Section III-C identifies faulty elements
within each subarray.

Rather than conceiving of 1c as a sparse vector, we can
think of 1c to be ‘block-sparse’:

Definition III.1 (Block-Sparsity [35]). A vector x� of length
# is called block S-sparse over I = {31, ..., 3�} if x� [8] is
non-zero for at most S indices 8 where # =

∑�
8=1 38 . The

block-support of x� is defined as supp(x�) = {8 |x� ≠ 038×1}.
If Γ = supp(x�), we have |Γ| = (.

In other words, we may assume the number of subarrays
that have faulty elements is much fewer than the total number
of subarrays. If only (1 of the subarrays (out of #RF) contain
faulty elements, then 1c will be (1 block sparse. This is a
reasonable assumption since faulty antennas due to blockages,
for instance, are more likely to be localized within a few
subarrays.
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Algorithm 2: Redundant-Block OMP (BOMP-R) [35]
Input: A, y
Output: ΓC

1 Let r0 ← y, C = 1, Γ0 = ∅, and T0 = [ ]
2 while “stopping criterion is not met” do
3 Choose the block index Λt that satisfies:

Λt = arg min8∈Ω


rC−1 − Proj

(
rC−1, span(A[8])

)


2

4 Let ΓC = Γt−1 ∪ ΛC ,TC =
[
TC−1,A [ΛC ]

]
, and

calculate y? = Proj (y, span (TC ))
5 rC = y − y?
6 C ← C + 1
7 end while

Fig. 7. Redundant-Block OMP (BOMP-R)

Block-sparse recovery algorithms such as BOMP [36] pro-
vide a solution when it is known that the solution has a
block-sparse structure and provides the solution vector. In
our case, however, obtaining a unique solution is impossible,
as the columns within each block are redundant. To get the
‘block-support’ Γ of the 12 (i.e., which of the blocks in the
solution vector have non-zero elements, or which subarrays
have faults), we instead use Block OMP for redundant blocks
(BOMP-R) [35], which accommodates the case where linearly
dependent columns exist within each ‘block’ of the matrix and
returns the block-support (in our case, the faulty subarrays) as
the solution.

In our case, all of the blocks are of the same size, implying
38 = % ∀ 8, and there are #RF such blocks. Each of the
blocks of the fault vector 1� is represented as 1� [8] ∈ C% ,
while the matrix A[8] refers to the 8th block of the matrix
(i.e. the corresponding 8th block of columns). BOMP-R (see
Algorithm 2) returns the estimate of the block support, Γ4BC .

The condition that the matrix A must satisfy to guarantee
recovery by BOMPR is the Block-RIP condition [35]. Similar
to the RIP (Restricted Isometry Property), this condition is
not easy to verify in practice. We instead use the mutual
subspace incoherence defined in Section IV for a quantitative
understanding of how ‘good’ the matrix A is for recovery, and
optimize X for this metric.

C. Fault diagnosis within a subarray

The first stage for PCS described above plays two roles:
One, of online detection of faults, as well as localizing faults
to the subarray in which they are present. Next, to pinpoint
faulty antennas within each of the subarrays found to be faulty,
we require additional measurements. These measurements are
made sequentially by changing the phase shifts within the
faulty subarrays for each measurement, very similar to the
method in [7]. It is important to note that controlling x(:)
is not useful here since it does not create any discriminative
features among elements of a subarray. Measurements for this
stage are made simultaneously for all of the subarrays = ∈ Γ4BC
found to contain faults, each on its own subcarrier with index
:=. Therefore (1 = |Γ4BC | of the  subcarriers are disengaged
from operation for diagnosis (inputs to those RF chains of

subcarriers

RF chain inputs for faulty subarrays

Subcarriers for 
diagnosis

Digitally precoded elements 
for healthy subarrays

RF chains / Subarrays

Fig. 8. Schematic showing spectrum of the inputs to the RF chains for the
second stage of fault diagnosis for a PCS.

healthy subarrays are set to zero at those subcarriers). We fix
the inputs to the faulty subarray with index = as G (:)= = 1
for : = := and G (:)= = 0 ∀ : ≠ :=. The faulty subarrays are
not used for normal transmission (G (:)= is the entry of x(:)
that corresponds to RF chain =, and therefore subarray =).
Fig. 8 provides a visual description of the subcarriers used for
diagnosis, and the subcarriers used for normal transmission.

For a PCS, FRF will have the form as shown in (8). Each
of the vectors v= correspond to the phase-shifts for the =th
subarray. For the ;th of L measurements (; ∈ {1, ..., !}), let us
say we apply the phase-shifts v;= to subarray =. We can then
express the ;th measurement Ĥ (:=)

;
similar to (2), as

Ĥ
(:=)
;

= h(:=) †
(
z(:=) [=] � 1[=]

)
+ =̂(:=)

;

= h(:=) †
(
v;= � 1[=]

)
+ =̂(:=)

;
, = ∈ Γ4BC . (9)

Here, z(:) [=] refers to the part (block) of z corresponding
to the elements of subarray =. Stacking these ! sequential
measurements together as the vector b̂= = [ Ĥ (:=)1 . . . Ĥ

(:=)
!
]T,

we can write the measurement model as

b̂= =


(v1
=)T
...

(v!= )T



. . . 0

h(:=) ∗

0
. . .

 1[=] + n̂(:=)

= V= diag(h(kn) ∗)1[=] + n̂(:=)

= B=1[=] + n̂(:=) , (10)

We make measurements on their corresponding subcarriers
:= for all = ∈ Γ4BC (i.e., each of the faulty subarrays). The
measurements for each subarray are then subtracted from
reference measurements, resulting in b=. We then solve the
following unconstrained optimization problem:

min
12 [Γ]

1
2
‖b −M12 [Γ] ‖22 + _‖12 [Γ] ‖

?
? , (11)
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(Digital Precoders as a special case)
Stage II

Fully Connected Partially Connected 

Optimise Mutual Coherence
(ProjectionOptim)

Optimise subspace incoherence
(GrassmannianPhi)

Block-support of      (indicates faulty subarrays)

Block-Sparse Recovery (BOMP-R)Sparse Recovery (IRL1)

Spectrum measurement with         as inputs to RF chains

Sparse Recovery (IRL1) 
among faulty subarrays

Spectrum measurements with
 phase-shifts (L sequential measurements)

Stage I

Recovered sparse vector

F F

FB FB

Fig. 9. Algorithm flow for fault diagnosis: For FCS, (and fully digital precoding systems, where #C = #RF and FRF = I) diagnosis is performed in a single
step. The inputs x(:) (: ∈ Λ) are optimized for the mutual coherence of the sensing matrix A. Using these as inputs, and also the measured spectrum at the
receiver, we obtain the sparse complementary fault vector. For PCS, diagnosis is performed in two steps - first, detecting and localizing faults to the level of
subarrays (’fault blocks’ (FB) of the block-sparse fault vector 12), followed by narrowing down the positions of faults with additional measurements. The
first stage of diagnosis shares the same measurement modality as the FCS case, except that the inputs x(:) are optimized for subspace incoherence rather
than mutual coherence.

where

M =


B=1 0 . . . 0

0 B=2

. . .
...

...
. . .

. . . 0
0 . . . 0 B=(1

!(1×%(1
and

bT =
[
bT
=1 bT

=2 . . . bT
=(1

]
1×!(1

, (12)

where (1 (= |Γ|) refers to the number of faulty subarrays,
12 [Γ] is the part of 12 indexed by the positions of faulty
subarrays, and 0 is a ! × % matrix of zeroes. Here, each
of the B= will have the same mutual coherence as V=, and
the columns of different blocks (of the block-diagonal B) are
orthogonal. Therefore, the mutual coherence of M will simply
be the highest mutual coherence among V=

We reiterate that (11) uses sparsity of faults among all the
subarrays identified to be possibly faulty, rather than sparsity
within each subarray, which is a flawed assumption, as faults
can often be grouped within a subarray. The solution to (11)
is obtained using IRL1, as it is in the FCS case.

It is worth pointing out here that this (second) stage is
implemented online only if the system can operate using the
rest of the subarrays (since the subarrays that are detected to
contain faults are excluded from normal operation). We do not
see this as a limitation, as the system cannot operate normally
anyway due to the presence of possible faults that have been
detected online by the first stage. In this way, the first stage
of diagnosis acts as a fault detection scheme that can be
periodically executed while minimally affecting transmission.
A high-level summary of our complete method for systems
with the FCS and PCS cases is shown in Fig. 9, with the
optimization procedures described in the following section.

IV. MATRIX DESIGN

The use of excitations instead of different measurement
positions as in [5], [7] for the purpose of fault diagnosis makes
it possible to optimize the forward model sensing matrix, A,
to improve fault diagnosis performance. Here similarly, we
perform optimization of the matrix A in terms of its mutual
coherence properties, employing different strategies for the
two cases of RF precoder architectures described earlier.

The matrix A = H � (X FT
RF) is not entirely under our

control; the channel-frequency matrix, H, is determined by the
channel, while the RF precoder matrix FRF is determined by
the precoding algorithm being used for transmission. This is
because, if we want to perform an online diagnosis, we are not
allowed to affect the other subcarriers, and the RF precoder is
frequency flat. Therefore, what remains in our control is only
the matrix X, which consists of the inputs to the RF chains
on the particular subcarriers Λ being used for fault diagnosis
(i.e., the partial frequency content).

According to compressed sensing theory, for equivalence of
the ℓ1 and ℓ0 problems (i.e. (7) with the theoretical zero-norm
and convex 1-norm, respectively, instead of the ?-quasi norm),
a Restricted Isometry Property (RIP) must be satisfied by A
with constant X2( <

√
2 − 1 [31], [37]. Randomized sensing

matrices (e.g. with normally distributed entries) which satisfy
RIP with high likelihood are not implementable in our case
because of the constraint described above (of having control
only over the X-component of the sensing matrix A). Deter-
minstic (as opposed to randomised) RIP matrix constructions
are not straightforward and have been attempted previously
[37], [38], but are not practical since they are often for fixed
matrix sizes. The mutual coherence `(A) is straightforward
to compute, and provides a weak upper bound on X2( , with
X2( < (2(−1)` [37]. Furthermore, the sparsity of the signal, (,

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3247727

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



8

that can be recovered goes as per, ( < 1
2 (1+

1
`
) [33], [39], and

therefore reconstructing higher sparsity motivates optimizing
for a smaller mutual coherence from a practical point of view.

A. Fully Connected

We aim to optimize the matrix A to have as minimum
mutual coherence as possible while manipulating only the
values in X. This matrix A, under some conditions (described
below), can be factorized conveniently into a product of a
projection matrix � and a dictionary matrix 	, i.e. A = �	,
such that � is dependent entirely on X, allowing us to
manipulate its values freely. A projection matrix optimization
algorithm [40] (we refer to it as ‘ProjectionOptim’ in Fig.
9) generates the projection matrix given a dictionary matrix
such that the overall sensing matrix �	 is optimal for mutual
coherence.

Considering the case where the channel is multipath-free,
we can easily recast the expression for A from (5) in the form
of A = �	, which we now show:

Proof: Consider a 3 − 34;0H multiple-input single-output
(MISO) channel model, hB [3], for a linear antenna array,
represented as [13], [41]:

hB [3] =
√
#t
!?
UA ?rc (3)B − g) a (\A ) (13)

where UA is the complex path gain, which depends on the
angle of departure of the path \A to the receiver probe, )B
is the sampling interval, a(\A ) is the array vector, ?rc is the
shaping pulse (e.g., raised cosine) used for transmission, and
!? is the free space path loss. Such a model applies in a single
path, line-of-sight (LOS) scenario.

We then have the channel vector for subcarrier : , [13]

h(:) =
�−1∑
3=0

hB [3]4− 9
2c:
 
3 = a (\A ) 6 (:) , (14)

where

6 (:) = UA

√
#C

!?

�−1∑
3=0

?A2 (3)B − g) 4− 9
2c:
 
3

a (\A ) =
1
√
#C

[
1 4 9 2c

_
3B sin \A . . . 4 9 (#C−1) 2c

_
3B sin \A

]T
. (15)

The channel-frequency matrix H in (4), having ℎ (:) † as its
rows becomes a single-rank matrix that can be expressed as
the outer product:

H =
[
6 ("0) . . . 6 ("1)

]†︸                        ︷︷                        ︸
g

a† (\A ) (16)

Now, it becomes straightforward to recast our expression
for A as follows (f= refers to the transpose of the =th row of
�RF, and x(:)T the row of X corresponding to subcarrier :):

A = H � (XFT
RF)

= (ga† (\A )) � (XFT
RF)

=


6 ("0)

∗x(Ma)Tf10∗1 . . . 6 ("0)
∗x(Ma)Tf#C 0∗#C

.

.

.

6 ("1)
∗x(Mb)Tf10∗1 . . . 6 ("1)

∗x(Mb)Tf#C 0∗#C


=


6 ("0)

∗x(Ma)T

...

6 ("1)
∗x(Mb)T

︸              ︷︷              ︸
�

[
f10
∗
1 . . . f#C 0∗#C

]︸                     ︷︷                     ︸
	

, (17)

thus enabling optimization as in [40]. �
Notice that 	 is dependent on FRF, which is determined

by the precoding algorithm (and architecture) being used, and
not X, the effect of which has been isolated into �. Once we
have optimized for �, by using 	 as our ‘dictionary matrix’,
we obtain the vectors x(:) , : ∈ {"0, ..., "1} by dividing the
rows of the optimized � by the elements of g. The values
of X can be scaled to fit within the allowed dynamic range
without affecting ` (A). On the other hand, the multipath case
results in a channel-frequency matrix that is no longer of unit
rank and cannot be decomposed into the form shown above.
This channel model is beyond the scope of this paper and will
be investigated in future work. The mutual coherence values
obtained using this method are shown in Fig. 10a, which is
improved compared to randomized X (with entries from a
complex normal distribution).

For the fully digital case, with #RF = #C and FRF = I#C×#C ,
optimization of A for mutual coherence becomes trivial. Since
	 becomes a diagonal matrix it does not affect the mutual
coherence of A. We can directly optimize for the mutual
coherence of `(�) by generating a Grassmannian matrix
[33], whose mutual coherence approaches the welch bound,√

#C−"
" (#C−1) , the theoretical lower limit for mutual coherence

of a matrix of size " × #C .

B. Partially Connected

We now describe our methods to optimize the sensing
matrix for each of the two stages of diagnosis in the PCS
case - the first stage is block-sparse recovery.

a) Stage I: While the matrix A can still be decomposed
as in (17), our objective for efficient block-sparse recovery is to
optimize for a metric known as mutual subspace incoherence
[34], [42], rather than mutual coherence.

In the matrix A, each of the blocks A[8] span a subspace
S8 . The mutual subspace incoherence [34], [42], `( among
the blocks of A is defined a measure of the smallest angle
between any two subspaces from the given set,

`( = max
8≠ 9

max
p∈S8 ,q∈S 9

��p†q��
‖p‖2‖q‖2

. (18)
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Fig. 10. Matrix design using coherence optimization: (a) FCS case showing the effect of optimization for mutual coherence using [40]. (b) Subspace
Incoherence (for partially connected) plotted using different matrix design techniques. The welch bound shown corresponding to a matrix of size " × #RF.
In both plots, each data point is averaged over 400 realisations of A.

Optimizing the mutual subspace incoherence of A will
help us obtain a ‘good’ matrix to perform BOMP-R on (see
Algorithm 2). Minimizing `( makes sense because the block
sparsity, (1 is related to `( as (1 < 1

2

(
1 + 1

`(

)
[34], [42] just

as in the case with conventional sparsity, thus enabling larger
block-sparsities (more faulty subarrays) to be recovered.

Owing to the partially connected nature, FT
RF (refer Sec-

tion II-B), and hence � have a special form which causes �	
to have repeated/scaled columns of �. Therefore, if �8 refers
to the 8th column of �, it is easy to see that span{�i} = Si.

The problem of optimizing A for subspace incoherence,
therefore, reduces to the problem of optimizing � for mutual
coherence. As the elements of � are unconstrained, we
simply generate a Grassmannian matrix [33], which closely
approaches the welch bound, the theoretical lower limit for
mutual coherence. The resulting mutual subspace incoherence
is plotted in Fig. 10b (labeled as GrassmannianPhi), show-
ing that it closely approaches the welch bound (minimum
possible subspace incoherence) for subspace incoherence. It
clearly achieves a much better sensing matrix for block-sparse
recovery than projection matrix optimization [40], which tries
to minimize the mutual coherence of A, rather than mutual
subspace incoherence.

b) Stage II: For this stage, we optimize the phase-
shifts V= applied to each subarray during the measurements
sequence. As stated in Section III-C, the overall block-diagonal
sensing matrix M in (11) will have the same mutual coherence
as the maximum among those of B=. An essential constraint
to optimization is that the RF precoder only has phase shifts;
therefore, the phase shifts for subarray =, V= will consist of
elements with unit magnitude. This means that we cannot
arbitrarily optimize B=.

As diag(h(:=) ∗) simply multiplies each of the columns of
V= by a factor, it will not affect the mutual coherence of B=.
Hence, optimizing the matrix V= for mutual coherence, which
contains all unit magnitude elements is sufficient. From CS
theory, we know that a random partial Fourier matrix (RPFM)

satisfies a RIP with high probability [43]. We, therefore,
choose V= to be an RPF matrix.

V. SIMULATIONS AND ANALYSES

In this section, we evaluate our proposed approach for
the various precoding configurations discussed, validate their
effectiveness, and highlight their limitations.

For all of the results shown (unless specified otherwise), we
consider a half-wavelength spaced linear array with #C = 64
antennas and the number of RF chains #RF = 16 or 8, as
specified using a boxed annotation in each plot. In general,
for each data point, we average performance over 20 random
realizations of �RF, and for each of these, the faults’ positions
are selected at random, averaging over 50 Monte Carlo (MC)
simulations, thus resulting in an average over 1000 realizations
per data point. The y-axis is the rate of successful recovery
(RSR), defined as the fraction of MC trials where the diagnosis
recovers all elements’ state (faulty or healthy block/antenna)
correctly. For evaluation purposes, we consider binary faults,
i.e., an element is assumed to have a value of 1 when working
correctly and a value of 0 when faulty. To obtain the simulated
measurement vector y, we used the forward model described
in Section II, with a LOS channel model as in (16), and do not
consider mutual coupling effects. The SNR for each simulation
is given by 10 log

( ‖y‖22
"f2

)
dB (for FCS), with the noise vector n

assumed to follow CN(0, f2�). A similar procedure is adopted
for both stages of the partially connected case.

The RF precoding matrix FRF is taken to be composed of
#RF random columns from a DFT matrix of size #C , mirroring
the precoding algorithms described in [44], [45] for the FCS
case. For the partially connected case, we fill the non-zero
elements of FRF (see (8)) with phase shifts uniformly at
random in [0, c] rad. A system with  = 2048 subcarriers
and a central frequency of 3.5 GHz (to mimic a C-band 5G
carrier frequency) with a subcarrier spacing of 15 kHz is used.
For the sparse recovery optimization algorithm of (7), the
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Fig. 11. Fault diagnosis performance for FCS: (a) Progressive improvement in fault diagnosis with increasing number of subcarriers " used for diagnosis.
(b) Plot showing the improved reliability of fault diagnosis with optimized inputs. (c) Influence of the number of RF chains on the maximum achievable
diagnosis for #RF = 12, 16. This also shows the improvement in recovery for larger number of RF chains for a given number of subcarriers " used.

hyperparameters ? ∈ {0.01, 0.05, 0.1, 0.5} and _ ∈ [10−3, 10]
were chosen using a grid-search for different values of SNR,
using the average RSR over varying number of faults from 1
to 5 as the metric.

A. Fully Connected RF precoder

For the FCS case, we calculate the inputs X using the pro-
cedure described in Section IV-A, and solve the minimization
problem (7) for the complementary fault vector 12 using IRL1.
In Fig. 11, we show how fault diagnosis improves with the
number of subcarriers " used, the advantage of optimizing
the inputs, and how the precoder configuration may affect
the performance of diagnosis. The hyperparameter pair (?, _)
chosen using a grid-search to solve (7) in all of the plots
shown in Fig. 11 are (0.05, 0.063) and (0.01, 0.32) for 25 dB
and 15 dB respectively. For the fully digital case in Fig. 11c,
the hyperparameter pair used is (0.01, 3.2 × 10−4).

Again, we emphasize that all these " subcarrier measure-
ments can be obtained at one go while the system is still in
operation on the rest of the spectrum (other subcarriers). On
an OFDM-based system, one may allocate a single resource
block (RB), made of 12 subcarriers [46]. The essential features
of the plots in Fig. 11 are highlighted below:

1) In Fig. 11a, we show how fault diagnosis improves
with the number of subcarriers " used for diagnosis.
Our method comfortably detects and diagnoses up to 3
faults in a 64-antenna array by simply allocating one RB
(" = 12) from the time-frequency resource grid for fault
diagnosis. The minimum number of subcarriers required
for diagnosis increases gradually with the number of
faults.

2) Fig. 11b shows that engineering the injected x(:) using
the projection matrix optimization algorithm (Projec-
tionOptim) proves advantageous for diagnosis. The di-
agnosis is more resilient to noise when using optimized
inputs, than when using randomized values in X. At
15 dB, the optimized version recovers up to 3 faults with
near certainty, which is achievable only at 25 dB when
using randomized inputs.

3) Since our technique hinges on using engineered inputs
to the RF chains, the number of RF chains in the system

#RF can have an influence on the diagnosis performance.
From Fig. 11c, we compare performance of diagnosis
with increasing number of RF chains, also including the
fully digital case (#RF = #C , and FRF = I#RF×#C ):

a) For a given number of RF chains, the improvement
in diagnosis performance saturates once the num-
ber of subcarriers " ≥ #RF, meaning that there
is not much useful information that can be gained
from additional measurements. We can intuitively
understand this in the light of the fact that when
" > #RF, the projection matrix � becomes a tall
matrix. Measuring more projections would not lead
to more information since the measurements have
been optimized.

b) For a given number of subcarriers " , the average
performance of diagnosis remains the same irre-
spective of the number of RF chains (#RF), as long
as " ≤ #RF. In fact, the performance of diagnosis
with a hybrid architecture matches with the perfor-
mance of diagnosis for a fully digital architecture.
The optimization allows us to obtain the maximum
information possible from the measurements for
each value of " .

B. Partially Connected - Two-Stage Diagnosis

a) Stage I (BOMP-R): An implementation detail in Al-
gorithm 2 is the stopping criterion used to stop BOMP-R
iterations without the knowledge of the block-sparsity (number
of faulty subarrays). The iterations are continued as long as
the inequality

‖rC ‖2√
"
≤ ^f (19)

holds, where the residue rC = y − y? (see Algorithm 2), f
is the standard deviation of noise, and ^ =

√
3 specifies the

confidence region of 95%, as the noise is assumed to follow
CN(0, f2�).

Similar to the previous performance metric, the RSR here
is the fraction of trials where the existence of faults in all
the subarrays that contain faults are identified exactly. Fig. 12
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Fig. 12. First-stage diagnosis (BOMP-R) for PCS: The total number of faults among the antennas was taken to be double the number of faulty subarrays
(blocks), while the minimum number of faults in each faulty block was restricted to be at least one, randomly distributing the faults among the subarrays
that contain faults. (a) Diagnosis performance for different value of " (subcarriers used for diagnosis). (b) Plot shows an improved diagnosis of subarrays
by optimizing mutual subspace incoherence using � as a Grassmannian matrix. (c) Degradation of the reliability of diagnosis with decreasing SNR of the
online measurements.
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Fig. 13. Second-stage diagnosis with BlockGenie for PCS: In these plots, the set of indices of faulty subarrays (Γ) is assumed to be known apriori. (a) RSR
plotted as a function of total number of faults in the array (across all subarrays). (b) Sensitivity to noise in measurements, plotted for number of second-stage
measurements ! = 5. (c) Dependence of fault diagnosis performance on the distribution of faults among subarrays. |Γ | = 1 means that all the faults are
concentrated in a single subarray.

shows the performance of first-stage diagnosis using BOMP-
R:

1) In Fig. 12a, we show the number of faults diagnosed
for a given number of subcarriers " . With a single RB
(" = 12), BOMP-R can detect up to 4 faulty subarrays
with near-certainty at an SNR of 25 dB.

2) Similar to the FCS case, using engineered inputs x(:)
from a Grassmannian � is clearly beneficial, as illus-
trated in Fig. 12b, validating our understanding that
minimising the mutual subspace incoherence `( (A)
(from Section IV-B) helps BOMP-R perform better.

3) At higher noise levels (SNR below 20 dB), when using
one RB (" = 12) performance of BOMP-R degrades
(see Fig. 12c).

b) Stage II (IRL1): To isolate our evaluation of the
second stage diagnosis from the first, we first assume that the
indices of the faulty subarrays Γ are known exactly, provided
by an oracle/genie (hereafter referred to as BlockGenie). In
the plots of Fig. 13, #RF has been chosen as 8, instead of
16 to show a broader range of values (since the number of
measurements, ! ≤ %, the number of antennas in a subarray).
We also randomly distribute the faulty elements at random
across all the subarrays for the results in Figs. 13a and 13b,

meaning that each subarray could have any number of faulty
elements, while the total number of faults is as shown on the
x-axis. The hyperparameter pair (?, _) used for (11) in all of
Fig. 13 is (0.01, 0.01). The performance is not affected by the
specific hyperparameters as long as _ is less than a certain
threshold (different for each ?). Some of the main features
shown in Fig. 13 are described below:

1) Fig. 13a shows the RSR for increasing number of
faults. With about 5-6 additional measurements (!),
about 4 faulty antennas (distributed anywhere among
the subarrays) can be detected with near certainty on
average.

2) The diagnosis is very robust to noise, with performance
remaining nearly the same for 10 dB and above (see
Fig. 13b). This may be be attributed to the fact that
(11) is a much easier problem to solve due to its block-
diagonal structure (implying that the faulty elements
in different subarrays cannot be confused among each
other) composed of RPF matrices.

3) Since the sensing matrix M in (11) has a unique block-
diagonal structure, faults spread across many subarrays
(corresponding to different blocks of the matrix) will be
easier to distinguish than faults concentrated within a
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single subarray. This is demonstrated in Fig. 13c. For
example, when |Γ| = 1, i.e., all the faults are concen-
trated within a single subarray, second-stage diagnosis
is not as good. It requires 8 measurements to achieve
'(' > 90, which is equal to the number of antennas
within the subarray. Diagnosis improves as the faults
are spread across subarrays. This can be attributed to
the fact that since sparsity is not satisfied within the
subarray, the ‘block’ columns in M are more easily
confused among each other. In contrast, when all the
faults are spread across the subarrays such that only one
fault exists in each faulty subarray ( |Γ| = 5), they are
easily distinguishable from one another.
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Fig. 14. Overall two-stage diagnosis for PCS: (Top) The success rate of
recovering the correct subarray (block-support of the solution) using BOMP-
R, the first stage of diagnosis. (Bottom) The success rate of second-stage
diagnosis using ! = 5 measurements given the result of BOMP-R from the
first stage. Also shown for reference is the performance of BlockGenie+IRL1
(assuming a priori knowledge of the faulty subarrays). In both, the x-axis is
the total number of faults in the array. This shows the susceptibility of overall
diagnosis to errors in the first stage (BOMP-R).

Finally, we show the overall performance of the two-
stage diagnosis and the effect of inaccuracies of BOMP-R on
second-stage diagnosis in Fig. 14. When BOMP-R exactly re-
covers the indices of faulty subarrays, the overall performance
of the two-stage diagnosis coincides with the one obtained
using BlockGenie. As the number of measurements decreases
and BOMP-R becomes more inaccurate for a higher number
of faults, the performance of the second-stage diagnosis is
naturally affected. Our results show that using just a tiny part
of the available spectrum (" �  ), our method can reliably
perform detection and diagnosis of faults in a large antenna
array while minimally affecting normal operation.

VI. DISCUSSION

In this work, we have proposed a new method for fault di-
agnosis that has the unique advantage of being implementable
while the wireless system is still in operation by making
use of a small subset of subcarriers for fault diagnosis while
usual data transmission simultaneously happens through the
rest of the subcarriers. The measurement can be obtained

in a single shot (for fully connected and the first stage for
partially connected) and is directly implementable on practical
systems by using only digital operations. By engineering the
inputs for optimal measurement, we enable diagnosis using
very few subcarriers, thus minimally affecting services. Since
the method is online, it can be used to run diagnoses as an
automated self-diagnosis system periodically.

Some significant challenges to solve include the requirement
for reference measurements and the handling of multi-path
channels. This could potentially pave the way for a robust
method of fault diagnosis that caters to the needs of real-world
communication systems by performing quick online diagnoses
and avoiding interruption of services. Our novel methodology
and results provide a basis for such exciting and interesting
work in the future.
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