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Abstract—We present a deep neural network-based framework

for designing multi-band microstrip antennas given a desired

impedance matching spectrum. The approach enables a de-

sign methodology that generates the desired antenna structures

rapidly (under a second) through an effective deep learning-

enabled search of a large design space and eliminates the need for

extensive domain knowledge of antenna design. The framework is

built on our innovations in tandem neural networks consisting of

two cascaded neural networks. Our structures are parameterized

in an exponentially large design space of discrete variables

(pixels), leading to the realization of nonintuitive structures. This

end-to-end synthesis in terms of discrete variables is enabled

by introducing a new type of “smooth thresholding” activation

function, which, along with crucial regularization terms in the

network loss function, aids in designing our structures. We per-

form extensive neural network optimizations and study various

trade-offs in the design process. We demonstrate the efficacy

of our methods by generating single and dual-band resonant

structures, which can be up to 50% more compact in terms of

area, and up to 18 % thinner in terms of substrate height than

conventional structures, while retaining competitive performance

parameters in terms of gain, polarization properties, radiation

efficiency, and fractional bandwidth.

Index Terms—Antennas, Microstrip antennas, Design automa-

tion, Optimization methods, Artificial intelligence

I. INTRODUCTION

In recent years, ideas from machine learning have started
to play a pivotal role in the design of electromagnetic and
photonic structures [1]–[10]. We revise the historical context
of antenna design in order to better appreciate the ideas that
follow: For decades, the paradigm of antenna design has been
characterized by two features, one, expensive electromagnetic
simulations to predict the performance of an antenna, and two,
reliance on vast domain knowledge and rules of thumb to fine
tune a design. In a sense, the second feature is an outcome of
the first because numerical optimization for antenna design
is extremely challenging in the face of time and memory
intensive electromagnetic simulations. However, with the ad-
vent of fast computing hardware and the phenomenal success
of machine learning in diverse fields from image processing
to economic forecasting, the field of electromagnetic and
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photonic device design too stands to undergo a paradigm shift
[11], [12].
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Fig. 1. An overview of the conventional and proposed framework of antenna
design. Traditionally, a single band antenna can be designed by varying a finite
set of parameters (such as length, width, probe position, slot geometry) in the
microstrip patch. Designing a multi-band antenna is much more challenging.
The proposed framework uses a “tandem” neural network to design an antenna
with a given spectrum in less than a second.

In this contribution, we propose a way of thinking that
revises both aspects of traditional antenna design mentioned
above. As a result, we have an end-to-end machine learning
paradigm that generates an antenna given a desired perfor-
mance as input. This effectively cuts out the reliance on
domain knowledge; in fact, existing domain knowledge can be
incorporated into the training datasets of the new approach.
Doing so allows us to enlarge the possibilities of antenna
performance that we could ask for and paves the way for
multi-function devices [10]. For example, can we think of
designing an antenna resonant at two bands, with independent
control over the beam angle and polarization of each band?
It would be difficult to answer this question in the affirmative
with conventional trial and error methods, but such an antenna
is a very likely possibility in the new paradigm using machine
learning. As an illustration, we draw the reader’s attention to
Fig. 1 which discusses the design of a single and dual band
antenna. While designing a single band antenna using con-
ventional methods is matter of simply varying the dimensions,
the story gets complicated when we go to dual band antennas.
Traditionally, this has been accomplished by introducing para-
sitic elements, slots, notches, lumped elements, shorting posts,
fractal elements, etc., and the parameters varied using trial and
error till the desired antenna is achieved (for e.g. [13], [14])
– all in all, a time consuming process heavily reliant on prior
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Fig. 2. Proposed tandem network architecture for antenna design featuring a set of layers that take antenna performance, S, as input and produce the design
of a tesselated patch antenna at an intermediate layer, D0; this design is cascaded with the pre-trained surrogate model for electromagnetic simulations that
takes D0 as input and produces its response S0 as output. A novel ‘ST’ activation layer helps produce a binary antenna design. The network loss functions
LD, LS , LB are elaborated in Sec. III.

experience and domain knowledge. On the other hand with the
techniques introduced in this work we can design either kind
of antenna in less than a second (on even an ordinary laptop)
in a fully automated manner by using designed trained neural
networks.

A. Overview of our approach
In this work we demonstrate the design of antenna structures

by developing a ‘tandem’ neural network, as seen in Fig. 2.
This network consists of an inverse network and a deep
convolutional neural network (CNN) that acts as an ultra
fast surrogate for expensive electromagnetic simulations. The
operation of two cascaded neural networks is what earns it
the name ‘tandem’, first introduced in the context of photonic
structures [15]. The purpose of the cascade is to solve the
data inconsistency problem, which arises because there can
be multiple structures that give nearly the same performance.
As a result, a naive attempt to train a neural network directly
between the device performance (input) and the design (out-
put) fails to converge; the cascade solves this problem by
computing the response of the generated design, which leads
to a consistent objective function for the purpose of training
[15]. The device performance can be characterized by the
antenna return loss (S11 as a function of frequency) as well as
other features such as the radiation pattern and polarization.
We describe an antenna by a variable ‘chessboard’ pattern of
metallic sub patches (see Fig. 3 for e.g.), thereby giving us an
exponentially large design space [16]. This larger space allows
us to explore antenna designs that would otherwise be missed
in an approach that uses a templatized geometry [10].

B. Related work
Recent work reported the use of neural networks for multi-

objective antenna design based on templatized geometries [9],
[10], [17]–[19]. Characterizing antenna design by means of
template parameters [20] economizes the number of variables,

thus leading to simpler neural networks and lesser data require-
ments, but at the cost of a smaller design space. Earlier work
in nanophotonic structure design has shown how a surrogate
neural network for the forward electromagnetic simulations
can be re-purposed for the task of inverse design by using the
backpropagation algorithm [6]. This is convenient to do when
the design variables are continuous valued, since the backprop-
agation algorithm requires differentiability of the variables.
However, when the design variables are discrete valued the
task becomes harder and approaches such as level sets [21]
and evolutionary algorithms [3], [16], [22], [23] are common
in this case. In [24] a deep CNN-based model is trained to
learn the resonant frequencies of dual-band pixelated antennas.
While this approach only learns the resonant frequencies, we
take a more general approach in learning the S11 response in a
frequency range of interest. Indeed, in [25], we have innovated
the coupling of a deep CNN used as a surrogate forward solver,
with genetic algorithm and binary particle swarm optimization
methods for the synthesis approach, leading to compact, multi-
band antennas.

Moving on from conventional algorithms, a promising all-
neural network approach for inverse design compatible with
both continuous and discrete valued design variables involves
the use of tandem neural networks. The first tandem network
[15] designed a one dimensional stack of variable-thickness
dielectric layers with a target transmission spectrum using an
objective function consisting of the spectrum loss, S � S 0

(see Fig. 2), where S,S 0 refer to the desired and surrogate
predicted spectra, respectively. A subsequent improvement
was achieved [26] by adding a ‘design’ loss to the objective
function, i.e. D � D0, where D,D0 refer to a design and its
prediction via the inverse network, respectively; doing so led to
more accurate device designs. Recently, the tandem approach
was used to design wideband Schiffman phase shifters [27]
by minimizing a combination of the phase error and return
loss during network training. While the previous three works
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dealt with continuously valued design variables, a subsequent
work offered a route towards designing structures with discrete
parameters [28]. The innovation here was to include a term
of the type ‘d(d � 1)’ into the objective function (d is a
design variable) which promoted solutions to take either of the
discrete values d = {0, 1}. Finally, note that while the tandem
architecture superficially resembles that of a conventional
autoencoder (CAE) [29] in that both the input and output
refer to the same quantity, the significant differences is that
the CAE learns a coded representation of the input whereas
the tandem approach specifies the equivalent representation to
be the device geometry.

C. Our contributions
The present work builds on all the previous tandem network

related works [15], [26], [28] and further introduces a new
type of activation function which we term as ‘ST’, short for
Smooth approximation of a Thresholding function, to better
promote the discrete nature of the design. Through extensive
numerical simulations we demonstrate the superior nature of
this innovation in tandem networks, leading to the rapid design
of miniaturized single and dual band antennas. We explore the
trade-offs faced in the architecture of these neural networks,
particularly in relation to the discrete nature of the design
variables.

The paper is organized as follows. In Section II, we describe
the neural networks developed in this work, as well as go
over details of the datasets requires for network training. After
describing training details for both, the forward and tandem
network, we elaborate on our innovations in network design
and hyperparameter choice which lead to optimal performance.
In Section III, we report the various types of antennas that
are generated by deploying the network, including single and
dual band compact structures. In Section IV we discuss certain
limitations of our approach while simultaneously proposing
workarounds as well as future extensions that can be consid-
ered. Finally, we conclude in Section V.

II. BUILDING BLOCKS FOR NEURAL-NETWORK BASED
INVERSE DESIGN

Here, we describe the overall framework of the proposed
approach for antenna design using a tandem neural network,
starting with a description of the network details, followed by
training specifications, and finally a summary of the innova-
tions in our approach.

A. Tandem Neural Network
1) Antenna Structure: To enable convergence towards syn-

thesis of arbitrary-shaped planar structures with the desired ra-
diation properties, we first discretize the space to a moderately
large number of pixels, that can still approximate functionali-
ties achievable by continuously shaped antennas (Fig. 3(a,c)).
As described earlier, a candidate antenna structure is generated
by starting with a conventional metallic patch antenna and
tesselating the surface into a 12⇥12 sub-patches. Each of these
sub-patches is characterized by a ‘1’, meaning metal, or ‘0’,

meaning no metal. Thus, an antenna structure is parameterized
by 144 discrete variables, giving us a large exponential design
space, typically much larger than what can be effectively
searched by evolutionary algorithms (such a genetic algorithm,
binary particle swarm optimization etc.).
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Fig. 3. (a) A sample of an air filled pixelated microstrip antenna with a
coaxial feed. The gap between the upper and ground plate is 0.61 mm and
the thickness of metal used is 0.035 mm. The inner conductor of the coaxial
connector extends through the air and is connected to the patch, while the
outer conductor is connected to the ground plane. (b) Return loss (S11 in
dB). (c) Top view of the antenna without the ground plane (red dot is the
feed location). (d) Histogram of resonance spectra (in percentage) (180k out
of 500k dataset samples have a resonance).

As mentioned in Section. I, the tandem architecture [15]
avoids the data inconsistency problem that arises due to the
non-unique correspondence between a device design and its
spectrum by the cascade of two neural networks. Fig. 2 shows
the schematic of the tandem network, which consists of an
inverse network connected to a pretrained forward network
with frozen weights. The input to the tandem network is the
desired spectrum (S), and the output is the predicted spectrum
(S 0). The inverse network (see Fig. 2) consists of three
dense layers, which are each followed by batch normalization
and leakyReLU activation functions. The output of the final
leakyReLU activation layer is connected to a layer with the
newly introduced ST activation for generating binary outputs.
The ST activation function is shown in the inset of Fig. 2 and
is defined as:

f(x) =
1

2
+

1

2
tanh


m

✓
x� 1

2

◆�
, (1)

where m is the thresholding hyperparameter. The ST activation
function acts as follows: if x  0.5, then f(x)  x (damps);
if x � 0.5, then f(x) � x (amplifies), and this rate of
damping/amplification is governed by m. We note that ST
activation function is a generalization of the unipolar sigmoid
function with m = 1 [30].

2) Forward Surrogate Model: The forward surrogate model
approximates the antenna performance, in particular the an-
tenna return loss given the antenna design. This surrogate is
itself achieved via a deep CNN, which treats the input as
a single channel image, and through a sequence of convo-
lutional filters and fully connected layers, gives the desired
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response as the output [25]. Once the CNN is trained, it
approximates a complex electromagnetic simulation (such as
integral equation or finite-difference time-domain simulations)
in orders of magnitude lesser time [6]. The network contains
56 layers with filters, weights and biases; the first 16 combine
convolutional 2D, batch normalization, and the leakyReLU
activation function layers. The next two are fully connected
layers; batch normalization, leakyReLU activation function,
and dropout (value = 0.4) layers are applied to the output
of every fully-connected layer. The output of the last fully-
connected layer is fed to an 81-dimensional output regression
layer.
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Fig. 4. Deep CNN forward surrogate model consisting convolutional and fully
connected layers, denoted by ‘CONV’ and ‘FC’, respectively. A tessellated
antenna structure is the input and the antenna return loss is the output.

B. Network Training

1) Dataset Generation: To generate a training dataset, we
start with a “mother” metallic patch of size 7.5 ⇥ 7.5 mm
and tessellate it into 12⇥ 12 pixels. This structure has a weak
resonance near 19.5 GHz. The pixels values of 0 or 1 are pop-
ulated randomly, while ensuring that the two pixels adjacent
to the feed location are always metal to ensure connectivity.
This gives us an exponentially large design space of nearly
2142 possible structures. The return loss corresponding to the
antenna is simulated at 81 equi-spaced points in a 10–20 GHz
frequency range using the MATLAB Antenna Toolbox. A total
of 500k antennas and their spectra are generated, which are
distributed in a 80:10:10 ratio for training, validation, and
testing, respectively. We define a resonant structure to be one
which displays a dip below -10 dB in the return loss, S11,
at one or more points in the frequency range. We find that
most of the 500k samples have no resonances, while about
180k are resonant structures; further, we plot a histogram of
the resonant frequencies from the dataset in Fig. 3(d). The
histogram reveals an ‘unbalanced’ dataset, in the sense that
the resonances are not uniformly distributed over the frequency
range.

We make an important remark about a design choice in the
dataset generation. Considering the large size of the dataset, it
was necessary to keep the simulation time for a single antenna
to be as low as possible. We choose to have air rather than
dielectric as the substrate for the antenna structure as this
considerably lowers the simulation time (by a significant factor
of 50-60). Parallelizing the dataset generation over 400 cores
of the high performance computing facilities at the Princeton
Research Computing Resources center (consisting of a mix of
Intel Ice Lake and Cascade Lake processors), the dataset was

generated in approximately 24 hours. Fig. 3 shows a sample
antenna and its S11 spectrum.

We note that this choice of substrate is a matter of con-
venience and does not imply any fundamental limitation on
our approach. Since Maxwell’s equations are scale invariant,
we can scale these antenna structures to different operating
frequencies by performing an overall scaling of the dimen-
sions. However, scale invariance can not be used to infer the
response of a dielectric filled antenna given that of an air-filled
one. To this end, in [25] (and further elaborated in Sec. IV-B),
we show how a transfer learning approach enables the dataset
of the air-filled structures to be repurposed to rapidly learn the
S11 response of dielectric-filled structures.
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Fig. 5. Comparison of the predicted S11 spectrum from the trained forward
model with the true spectrum from EM simulator showing the efficacy of the
forward model: (a,c) resonant structures (b,d) non resonant structures.

2) Forward Network Training: The loss function that char-
acterizes the forward model is a mean squared error function
of the form:

Lf =
1

P

PX

i=1

MSE(Si,S 0
i) (2)

where P is the batch size, set to 256. We choose NAdam [31]
optimizer to update the weights and biases of the CNN. It
can be seen from Fig. 5 that the forward network predicts
the return loss of an antenna from the test dataset to a
satisfactory level and can be substituted for an EM simulator.
The forward network is trained in PyTorch using Google Colab
GPU services for 15 epochs taking approximately 3 hours. The
training and validation loss are 0.62 and 0.71, respectively.

3) Tandem Network Training: The overall loss function,
LI , that characterizes the tandem network is given as:

LI = LS + ↵LD + �LB , (3)

where the constituent loss functions are:

LS = MSE(S,S 0) (spectrum loss), (4a)
LD = MSE(D,D0) (design loss), (4b)

LB =
1

N

NX

i=1

(d0i(d
0
i � 1))2 (binary loss), (4c)
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where, N is the total number of pixels, ↵ and � are the
tuneable hyperparameters; S 0 is the predicted spectrum, D0 is
the predicted antenna design obtained in the intermediate layer
(M ) in the tandem network, d

0

i corresponds to the ith pixel
in D0, and MSE stands for mean squared error. Compared to
prior work on nanophotonic structures [15], [26], [28], this is
the first work to the best of our knowledge to combine all three
loss functions along with the newly proposed ST activation to
allow deep learning based inverse synthesis of antennas.

The network is trained with a batch size of 512 for 300
epochs taking approximately 12 hours. The weights are up-
dated using RAdam optimizer [32] and the hyperparameters
↵, �, m are set to 17, 1, and 20, respectively, after an extensive
grid search. The split-up of the loss function LI into its
constituents (as per Eq. (3)) in the format {LS , LD, LB} is
{1.45, 6.45, 7 ⇥ 10�7} (training) and {1.48, 6.55, 8 ⇥ 10�7}
(validation) at the end of 300 epochs. The optimizers for
the forward and tandem networks are chosen empirically by
evaluating the training and validation loss over various solvers
such as the steepest gradient (sgd), Adam, NAdam and RAdam
optimizers.

C. Innovations in the Tandem Network
Having presented the various details of the tandem network

and associated training details, we now highlight the rationale
behind the design choices in conceiving the network.
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Fig. 6. Predicted antenna design with different loss functions: (a) LI = LS+
5LB , (b) LI = LS , (c) LI = LS+1LD , and (d) LI = LS+17LD+1LB .
The networks are trained (a) without ST activation layer; (b,c,d) with ST
activation layer.

1) Role of ST activation in generating binary designs:
Prior to this work focusing on the design of nanophotonic
structures [28] has shown techniques to deal with a small
number of binary variables (6 compared to 142 in our case)
in a tandem networks, where a binary design is obtained by
training the network with spectrum and binary loss terms.
In order to verify if adding a binary loss term is sufficient

in our case, we implemented the tandem network without
the ST activation function, and a typical result is shown in
Fig. 6(a) which shows the predicted design (after a sweep
for the best value of hyperparameter �); as can be seen,
the obtained design is not binary. A possible solution to this
problem is to simply threshold the obtained pixel values; for
e.g. in [33] a metasurface is a 64 ⇥ 64 binary image obtained
by a thresholding operation. We find this approach to not be
suitable, as the spectrum can change drastically as a result of
thresholding. Hence it is necessary for the inverse design to
give binary outputs, and we achieve this via the ST activation.
As can be seen in Fig. 6(b) which is the result of using the
loss function LI = LS + �LB along with an ST activation
layer, the obtained design is binary. We note that while the
design is binary, the obtained design is not practical due to
the sparse distribution of metal patches and problems of feed
connectivity. We address this issue next.

2) Importance of design and binary loss: The design and
binary loss terms, in addition to spectrum loss, are critical
for the network to reach an optimum solution. Each term in
the proposed loss function affects the design of the structures,
as evident from Fig. 6: The regularised loss function with
optimized hyperparameters promotes binary structures (due
to LB) for which the return loss response is aligned with
the desired spectrum (due to LS ), and are suitable for the
fabrication purpose (due to LD). We examine the importance
of each term of the proposed loss function via the following
experiments. First, we explore the role of having a spectrum
loss along with a design loss, i.e. LI = LS + ↵LD, on the
lines of [26], plus the ST activation layer to promote a binary
design. A resulting antenna can be seen in Fig. 6(c) which
shows the design to be far from discrete (and therefore not
practically realizable). In order to promote binary designs, we
add a binary loss term to the loss function on the lines of
[28], i.e. LI = LS + ↵LD + �LB ; the resulting antenna
is seen in Fig. 6(d) which shows a binary design without
any connectivity issues at the feed. The spectrum of the
obtained antenna is independently simulated via a commercial
electromagnetics software (MATLAB) and found to be the
same as predicted by the forward surrogate model. We thus
conclude that in order to reliably get an accurate binary design
it is essential for the network’s loss function to have a design
and binary loss terms in addition to the usual spectrum loss,
and also an ST activation function.

3) Choice of m in ST activation: The ST activation function
produces binary outputs with high probabilities, but fails
when the input is in close vicinity of 0.5 as can be inferred
from Eq. (1). Fig. 6(b) showed that the design is non-binary
even with the ST activation included. The transition rate of
the activation function from zero to one depends on the
hyperparameter, m. Fig. 7 shows the spectrum and binary loss
for m = 15 and 20. Ideally, the binary loss should be zero
for a purely binary design. At m = 20 the binary loss is
zero for epochs greater than 150. Though the spectrum loss is
always lower for m = 15, the binary loss never reaches zero,
and further, for epochs beyond the point ‘K,’ in Fig. 7, the
binary loss increases. This is ostensibly happening because the
network has moved into a local-minima region of non-binary
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(and therefore nonphysical) designs which still show a lower
overall loss function. This trade-off between the spectrum and
binary loss helps us to fix the ST activation hyperparameter
at m = 20.

III. INVERSE DESIGNED ANTENNA STRUCTURES

In this section we report various structures designed by the
tandem network, including single and dual band antennas. In
the case of single band antennas we also make comparisons
with conventional patch antennas to demonstrate a key result
of our work, that of compactness of the obtained designs. In all
the examples shown below, the return loss has been validated
against rigorous MATLAB based electromagnetic simulations.
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Fig. 8. (a) Inverse designed single-band antenna, (b) reconstructed spectrum
(c) Elevation radiation pattern (� = 0� and � = 90�)

A. Simulation results – Single band antennas
A single-band compact resonant antenna design is chosen

as the first numerical example for the evaluation of the

CPL
(mm)

CPW
(mm)

f0
(GHz)

Area (mm2) � area
%

Gain (dB) BW (FBW)
MHz (%)

RE
(%)(CP) (IDP) CP IDP

10.1 10.9 13.8 109 56.25 50 9.71 8.68 250 (1.8%) 91.2
9.85 10.7 14 105.4 56.25 48 9.71 9.45 250 (1.8%) 93.5
9.1 10 15 91 56.25 38 9.65 9.36 500 (3.33%) 93.2

7.48 8.32 18 62.23 56.25 10 9.68 9.29 500 (2.7%) 92

TABLE I
DESIGN PARAMETERS FOR THE SINGLE-BAND RESONANT CONVENTIONAL

PATCH (CP) AND THE INVERSE DESIGNED PATCH (IDP) ANTENNA FOR
DIFFERENT FREQUENCIES IN THE DATASET. CPL: CONVENTIONAL PATCH

LENGTH; CPW: CONVENTIONAL PATCH WIDTH; f0 : RESONANT
FREQUENCY, � AREA: COMPACTNESS RELATIVE TO CP, RE: RADIATION

EFFICIENCY, BW: BANDWIDTH, FBW: FRACTIONAL BANDWIDTH

proposed approach. Fig. 8 shows the design of the compact
antenna (-31% smaller in area than a conventional antenna
at the same frequency) at 15.8 GHz and its corresponding
reconstructed and the simulated spectrum using the proposed
tandem approach. It is seen that the spectrum of the inverse
designed antenna is in good agreement with the desired and
EM simulated spectrum. The axial ratio of the antenna in Fig. 8
is 56 (dB). Although the axial ratio and the radiation pattern
of the antenna are not taken as a part of the cost function
for optimization in the current work, the radiation pattern of
the inverse designed antenna is well-shaped and directed at
✓ = 90� (Gain: 9.635 dB). The device is found to be linearly
polarised with the radiation efficiency above 90% considering
Cu losses, which is comparable with conventional microstrip
antennas [13].

10 12 14 16 18 20
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frequency (GHz)
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No

D
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ic
e 

ge
ne

ra
te

d

Fig. 9. The design range of predicted antennas for a single band spectrum
from the inverse tandem network. ‘Yes’ indicates the generated antenna has a
single band spectrum in the frequency range shown in the shaded blue region
while ‘No’ means the tandem network could not predict a single band antenna.

Next, we compare several single band antennas with their
conventional counterparts in Table. I. Conventional patch
antennas cover an area of approximately �

2 ⇥ �
2 [13], while in

this work the antennas occupy an area on the order of �
4 ⇥ �

4 ,
which is significantly compact at the design frequency.

We further check the rigour of our proposed tandem network
on never-seen-before synthetic data. We choose a rectangular
spectrum as a synthetic single-band S11 spectrum to check
the reconstruction across the frequency span (10–20 GHz)
using the proposed approach. Such a spectrum, with S11 = 0
dB outside the passband and S11 = �25 dB within a
500 MHz passband is not in the training dataset due to its
obvious artificial nature. Fig. 9 shows the design range for
the reconstruction of the single-band synthetic spectrum. The
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gaps in the plot are attributed to the imbalance of the single-
band resonant frequencies in the dataset. We observe that the
blue region in Fig. 9 matches the high histogram regions of
Fig. 3(d). This can be improved in the future by augmenting
the training dataset to contain an equal number of samples for
each simulated frequency.

B. Simulation results – Dual band antenna
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Fig. 10. (a) Inverse designed dual-band antenna, (b) reconstructed spectrum
(c) Elevation radiation pattern (� = 0�) of the inverse-designed antenna
@f1 = 14 GHz (gain 9.73 dB) (e) Elevation radiation pattern (� = 90�) of
the inverse-designed antenna @f2 = 18.37 GHz (gain 9.43 dB)

Fig. 10 shows a dual-band inverse designed antenna and the
associated radiation patterns at the frequencies 14 GHz and
18.37 GHz using the proposed tandem approach; the gain and
the elevation radiation pattern are like that of a conventional
patch antenna. We expect to be able to have designer radiation
patterns by incorporating the radiation pattern into the network
loss function for optimization in the future.

Table. II shows different dual band designs, where we also
report the area of obtained antennas in terms of the wavelength
of the lower frequency band, �0.

We have also compared the run-time of the deep learning-
assisted evolutionary algorithms such as the modified Binary
Particle Swarm Optimization (BPSO) [37] and the Genetic
Algorithm (GA) [38] to generate the antenna structures cor-
responding to the spectra in Fig. 8(b) and Fig. 10(b); single
band structures took 6-7 mins, while double band structures

f1
(GHz)

f2
(GHz)

Gain (dB) BW (FBW) MHz (%) Aperture
area

RE (%)
f1 f2 f1 f2 f1 f2

14.38 16.62 9.17 7.79 250 (1.7%) 250 (1.5%) 0.13 �2
0 90.6 88.1

14.5 17 9.01 7.88 250 (1.72%) 250 (1.47%) 0.13 �2
0 90.4 89.2

15.5 19.85 9.45 9.21 375 (2.41%) 375 (1.88%) 0.15 �2
0 91.2 90.5

14 18.37 9.73 9.43 250 (1.78%) 250 (1.36%) 0.12 �2
0 92.3 91.4

TABLE II
DUAL-BAND SPECTRA OF INVERSE DESIGNED ANTENNAS; HERE �0

DENOTES THE WAVELENGTH CORRESPONDING TO THE FIRST FREQUENCY
BAND, f1 , BW: BANDWIDTH , FBW: FRACTIONAL BANDWIDTH, RE:

RADIATION EFFICIENCY

Reference
f1
(GHz)

f2
(GHz)

Gain (dB) Bandwidth (MHz) Aperture
areaf1 f2 f1 f2

[14] 2.4 5.6 9.55 8.50 97 360 1.16 �2
0

[34] 2.4 5.8 6.8 2.1 164 256 0.64 �2
0

[35] 1.57 2.45 7.47 7.07 47 125 0.64 �2
0

[36] 2.4 5.2 4.1 1.4 90 277 0.08 �2
0

TABLE III
STATE-OF-THE-ART COMPARISON FOR DUAL-BAND MICROSTRIP

ANTENNAS.

took 10-12 mins. In contrast, the proposed approach generated
the structures near instantaneously.

C. Comparison with conventional antennas

Aperture area: We draw the reader’s attention to Table. III,
where a comparison of various dual band structures is pre-
sented. In particular we note that our designs yield much
more compact antennas than those reported in the literature.
For instance, the lowest area achieved by our work is 0.12�2

0,
while these are the areas reported in other works: 1.16�2

0 for
a dual mode circular patch antenna in [14], 0.64�2

0 for an E-
shaped microstrip patch in [34] and an arc-shaped slot patch
antenna in [35], and 0.08�2

0 for a shorted microstrip antenna in
[36]. It must be noted in the latter case that the lower aperture
area is coming at the cost of significantly lower antenna gain
as compared to our antennas. It is important to note that the
structures designed by us have an air substrate, and so the
design is expect to show further compactness once we insert
a dielectric substrate [13].

Bandwidth: The bandwidth of the proposed single and
double band structures is reported in Table. I and Table. II –
the obtained fractional bandwidths (FBW) is comparable with
a 1-4% FBW obtained from conventional single-band patch
antennas [13] [39, Fig. 8]. Further, we have systematically
studied the tuning of the obtainable FBW. In particular,
antennas with different bandwidth can be obtained by changing
the user-specified S11 spectrum. In the case of single-band
antennas, we can sweep FBW from 0.8% to 3.3%, while in
the case of double-band antennas, we can sweep FBW from
0.8% to 2.41%; Tables I,II report the highest FBW attained.

Substrate thickness: Air-filled conventional patch antennas
were considered in [39], which reported a single-band antenna
at 2.72 GHz with a FBW of ⇡ 3.33% on a substrate height
of 4.11 mm. On the other hand, we consider one of the
proposed single-band antenna at 15 GHz (Row 3 of Table. I)
with the same FBW. Scaling all dimensions to match resonant
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frequencies, implies a substrate thickness of 3.37 mm, which
is 18% thinner than the conventional value. This implication,
along with the earlier observation of a smaller area (refer to
Table. I) strongly favours the proposed antennas because when
the structures are replaced by dielectric, the substrate losses
will be lower in our structures due to the smaller antenna
dimensions.

Ease of design: Finally, we reiterate that our inverse-
designed antennas have been designed in a fully automated
manner near instantaneously, searching a large design space of
nearly arbitrary radiating structures, whereas the other designs
have either template-based geometries and therefore limited
design space and functionalities, or required extensive domain
knowledge (such as knowledge of slot dimensions and place-
ment [14], [34]–[36]), and resource intensive optimization.

IV. DESIGN CONSIDERATIONS AND TRADE-OFFS

Having presented the development of the tandem network
and some of the antennas generated by using our approach,
we now discuss some limitations of our approach as well as
possible extensions, and make a prescription about antenna
design in general.

A. Role of the Dataset Curation
As we see in Fig. 3(d), the dataset displays an imbalance

at the location of the resonances. Sure enough, this imbalance
seems to get reflected in the range of antennas that are gener-
ated by the tandem network as seen in Fig. 9; in particular
the tandem network does not succeed in generating single
band antennas in the lower end of frequencies. One of the
possible ways around this is start with a larger dataset and
filter it in such a way as to even the imbalance; however, this
is wasteful in terms of computational resources. Alternatively,
including mother patches of different sizes in the dataset is
also a possible way of dataset augmentation.

B. Role of the Substrate & Reuse of the Dataset
We have earlier referred to the design choice in the case of

dataset generation – that of choosing air as the substrate for
reasons of computational expediency. While this is convincing
in demonstrating a methodology of design, one needs a
dielectric substrate in order to realize an actual antenna. There
are various possible solutions, listed below.

1) A brute force strategy would be to simply simulate
dielectric substrates using more high performance com-
puting resources for dataset generation.

2) Another, more approximate strategy is to scale the
dimensions of air-filled antennas by using an effective
medium approach [13]. While this may work for single
band structures, the applicability in more complicated
devices is not clear.

3) Taking a neural network approach, one can conceive of
generating a smaller dataset consisting of dielectric filled
antennas and then training a network to learn the relation
between the spectra of air and dielectric filled structures.
Such a network can then be cascaded to the end of

the existing forward surrogate to create an end-to-end
network for predicting the response of a dielectric filled
structure.

4) Finally, the powerful idea of transfer learning [40] can
be used to accelerate the training of networks that learn
the dielectric response. In fact, in our parallel work [25],
we show how the air-substrate dataset can be re-used
for generating antennas on a Rogers RO4003C dielectric
using the transfer learning approach (also fabricated and
experimentally measured). In this approach, the neural
network weights obtained at the end of training the air-
substrate dataset are used to initialize a network that
computes the dielectric-substrate response (as opposed
to initializing the weights at random). The number of
dielectric simulations required is drastically reduced by
up to 85% (compared to the case when one would train a
network from scratch) in this approach. Further, we also
show how the same air-substrate dataset can be used to
rapidly train networks for learning relations of different
probe locations and frequency ranges.

C. The Vanishing Gradients Problem
This paper has introduced a novel ST activation function to

promote discrete designs. The core reason of its success—a
rapid change from 0 to 1—is also the cause of a new problem
it gives rise to, that of vanishing gradients [41]. As can be
seen in Fig. 11, the gradient of the ST function is non-zero
only over a small range of input parameters. During network
training this stalls the update of the associated parameters
since the back-propagation algorithm relies on the gradient to
proceed to the next step. We are thus presented with a trade-
off; as seen in Fig. 7, a higher value of the ST hyperparameter
m better favours discrete design, but due to the vanishing
gradients problem it also leads to an increase in the training
time or a failure to converge in some cases. In fact, lower
values of m can lead to an overall low loss function value, but
may end up generating non-discrete and therefore nonphysical
antennas. Several approaches have been proposed to overcome
this limitation widely seen in machine learning, and remains
an area of active research [42], [43].

Fig. 11. Graph of the gradient of the ST activation function for different
values of the ST hyperparameter, m.

We now discuss a couple of futuristic extensions of this
work which can be expected to play a crucial role in the newly
emerging area of research described in this paper.

This article has been accepted for publication in IEEE Transactions on Antennas and Propagation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAP.2023.3276524

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Uday Khankhoje
Authors acknowledge the research grant titled “6G: Sub-THz Wireless Communication with Intelligent Reflecting Surfaces (IRS)” 
numbered R‐23011/3/2022‐CC&BT‐MeitY by the Ministry of Electronics and Information Technology (MeitY), Government of India.



9

D. Multi-parameter Optimized Antennas
While in this paper we have exclusively focused on antenna

return loss as the performance parameter, the approach is
general enough to also incorporate other parameters of op-
timization, such as the radiation pattern, polarization ratio,
gain, etc., i.e. incorporating multiple functionalities in the
same structure; recent work involving templatized geometries
has already demonstrated this [10]. Increasing the number of
parameters will come at the cost of a rise in neural network
training time, which in turn forces innovation in the type of
neural networks to be considered. We discuss this next.

E. Smarter Surrogate Models
In this (and most related work in inverse antenna or photonic

structure design), the forward surrogate model is created
by a data intensive approach that involves: a) generating
data using an accurate solver, and b) learning a relationship
between input and output using machine learning. Instead of
a blackbox approach taken here, an emerging paradigm of
“physics informed machine learning” seeks to learn input-
output relations from the data, while having some of the
physics of the problem (such as conservation laws or invariant
relationships) be incorporated in the network architecture itself
[44], [45]. As a result, these relationships need not be learnt
from the data, thereby reducing the amount of data required
for training.

We conclude this section with a general prescription for
microwave device design. While the details of this paper
are centred on antenna design, the approach is very general
purpose and can be applied to any microwave device de-
sign in general, for e.g. power dividers/combiners, impedance
transformers, filters, etc. All that is required is a suitable
parameterization of the problem, followed by the standard
route of data generation, and the training of the forward and
tandem networks. While there is an initial cost of training, the
payoff is a vast reduction in the need of domain knowledge
and the near instant availability of a design given a trained
network. Such approaches are thus at a significant advantage
as compared to approaches using conventional optimization-
based or evolutionary algorithms which are still time consum-
ing as compared to all neural network approaches with run
times on the order of minutes or hours [46] as compared to
near instantaneous results in our approach.

V. CONCLUSION

In this paper we have introduced a tandem neural network
based approach to design custom microstrip antennas given
a desired return loss performance rapidly (in less than a sec-
ond) without the requirement of extensive domain knowledge.
We build on and improve existing tandem neural network
approaches to allow an end-to-end deep learning based design
methodology. We highlight the innovations required to gener-
ate discrete designs by introducing a new smooth thresholding
(ST) activation function and appropriate regularization terms
in the loss function of the network, backed up by extensive
numerical studies. The obtained antennas are significantly
more compact in area as compared to conventional single

and dual band antennas as shown with respect to existing
structures in the literature. We elaborate on the various design
choices encountered, highlight the shortcomings as well as
the possible extensions of our work. The approach for such
tandem networks can allow rapid and effective exploration of
a large design space of multi-functional antennas for future
wireless systems.
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