This article has been accepted for publication in IEEE Transactions on Antennas and Propagation. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TAP.2023.3276524 Authors acknowledge the research grant titled "6G: Sub-THz Wireless Communication with Intelligent Reflecting Surfaces (IRS)" numbered R-23011/3/2022-CC&BT-MeitY by the Ministry of Electronics and Information Technology (MeitY), Government of India.

Tandem Neural Network based Design of Multi-band Antennas

Aggraj Gupta[†], *Student Member, IEEE* Emir Karahan[¢], *Student Member, IEEE* Chandan Bhat[†], Kaushik Sengupta[¢], *Senior Member, IEEE* Uday K Khankhoje[†], *Senior Member, IEEE*

Abstract—We present a deep neural network-based framework for designing multi-band microstrip antennas given a desired impedance matching spectrum. The approach enables a design methodology that generates the desired antenna structures rapidly (under a second) through an effective deep learningenabled search of a large design space and eliminates the need for extensive domain knowledge of antenna design. The framework is built on our innovations in tandem neural networks consisting of two cascaded neural networks. Our structures are parameterized in an exponentially large design space of discrete variables (pixels), leading to the realization of nonintuitive structures. This end-to-end synthesis in terms of discrete variables is enabled by introducing a new type of "smooth thresholding" activation function, which, along with crucial regularization terms in the network loss function, aids in designing our structures. We perform extensive neural network optimizations and study various trade-offs in the design process. We demonstrate the efficacy of our methods by generating single and dual-band resonant structures, which can be up to 50% more compact in terms of area, and up to 18 % thinner in terms of substrate height than conventional structures, while retaining competitive performance parameters in terms of gain, polarization properties, radiation efficiency, and fractional bandwidth.

Index Terms—Antennas, Microstrip antennas, Design automation, Optimization methods, Artificial intelligence

I. INTRODUCTION

In recent years, ideas from machine learning have started to play a pivotal role in the design of electromagnetic and photonic structures [1]–[10]. We revise the historical context of antenna design in order to better appreciate the ideas that follow: For decades, the paradigm of antenna design has been characterized by two features, one, expensive electromagnetic simulations to predict the performance of an antenna, and two, reliance on vast domain knowledge and rules of thumb to fine tune a design. In a sense, the second feature is an outcome of the first because numerical optimization for antenna design is extremely challenging in the face of time and memory intensive electromagnetic simulations. However, with the advent of fast computing hardware and the phenomenal success of machine learning in diverse fields from image processing to economic forecasting, the field of electromagnetic and

Manuscript received Dec X, 2022. (Corresponding author: Uday Khankhoje.)

[†] A Gupta, C Bhat, and U K Khankhoje (e-mail: uday@ee.iitm.ac.in) are with the Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

[◊] E Karahan and K Sengupta (e-mail: kaushiks@princeton.edu) are with the Department of Electrical and Computer Engineering, Princeton University, New Jersey, USA photonic device design too stands to undergo a paradigm shift [11], [12].

1

Fig. 1. An overview of the conventional and proposed framework of antenna design. Traditionally, a single band antenna can be designed by varying a finite set of parameters (such as length, width, probe position, slot geometry) in the microstrip patch. Designing a multi-band antenna is much more challenging. The proposed framework uses a "tandem" neural network to design an antenna with a given spectrum in less than a second.

In this contribution, we propose a way of thinking that revises both aspects of traditional antenna design mentioned above. As a result, we have an end-to-end machine learning paradigm that generates an antenna given a desired performance as input. This effectively cuts out the reliance on domain knowledge; in fact, existing domain knowledge can be incorporated into the training datasets of the new approach. Doing so allows us to enlarge the possibilities of antenna performance that we could ask for and paves the way for multi-function devices [10]. For example, can we think of designing an antenna resonant at two bands, with independent control over the beam angle and polarization of each band? It would be difficult to answer this question in the affirmative with conventional trial and error methods, but such an antenna is a very likely possibility in the new paradigm using machine learning. As an illustration, we draw the reader's attention to Fig. 1 which discusses the design of a single and dual band antenna. While designing a single band antenna using conventional methods is matter of simply varying the dimensions, the story gets complicated when we go to dual band antennas. Traditionally, this has been accomplished by introducing parasitic elements, slots, notches, lumped elements, shorting posts, fractal elements, etc., and the parameters varied using trial and error till the desired antenna is achieved (for e.g. [13], [14]) - all in all, a time consuming process heavily reliant on prior

Authors acknowledge the research grant titled "6G: Sub-THz Wireless Communication with Intelligent Reflecting Surfaces (IRS)" numbered R-23011/3/2022-CC&BT-MeitY by the Ministry of Electronics and Information Technology (MeitY), Government of India

Fig. 2. Proposed tandem network architecture for antenna design featuring a set of layers that take antenna performance, S, as input and produce the design of a tesselated patch antenna at an intermediate layer, D'; this design is cascaded with the pre-trained surrogate model for electromagnetic simulations that takes D' as input and produces its response S' as output. A novel 'ST' activation layer helps produce a binary antenna design. The network loss functions L_D, L_S, L_B are elaborated in Sec. III.

experience and domain knowledge. On the other hand with the techniques introduced in this work we can design either kind of antenna in less than a second (on even an ordinary laptop) in a fully automated manner by using designed trained neural networks.

A. Overview of our approach

In this work we demonstrate the design of antenna structures by developing a 'tandem' neural network, as seen in Fig. 2. This network consists of an inverse network and a deep convolutional neural network (CNN) that acts as an ultra fast surrogate for expensive electromagnetic simulations. The operation of two cascaded neural networks is what earns it the name 'tandem', first introduced in the context of photonic structures [15]. The purpose of the cascade is to solve the data inconsistency problem, which arises because there can be multiple structures that give nearly the same performance. As a result, a naive attempt to train a neural network directly between the device performance (input) and the design (output) fails to converge; the cascade solves this problem by computing the response of the generated design, which leads to a consistent objective function for the purpose of training [15]. The device performance can be characterized by the antenna return loss (S_{11} as a function of frequency) as well as other features such as the radiation pattern and polarization. We describe an antenna by a variable 'chessboard' pattern of metallic sub patches (see Fig. 3 for e.g.), thereby giving us an exponentially large design space [16]. This larger space allows us to explore antenna designs that would otherwise be missed in an approach that uses a templatized geometry [10].

B. Related work

Recent work reported the use of neural networks for multiobjective antenna design based on templatized geometries [9], [10], [17]–[19]. Characterizing antenna design by means of template parameters [20] economizes the number of variables, thus leading to simpler neural networks and lesser data requirements, but at the cost of a smaller design space. Earlier work in nanophotonic structure design has shown how a surrogate neural network for the forward electromagnetic simulations can be re-purposed for the task of inverse design by using the backpropagation algorithm [6]. This is convenient to do when the design variables are continuous valued, since the backpropagation algorithm requires differentiability of the variables. However, when the design variables are discrete valued the task becomes harder and approaches such as level sets [21] and evolutionary algorithms [3], [16], [22], [23] are common in this case. In [24] a deep CNN-based model is trained to learn the resonant frequencies of dual-band pixelated antennas. While this approach only learns the resonant frequencies, we take a more general approach in learning the S_{11} response in a frequency range of interest. Indeed, in [25], we have innovated the coupling of a deep CNN used as a surrogate forward solver, with genetic algorithm and binary particle swarm optimization methods for the synthesis approach, leading to compact, multiband antennas.

Moving on from conventional algorithms, a promising allneural network approach for inverse design compatible with both continuous and discrete valued design variables involves the use of tandem neural networks. The first tandem network [15] designed a one dimensional stack of variable-thickness dielectric layers with a target transmission spectrum using an objective function consisting of the spectrum loss, S - S'(see Fig. 2), where S, S' refer to the desired and surrogate predicted spectra, respectively. A subsequent improvement was achieved [26] by adding a 'design' loss to the objective function, i.e. $\mathcal{D} - \mathcal{D}'$, where $\mathcal{D}, \mathcal{D}'$ refer to a design and its prediction via the inverse network, respectively; doing so led to more accurate device designs. Recently, the tandem approach was used to design wideband Schiffman phase shifters [27] by minimizing a combination of the phase error and return loss during network training. While the previous three works This article has been accepted for publication in IEEE Transactions on Antennas and Propagation. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TAP.2023.3276524

dealt with continuously valued design variables, a subsequent work offered a route towards designing structures with discrete parameters [28]. The innovation here was to include a term of the type 'd(d - 1)' into the objective function (d is a design variable) which promoted solutions to take either of the discrete values $d = \{0, 1\}$. Finally, note that while the tandem architecture superficially resembles that of a conventional autoencoder (CAE) [29] in that both the input and output refer to the same quantity, the significant differences is that the CAE learns a coded representation of the input whereas the tandem approach specifies the equivalent representation to be the device geometry.

C. Our contributions

The present work builds on all the previous tandem network related works [15], [26], [28] and further introduces a new type of activation function which we term as 'ST', short for Smooth approximation of a Thresholding function, to better promote the discrete nature of the design. Through extensive numerical simulations we demonstrate the superior nature of this innovation in tandem networks, leading to the rapid design of miniaturized single and dual band antennas. We explore the trade-offs faced in the architecture of these neural networks, particularly in relation to the discrete nature of the design variables.

The paper is organized as follows. In Section II, we describe the neural networks developed in this work, as well as go over details of the datasets requires for network training. After describing training details for both, the forward and tandem network, we elaborate on our innovations in network design and hyperparameter choice which lead to optimal performance. In Section III, we report the various types of antennas that are generated by deploying the network, including single and dual band compact structures. In Section IV we discuss certain limitations of our approach while simultaneously proposing workarounds as well as future extensions that can be considered. Finally, we conclude in Section V.

II. BUILDING BLOCKS FOR NEURAL-NETWORK BASED INVERSE DESIGN

Here, we describe the overall framework of the proposed approach for antenna design using a tandem neural network, starting with a description of the network details, followed by training specifications, and finally a summary of the innovations in our approach.

A. Tandem Neural Network

1) Antenna Structure: To enable convergence towards synthesis of arbitrary-shaped planar structures with the desired radiation properties, we first discretize the space to a moderately large number of pixels, that can still approximate functionalities achievable by continuously shaped antennas (Fig. 3(a,c)). As described earlier, a candidate antenna structure is generated by starting with a conventional metallic patch antenna and tesselating the surface into a 12×12 sub-patches. Each of these sub-patches is characterized by a '1', meaning metal, or '0', meaning no metal. Thus, an antenna structure is parameterized by 144 discrete variables, giving us a large exponential design space, typically much larger than what can be effectively searched by evolutionary algorithms (such a genetic algorithm, binary particle swarm optimization etc.).

Fig. 3. (a) A sample of an air filled pixelated microstrip antenna with a coaxial feed. The gap between the upper and ground plate is 0.61 mm and the thickness of metal used is 0.035 mm. The inner conductor of the coaxial connector extends through the air and is connected to the patch, while the outer conductor is connected to the ground plane. (b) Return loss (S_{11} in dB). (c) Top view of the antenna without the ground plane (red dot is the feed location). (d) Histogram of resonance spectra (in percentage) (180k out of 500k dataset samples have a resonance).

As mentioned in Section. I, the tandem architecture [15] avoids the data inconsistency problem that arises due to the non-unique correspondence between a device design and its spectrum by the cascade of two neural networks. Fig. 2 shows the schematic of the tandem network, which consists of an inverse network connected to a pretrained forward network with frozen weights. The input to the tandem network is the desired spectrum (S), and the output is the predicted spectrum (S'). The inverse network (see Fig. 2) consists of three dense layers, which are each followed by batch normalization and leakyReLU activation functions. The output of the final leakyReLU activation for generating binary outputs. The ST activation function is shown in the inset of Fig. 2 and is defined as:

$$f(x) = \frac{1}{2} + \frac{1}{2} \tanh\left[m\left(x - \frac{1}{2}\right)\right],$$
 (1)

where *m* is the thresholding hyperparameter. The ST activation function acts as follows: if $x \le 0.5$, then $f(x) \le x$ (damps); if $x \ge 0.5$, then $f(x) \ge x$ (amplifies), and this rate of damping/amplification is governed by *m*. We note that ST activation function is a generalization of the unipolar sigmoid function with m = 1 [30].

2) Forward Surrogate Model: The forward surrogate model approximates the antenna performance, in particular the antenna return loss given the antenna design. This surrogate is itself achieved via a deep CNN, which treats the input as a single channel image, and through a sequence of convolutional filters and fully connected layers, gives the desired

response as the output [25]. Once the CNN is trained, it approximates a complex electromagnetic simulation (such as integral equation or finite-difference time-domain simulations) in orders of magnitude lesser time [6]. The network contains 56 layers with filters, weights and biases; the first 16 combine convolutional 2D, batch normalization, and the leakyReLU activation function layers. The next two are fully connected layers; batch normalization, leakyReLU activation function, and dropout (value = 0.4) layers are applied to the output of every fully-connected layer. The output of the last fullyconnected layer is fed to an 81-dimensional output regression layer.

Fig. 4. Deep CNN forward surrogate model consisting convolutional and fully connected layers, denoted by 'CONV' and 'FC', respectively. A tessellated antenna structure is the input and the antenna return loss is the output.

B. Network Training

1) Dataset Generation: To generate a training dataset, we start with a "mother" metallic patch of size 7.5×7.5 mm and tessellate it into 12×12 pixels. This structure has a weak resonance near 19.5 GHz. The pixels values of 0 or 1 are populated randomly, while ensuring that the two pixels adjacent to the feed location are always metal to ensure connectivity. This gives us an exponentially large design space of nearly 2^{142} possible structures. The return loss corresponding to the antenna is simulated at 81 equi-spaced points in a 10-20 GHz frequency range using the MATLAB Antenna Toolbox. A total of 500k antennas and their spectra are generated, which are distributed in a 80:10:10 ratio for training, validation, and testing, respectively. We define a resonant structure to be one which displays a dip below -10 dB in the return loss, S_{11} , at one or more points in the frequency range. We find that most of the 500k samples have no resonances, while about 180k are resonant structures; further, we plot a histogram of the resonant frequencies from the dataset in Fig. 3(d). The histogram reveals an 'unbalanced' dataset, in the sense that the resonances are not uniformly distributed over the frequency range.

We make an important remark about a design choice in the dataset generation. Considering the large size of the dataset, it was necessary to keep the simulation time for a single antenna to be as low as possible. We choose to have air rather than dielectric as the substrate for the antenna structure as this considerably lowers the simulation time (by a significant factor of 50-60). Parallelizing the dataset generation over 400 cores of the high performance computing facilities at the Princeton Research Computing Resources center (consisting of a mix of Intel Ice Lake and Cascade Lake processors), the dataset was

generated in approximately 24 hours. Fig. 3 shows a sample antenna and its S_{11} spectrum.

We note that this choice of substrate is a matter of convenience and does not imply any fundamental limitation on our *approach*. Since Maxwell's equations are scale invariant, we can scale these antenna structures to different operating frequencies by performing an overall scaling of the dimensions. However, scale invariance can not be used to infer the response of a dielectric filled antenna given that of an air-filled one. To this end, in [25] (and further elaborated in Sec. IV-B), we show how a transfer learning approach enables the dataset of the air-filled structures to be repurposed to rapidly learn the S_{11} response of dielectric-filled structures.

Fig. 5. Comparison of the predicted S_{11} spectrum from the trained forward model with the true spectrum from EM simulator showing the efficacy of the forward model: (a,c) resonant structures (b,d) non resonant structures.

2) Forward Network Training: The loss function that characterizes the forward model is a mean squared error function of the form:

$$L_f = \frac{1}{P} \sum_{i=1}^{P} \text{MSE}(\mathcal{S}_i, \mathcal{S}'_i)$$
(2)

where P is the batch size, set to 256. We choose NAdam [31] optimizer to update the weights and biases of the CNN. It can be seen from Fig. 5 that the forward network predicts the return loss of an antenna from the test dataset to a satisfactory level and can be substituted for an EM simulator. The forward network is trained in PyTorch using Google Colab GPU services for 15 epochs taking approximately 3 hours. The training and validation loss are 0.62 and 0.71, respectively.

3) Tandem Network Training: The overall loss function, L_I , that characterizes the tandem network is given as:

$$L_I = L_S + \alpha L_D + \beta L_B, \tag{3}$$

where the constituent loss functions are:

λī

$$L_{\mathcal{S}} = \text{MSE}(\mathcal{S}, \mathcal{S}')$$
 (spectrum loss), (4a)

$$L_{\mathcal{D}} = \text{MSE}(\mathcal{D}, \mathcal{D}')$$
 (design loss), (4b)

$$L_B = \frac{1}{N} \sum_{i=1}^{N} (d'_i (d'_i - 1))^2 \quad \text{(binary loss)}, \qquad (4c)$$

This article has been accepted for in IEEE Transactions on Antennas and Propagation. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TAP.2023.3276524

where, N is the total number of pixels, α and β are the tuneable hyperparameters; S' is the predicted spectrum, D' is the predicted antenna design obtained in the intermediate layer (M) in the tandem network, d'_i corresponds to the i^{th} pixel in \mathcal{D}' , and MSE stands for mean squared error. Compared to prior work on nanophotonic structures [15], [26], [28], this is the first work to the best of our knowledge to combine all three loss functions along with the newly proposed ST activation to allow deep learning based inverse synthesis of antennas.

The network is trained with a batch size of 512 for 300 epochs taking approximately 12 hours. The weights are updated using RAdam optimizer [32] and the hyperparameters α , β , m are set to 17, 1, and 20, respectively, after an extensive grid search. The split-up of the loss function L_I into its constituents (as per Eq. (3)) in the format $\{L_{\mathcal{S}}, L_{\mathcal{D}}, L_B\}$ is $\{1.45, 6.45, 7 \times 10^{-7}\}$ (training) and $\{1.48, 6.55, 8 \times 10^{-7}\}$ (validation) at the end of 300 epochs. The optimizers for the forward and tandem networks are chosen empirically by evaluating the training and validation loss over various solvers such as the steepest gradient (sgd), Adam, NAdam and RAdam optimizers.

C. Innovations in the Tandem Network

Having presented the various details of the tandem network and associated training details, we now highlight the rationale behind the design choices in conceiving the network.

Fig. 6. Predicted antenna design with different loss functions: (a) $L_I = L_S +$ $5L_B$, (b) $L_I = L_S$, (c) $L_I = L_S + 1L_D$, and (d) $L_I = L_S + 17L_D + 1L_B$. The networks are trained (a) without ST activation layer; (b,c,d) with ST activation laver.

1) Role of ST activation in generating binary designs: Prior to this work focusing on the design of nanophotonic structures [28] has shown techniques to deal with a small number of binary variables (6 compared to 142 in our case) in a tandem networks, where a binary design is obtained by training the network with spectrum and binary loss terms. In order to verify if adding a binary loss term is sufficient in our case, we implemented the tandem network without the ST activation function, and a typical result is shown in Fig. 6(a) which shows the predicted design (after a sweep for the best value of hyperparameter β); as can be seen, the obtained design is not binary. A possible solution to this problem is to simply threshold the obtained pixel values; for e.g. in [33] a metasurface is a 64×64 binary image obtained by a thresholding operation. We find this approach to not be suitable, as the spectrum can change drastically as a result of thresholding. Hence it is necessary for the inverse design to give binary outputs, and we achieve this via the ST activation. As can be seen in Fig. 6(b) which is the result of using the loss function $L_I = L_S + \beta L_B$ along with an ST activation layer, the obtained design is binary. We note that while the design is binary, the obtained design is not practical due to the sparse distribution of metal patches and problems of feed connectivity. We address this issue next.

2) Importance of design and binary loss: The design and binary loss terms, in addition to spectrum loss, are critical for the network to reach an optimum solution. Each term in the proposed loss function affects the design of the structures, as evident from Fig. 6: The regularised loss function with optimized hyperparameters promotes binary structures (due to L_B) for which the return loss response is aligned with the desired spectrum (due to L_{S}), and are suitable for the fabrication purpose (due to $L_{\mathcal{D}}$). We examine the importance of each term of the proposed loss function via the following experiments. First, we explore the role of having a spectrum loss along with a design loss, i.e. $L_I = L_S + \alpha L_D$, on the lines of [26], plus the ST activation layer to promote a binary design. A resulting antenna can be seen in Fig. 6(c) which shows the design to be far from discrete (and therefore not practically realizable). In order to promote binary designs, we add a binary loss term to the loss function on the lines of [28], i.e. $L_I = L_S + \alpha L_D + \beta L_B$; the resulting antenna is seen in Fig. 6(d) which shows a binary design without any connectivity issues at the feed. The spectrum of the obtained antenna is independently simulated via a commercial electromagnetics software (MATLAB) and found to be the same as predicted by the forward surrogate model. We thus conclude that in order to reliably get an accurate binary design it is essential for the network's loss function to have a design and binary loss terms in addition to the usual spectrum loss, and also an ST activation function.

3) Choice of m in ST activation: The ST activation function produces binary outputs with high probabilities, but fails when the input is in close vicinity of 0.5 as can be inferred from Eq. (1). Fig. 6(b) showed that the design is non-binary even with the ST activation included. The transition rate of the activation function from zero to one depends on the hyperparameter, m. Fig. 7 shows the spectrum and binary loss for m = 15 and 20. Ideally, the binary loss should be zero for a purely binary design. At m = 20 the binary loss is zero for epochs greater than 150. Though the spectrum loss is always lower for m = 15, the binary loss never reaches zero, and further, for epochs beyond the point 'K,' in Fig. 7, the binary loss increases. This is ostensibly happening because the network has moved into a local-minima region of non-binary This article has been accepted for publication in IEEE Transactions on Antennas and Propagation. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TAP.2023.3276524

Authors acknowledge the research grant titled "6G: Sub-THz Wireless Communication with Intelligent Reflecting Surfaces (IRS)" numbered R-23011/3/2022-CC&BT-MeitY by the Ministry of Electronics and Information Technology (MeitY), Government of India

Fig. 7. Spectrum convergence and binary loss tradeoff for different m values in the training of the tandem network. The loss function consists of all three terms, i.e. spectrum, design, and binary loss terms. 'K' is the trade-off point which helps us fix the hyperparameter m. At the end of 300 epochs, the design loss is 7.5 for m = 15 and 6.6 for m = 20 (not shown here).

(and therefore *nonphysical*) designs which still show a lower overall loss function. This trade-off between the spectrum and binary loss helps us to fix the ST activation hyperparameter at m = 20.

III. INVERSE DESIGNED ANTENNA STRUCTURES

In this section we report various structures designed by the tandem network, including single and dual band antennas. In the case of single band antennas we also make comparisons with conventional patch antennas to demonstrate a key result of our work, that of compactness of the obtained designs. In all the examples shown below, the return loss has been validated against rigorous MATLAB based electromagnetic simulations.

Fig. 8. (a) Inverse designed single-band antenna, (b) reconstructed spectrum (c) Elevation radiation pattern ($\phi = 0^{\circ}$ and $\phi = 90^{\circ}$)

A. Simulation results – Single band antennas

A single-band compact resonant antenna design is chosen as the first numerical example for the evaluation of the

CPL	CPW	f_0	Area (mm^2)	Δ area	Gain (dB)		BW (FBW)	RE
(mm)	(mm)	(GHz)	(CP)	(IDP)	%	CP	IDP	MHz (%)	(%)
10.1	10.9	13.8	109	56.25	50	9.71	8.68	250 (1.8%)	91.2
9.85	10.7	14	105.4	56.25	48	9.71	9.45	250 (1.8%)	93.5
9.1	10	15	91	56.25	38	9.65	9.36	500 (3.33%)	93.2
7.48	8.32	18	62.23	56.25	10	9.68	9.29	500 (2.7%)	92

TA	BI	E	T

DESIGN PARAMETERS FOR THE SINGLE-BAND RESONANT CONVENTIONAL PATCH (CP) AND THE INVERSE DESIGNED PATCH (IDP) ANTENNA FOR DIFFERENT FREQUENCIES IN THE DATASET. CPL: CONVENTIONAL PATCH LENGTH; CPW: CONVENTIONAL PATCH WIDTH; f_0 : RESONANT FREQUENCY. Δ AREA: COMPACTNESS RELATIVE TO CP. RE: RADIATION

EFFICIENCY, BW: BANDWIDTH, FBW: FRACTIONAL BANDWIDTH

proposed approach. Fig. 8 shows the design of the compact antenna (-31% smaller in area than a conventional antenna at the same frequency) at 15.8 GHz and its corresponding reconstructed and the simulated spectrum using the proposed tandem approach. It is seen that the spectrum of the inverse designed antenna is in good agreement with the desired and EM simulated spectrum. The axial ratio of the antenna in Fig. 8 is 56 (dB). Although the axial ratio and the radiation pattern of the antenna are not taken as a part of the cost function for optimization in the current work, the radiation pattern of the inverse designed antenna is well-shaped and directed at $\theta = 90^{\circ}$ (Gain: 9.635 dB). The device is found to be linearly polarised with the radiation efficiency above 90% considering Cu losses, which is comparable with conventional microstrip antennas [13].

Fig. 9. The design range of predicted antennas for a single band spectrum from the inverse tandem network. 'Yes' indicates the generated antenna has a single band spectrum in the frequency range shown in the shaded blue region while 'No' means the tandem network could not predict a single band antenna.

Next, we compare several single band antennas with their conventional counterparts in Table. I. Conventional patch antennas cover an area of approximately $\frac{\lambda}{2} \times \frac{\lambda}{2}$ [13], while in this work the antennas occupy an area on the order of $\frac{\lambda}{4} \times \frac{\lambda}{4}$, which is significantly compact at the design frequency.

We further check the rigour of our proposed tandem network on *never-seen-before* synthetic data. We choose a rectangular spectrum as a synthetic single-band S_{11} spectrum to check the reconstruction across the frequency span (10–20 GHz) using the proposed approach. Such a spectrum, with $S_{11} = 0$ dB outside the passband and $S_{11} = -25$ dB within a 500 MHz passband is not in the training dataset due to its obvious artificial nature. Fig. 9 shows the design range for the reconstruction of the single-band synthetic spectrum. The This article has been accepted for publication in IEEE Transactions on Antennas and Propagation. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TAP.2023.3276524

Authors acknowledge the research grant titled "6G: Sub-THz Wireless Communication with Intelligent Reflecting Surfaces (IRS)" numbered R-23011/3/2022-CC&BT-MeitY by the Ministry of Electronics and Information Technology (MeitY), Government of India

gaps in the plot are attributed to the imbalance of the singleband resonant frequencies in the dataset. We observe that the blue region in Fig. 9 matches the high histogram regions of Fig. 3(d). This can be improved in the future by augmenting the training dataset to contain an equal number of samples for each simulated frequency.

B. Simulation results – Dual band antenna

Fig. 10. (a) Inverse designed dual-band antenna, (b) reconstructed spectrum (c) Elevation radiation pattern ($\phi = 0^{\circ}$) of the inverse-designed antenna @ $f_1 = 14$ GHz (gain 9.73 dB) (e) Elevation radiation pattern ($\phi = 90^\circ$) of the inverse-designed antenna @ $f_2 = 18.37$ GHz (gain 9.43 dB)

Fig. 10 shows a dual-band inverse designed antenna and the associated radiation patterns at the frequencies 14 GHz and 18.37 GHz using the proposed tandem approach; the gain and the elevation radiation pattern are like that of a conventional patch antenna. We expect to be able to have designer radiation patterns by incorporating the radiation pattern into the network loss function for optimization in the future.

Table. II shows different dual band designs, where we also report the area of obtained antennas in terms of the wavelength of the lower frequency band, λ_0 .

We have also compared the run-time of the deep learningassisted evolutionary algorithms such as the modified Binary Particle Swarm Optimization (BPSO) [37] and the Genetic Algorithm (GA) [38] to generate the antenna structures corresponding to the spectra in Fig. 8(b) and Fig. 10(b); single band structures took 6-7 mins, while double band structures

f_1	f_2	Gain (dB)		BW (FBW	Aperture	RE (%)		
(GHz)	(GHz)	f_1	f_2	f_1	f_2	area	f_1	f_2
14.38	16.62	9.17	7.79	250 (1.7%)	250 (1.5%)	0.13 λ_0^2	90.6	88.1
14.5	17	9.01	7.88	250 (1.72%)	250 (1.47%)	0.13 λ_0^2	90.4	89.2
15.5	19.85	9.45	9.21	375 (2.41%)	375 (1.88%)	0.15 λ_0^2	91.2	90.5
14	18.37	9.73	9.43	250 (1.78%)	250 (1.36%)	0.12 λ_0^2	92.3	91.4

TABLE II

DUAL-BAND SPECTRA OF INVERSE DESIGNED ANTENNAS; HERE λ_0 DENOTES THE WAVELENGTH CORRESPONDING TO THE FIRST FREQUENCY BAND, f_1 , BW: BANDWIDTH, FBW: FRACTIONAL BANDWIDTH, RE: RADIATION EFFICIENCY

Dafaranaa	f_1	f_2	Gain (dB)		Band	width (MHz)	Aperture
Reference	(GHz)	(GHz)	f_1	f_2	f_1	f_2	area
[14]	2.4	5.6	9.55	8.50	97	360	1.16 λ_0^2
[34]	2.4	5.8	6.8	2.1	164	256	0.64 λ_0^2
[35]	1.57	2.45	7.47	7.07	47	125	0.64 λ_0^2
[36]	2.4	5.2	4.1	1.4	90	277	$0.08 \ \lambda_0^2$

TABLE III STATE-OF-THE-ART COMPARISON FOR DUAL-BAND MICROSTRIP ANTENNAS.

took 10-12 mins. In contrast, the proposed approach generated the structures near instantaneously.

C. Comparison with conventional antennas

Aperture area: We draw the reader's attention to Table. III, where a comparison of various dual band structures is presented. In particular we note that our designs yield much more compact antennas than those reported in the literature. For instance, the lowest area achieved by our work is $0.12\lambda_0^2$, while these are the areas reported in other works: $1.16\lambda_0^2$ for a dual mode circular patch antenna in [14], $0.64\lambda_0^2$ for an Eshaped microstrip patch in [34] and an arc-shaped slot patch antenna in [35], and $0.08\lambda_0^2$ for a shorted microstrip antenna in [36]. It must be noted in the latter case that the lower aperture area is coming at the cost of significantly lower antenna gain as compared to our antennas. It is important to note that the structures designed by us have an air substrate, and so the design is expect to show further compactness once we insert a dielectric substrate [13].

Bandwidth: The bandwidth of the proposed single and double band structures is reported in Table. I and Table. II the obtained fractional bandwidths (FBW) is comparable with a 1-4% FBW obtained from conventional single-band patch antennas [13] [39, Fig. 8]. Further, we have systematically studied the tuning of the obtainable FBW. In particular, antennas with different bandwidth can be obtained by changing the user-specified S_{11} spectrum. In the case of single-band antennas, we can sweep FBW from 0.8% to 3.3%, while in the case of double-band antennas, we can sweep FBW from 0.8% to 2.41%; Tables I,II report the highest FBW attained.

Substrate thickness: Air-filled conventional patch antennas were considered in [39], which reported a single-band antenna at 2.72 GHz with a FBW of $\approx 3.33\%$ on a substrate height of 4.11 mm. On the other hand, we consider one of the proposed single-band antenna at 15 GHz (Row 3 of Table. I) with the same FBW. Scaling all dimensions to match resonant

7

frequencies, implies a substrate thickness of 3.37 mm, which is 18% thinner than the conventional value. This implication, along with the earlier observation of a smaller area (refer to Table. I) strongly favours the proposed antennas because when the structures are replaced by dielectric, the substrate losses will be lower in our structures due to the smaller antenna dimensions.

Ease of design: Finally, we reiterate that our inversedesigned antennas have been designed in a fully automated manner near instantaneously, searching a large design space of nearly arbitrary radiating structures, whereas the other designs have either template-based geometries and therefore limited design space and functionalities, or required extensive domain knowledge (such as knowledge of slot dimensions and placement [14], [34]–[36]), and resource intensive optimization.

IV. DESIGN CONSIDERATIONS AND TRADE-OFFS

Having presented the development of the tandem network and some of the antennas generated by using our approach, we now discuss some limitations of our approach as well as possible extensions, and make a prescription about antenna design in general.

A. Role of the Dataset Curation

As we see in Fig. 3(d), the dataset displays an imbalance at the location of the resonances. Sure enough, this imbalance seems to get reflected in the range of antennas that are generated by the tandem network as seen in Fig. 9; in particular the tandem network does not succeed in generating single band antennas in the lower end of frequencies. One of the possible ways around this is start with a larger dataset and *filter* it in such a way as to even the imbalance; however, this is wasteful in terms of computational resources. Alternatively, including mother patches of different sizes in the dataset is also a possible way of dataset augmentation.

B. Role of the Substrate & Reuse of the Dataset

We have earlier referred to the design choice in the case of dataset generation – that of choosing air as the substrate for reasons of computational expediency. While this is convincing in demonstrating a methodology of design, one needs a dielectric substrate in order to realize an actual antenna. There are various possible solutions, listed below.

- A brute force strategy would be to simply simulate dielectric substrates using more high performance computing resources for dataset generation.
- 2) Another, more approximate strategy is to scale the dimensions of air-filled antennas by using an *effective* medium approach [13]. While this may work for single band structures, the applicability in more complicated devices is not clear.
- 3) Taking a neural network approach, one can conceive of generating a smaller dataset consisting of dielectric filled antennas and then training a network to learn the relation between the spectra of air and dielectric filled structures. Such a network can then be cascaded to the end of

the existing forward surrogate to create an end-to-end network for predicting the response of a dielectric filled structure.

4) Finally, the powerful idea of transfer learning [40] can be used to accelerate the training of networks that learn the dielectric response. In fact, in our parallel work [25], we show how the air-substrate dataset can be re-used for generating antennas on a Rogers RO4003C dielectric using the transfer learning approach (also fabricated and experimentally measured). In this approach, the neural network weights obtained at the end of training the airsubstrate dataset are used to initialize a network that computes the dielectric-substrate response (as opposed to initializing the weights at random). The number of dielectric simulations required is drastically reduced by up to 85% (compared to the case when one would train a network from scratch) in this approach. Further, we also show how the same air-substrate dataset can be used to rapidly train networks for learning relations of different probe locations and frequency ranges.

C. The Vanishing Gradients Problem

This paper has introduced a novel ST activation function to promote discrete designs. The core reason of its success-a rapid change from 0 to 1-is also the cause of a new problem it gives rise to, that of vanishing gradients [41]. As can be seen in Fig. 11, the gradient of the ST function is non-zero only over a small range of input parameters. During network training this stalls the update of the associated parameters since the back-propagation algorithm relies on the gradient to proceed to the next step. We are thus presented with a tradeoff; as seen in Fig. 7, a higher value of the ST hyperparameter m better favours discrete design, but due to the vanishing gradients problem it also leads to an increase in the training time or a failure to converge in some cases. In fact, lower values of m can lead to an overall low loss function value, but may end up generating non-discrete and therefore nonphysical antennas. Several approaches have been proposed to overcome this limitation widely seen in machine learning, and remains an area of active research [42], [43].

Fig. 11. Graph of the gradient of the ST activation function for different values of the ST hyperparameter, m.

We now discuss a couple of futuristic extensions of this work which can be expected to play a crucial role in the newly emerging area of research described in this paper. This article has been accepted for publication in IEEE Transactions on Antennas and Propagation. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TAP.2023.3276524

Authors acknowledge the research grant titled "6G: Sub-THz Wireless Communication with Intelligent Reflecting Surfaces (IRS)" numbered R-23011/3/2022-CC&BT-MeitY by the Ministry of Electronics and Information Technology (MeitY), Government of India.

D. Multi-parameter Optimized Antennas

While in this paper we have exclusively focused on antenna return loss as the performance parameter, the approach is general enough to also incorporate other parameters of optimization, such as the radiation pattern, polarization ratio, gain, etc., i.e. incorporating multiple functionalities in the same structure; recent work involving templatized geometries has already demonstrated this [10]. Increasing the number of parameters will come at the cost of a rise in neural network training time, which in turn forces innovation in the type of neural networks to be considered. We discuss this next.

E. Smarter Surrogate Models

In this (and most related work in inverse antenna or photonic structure design), the forward surrogate model is created by a data intensive approach that involves: a) generating data using an accurate solver, and b) learning a relationship between input and output using machine learning. Instead of a blackbox approach taken here, an emerging paradigm of "physics informed machine learning" seeks to learn input-output relations from the data, while having some of the physics of the problem (such as conservation laws or invariant relationships) be incorporated in the network architecture itself [44], [45]. As a result, these relationships need not be learnt from the data, thereby reducing the amount of data required for training.

We conclude this section with a general prescription for microwave device design. While the details of this paper are centred on antenna design, the approach is very general purpose and can be applied to any microwave device design in general, for e.g. power dividers/combiners, impedance transformers, filters, etc. All that is required is a suitable parameterization of the problem, followed by the standard route of data generation, and the training of the forward and tandem networks. While there is an initial cost of training, the payoff is a vast reduction in the need of domain knowledge and the near instant availability of a design given a trained network. Such approaches are thus at a significant advantage as compared to approaches using conventional optimizationbased or evolutionary algorithms which are still time consuming as compared to all neural network approaches with run times on the order of minutes or hours [46] as compared to near instantaneous results in our approach.

V. CONCLUSION

In this paper we have introduced a tandem neural network based approach to design custom microstrip antennas given a desired return loss performance rapidly (in less than a second) without the requirement of extensive domain knowledge. We build on and improve existing tandem neural network approaches to allow an end-to-end deep learning based design methodology. We highlight the innovations required to generate discrete designs by introducing a new smooth thresholding (ST) activation function and appropriate regularization terms in the loss function of the network, backed up by extensive numerical studies. The obtained antennas are significantly more compact in area as compared to conventional single and dual band antennas as shown with respect to existing structures in the literature. We elaborate on the various design choices encountered, highlight the shortcomings as well as the possible extensions of our work. The approach for such tandem networks can allow rapid and effective exploration of a large design space of multi-functional antennas for future wireless systems.

ACKNOWLEDGEMENTS

We acknowledge the use of the computing resources at HPCE, IIT Madras, and also the Princeton Research Computing resources at Princeton University.

REFERENCES

- H. J. Delgado and M. H. Thursby, "A novel neural network combined with fdtd for the synthesis of a printed dipole antenna," *IEEE transactions on antennas and propagation*, vol. 53, no. 7, pp. 2231–2236, 2005.
- [2] Y. Kim, S. Keely, J. Ghosh, and H. Ling, "Application of artificial neural networks to broadband antenna design based on a parametric frequency model," *IEEE Transactions on Antennas and Propagation*, vol. 55, no. 3, pp. 669–674, 2007.
- [3] K. Choi, D.-H. Jang, S.-I. Kang, J.-H. Lee, T.-K. Chung, and H.-S. Kim, "Hybrid algorithm combing genetic algorithm with evolution strategy for antenna design," *IEEE transactions on magnetics*, vol. 52, no. 3, pp. 1–4, 2015.
- [4] A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, "Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer," *Nature Photonics*, vol. 9, no. 6, pp. 374–377, 2015.
- [5] S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, "Inverse design in nanophotonics," *Nature Photonics*, vol. 12, no. 11, pp. 659–670, 2018.
- [6] J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, "Nanophotonic particle simulation and inverse design using artificial neural networks," *Science advances*, vol. 4, no. 6, p. eaar4206, 2018.
- [7] M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, "Deep neural network inverse design of integrated photonic power splitters," *Scientific reports*, vol. 9, no. 1, pp. 1–9, 2019.
- [8] W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu, "Deep learning for the design of photonic structures," *Nature Photonics*, vol. 15, no. 2, pp. 77–90, 2021.
- [9] Y. Sharma, H. H. Zhang, and H. Xin, "Machine learning techniques for optimizing design of double t-shaped monopole antenna," *IEEE Transactions on Antennas and Propagation*, vol. 68, no. 7, pp. 5658– 5663, 2020.
- [10] L.-Y. Xiao, W. Shao, F.-L. Jin, B.-Z. Wang, and Q. H. Liu, "Inverse artificial neural network for multi-objective antenna design," *IEEE Transactions on Antennas and Propagation*, vol. 69, no. 10, pp. 6651–6659, 2021.
- [11] H. M. El Misilmani and T. Naous, "Machine learning in antenna design: An overview on machine learning concept and algorithms," in 2019 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2019, pp. 600–607.
- [12] L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, and S. G. Johnson, "Physics-informed neural networks with hard constraints for inverse design," *SIAM Journal on Scientific Computing*, vol. 43, no. 6, pp. B1105–B1132, 2021.
- [13] C. Balanis, *Antenna Theory: Analysis and Design.* Germany: Wiley, 2015.
- [14] Z. Akhter, R. M. Bilal, and A. Shamim, "A dual mode, thin and wideband mimo antenna system for seamless integration on uay," *IEEE Open Journal of Antennas and Propagation*, vol. 2, pp. 991–1000, 2021.
- [15] D. Liu, Y. Tan, E. Khoram, and Z. Yu, "Training deep neural networks for the inverse design of nanophotonic structures," *Acs Photonics*, vol. 5, no. 4, pp. 1365–1369, 2018.
- [16] M. Lamsalli, A. El Hamichi, M. Boussouis, N. Amar Touhami, and T. Elhamadi, "Genetic algorithm optimization for microstrip patch antenna miniaturization," *Progress In Electromagnetics Research*, vol. 60, pp. 113–120, 2016.

This article has been accepted for publication in IEEE Transactions on Antennas and Propagation. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TAP.2023.3276524

Authors acknowledge the research grant titled "6G: Sub-THz Wireless Communication with Intelligent Reflecting Surfaces (IRS)" numbered R-23011/3/2022-CC&BT-MeitY by the Ministry of Electronics and Information Technology (MeitY), Government of India.

- [17] L.-Y. Xiao, W. Shao, F.-L. Jin, and B.-Z. Wang, "Multiparameter modeling with ann for antenna design," IEEE Transactions on Antennas and Propagation, vol. 66, no. 7, pp. 3718-3723, 2018.
- [18] E. Zhu, Z. Wei, X. Xu, and W.-Y. Yin, "Fourier subspace-based deep learning method for inverse design of frequency selective surface," IEEE Transactions on Antennas and Propagation, vol. 70, no. 7, pp. 5130-5143, 2021.
- [19] E. Zhu, E. Li, Z. Wei, and W.-Y. Yin, "Adversarial-network regularized inverse design of frequency-selective surface with frequency-temporal deep learning," IEEE Transactions on Antennas and Propagation, vol. 70, no. 10, pp. 9460-9469, 2022.
- [20] G. Qi, S. Bao, Y. Wei, and Y. Zhang, "Accurate antenna design by deep auto-encoder surrogate model assisted particle swarm optimization," in 2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT). IEEE, 2022, pp. 875-880.
- [21] D. Vercruysse, N. V. Sapra, L. Su, R. Trivedi, and J. Vučković, "Analytical level set fabrication constraints for inverse design," Scientific reports, vol. 9, no. 1, pp. 1-7, 2019.
- [22] S. K. Goudos, C. Kalialakis, and R. Mittra, "Evolutionary algorithms applied to antennas and propagation: A review of state of the art," International Journal of Antennas and Propagation, vol. 2016, 2016.
- [23] B. Liu, M. O. Akinsolu, N. Ali, and R. Abd-Alhameed, "Efficient global optimisation of microwave antennas based on a parallel surrogate model-assisted evolutionary algorithm," IET Microwaves, Antennas & Propagation, vol. 13, no. 2, pp. 149-155, 2019.
- [24] J. P. Jacobs, "Accurate modeling by convolutional neural-network regression of resonant frequencies of dual-band pixelated microstrip antenna," IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 12, pp. 2417-2421, 2021.
- [25] E. Karahan, A. Gupta, S. Venkatesh, Z. Liu, U. K. Khankhoje, and K. Sengupta, "Deep learning enabled inverse antenna design," (in review).
- [26] X. Xu, C. Sun, Y. Li, J. Zhao, J. Han, and W. Huang, "An improved tandem neural network for the inverse design of nanophotonics devices," Optics Communications, vol. 481, p. 126513, 2021.
- [27] S. An, B. Zheng, H. Tang, H. Li, L. Zhou, Y. Dong, M. Haerinia, and H. Zhang, "Wideband schiffman phase shifters designed with deep neural networks," in 2022 Photonics & Electromagnetics Research Symposium (PIERS). IEEE, 2022, pp. 78-80.
- [28] C. Qiu, X. Wu, Z. Luo, H. Yang, G. Wang, N. Liu, and B. Huang, "Simultaneous inverse design continuous and discrete parameters of nanophotonic structures via back-propagation inverse neural network," Optics Communications, vol. 483, p. 126641, 2021.
- [29] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, "Stacked convolutional auto-encoders for hierarchical feature extraction," in International conference on artificial neural networks. Springer, 2011, pp. 52–59.
- [30] L. Zhang, "Implementation of fixed-point neuron models with threshold, ramp and sigmoid activation functions," in IOP Conference Series: Materials Science and Engineering, vol. 224, no. 1. IOP Publishing, 2017, p. 012054.
- [31] T. Dozat, "Incorporating Nesterov Momentum into Adam," in Proceedings of the 4th International Conference on Learning Representations, 2016, pp. 1-4.
- [32] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, "On the variance of the adaptive learning rate and beyond," arXiv preprint arXiv:1908.03265, 2019.
- [33] Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, "Generative model for the inverse design of metasurfaces," Nano letters, vol. 18, no. 10, pp. 6570-6576, 2018.
- [34] A. G. Ambekar and A. A. Deshmukh, "E-shape microstrip antenna for dual frequency wlan application," Progress In Electromagnetics Research C, vol. 104, pp. 13-24, 2020.
- [35] J. Chen, J. Wang, K.-F. Tong, and A. Al-Armaghany, "A gps/wi-fi dual-band arc-shaped slot patch antenna for uav application," in 2013 Loughborough Antennas & Propagation Conference (LAPC). IEEE, 2013, pp. 490-493.
- [36] H.-C. Tung and K.-L. Wong, "A shorted microstrip antenna for 2.4/5.2 ghz dual-band operation," Microwave and Optical Technology Letters, vol. 30, no. 6, pp. 401-402, 2001.
- [37] A. H. El-Maleh, A. T. Sheikh, and S. M. Sait, "Binary particle swarm optimization (bpso) based state assignment for area minimization of sequential circuits," Applied soft computing, vol. 13, no. 12, pp. 4832-4840, 2013.

- [38] D. E. Goldberg and J. H. Holland, "Genetic algorithms and machine learning," Machine Learning, vol. 3, pp. 95-99, 1988.
- [39] J. Eichler, P. Hazdra, M. Capek, and M. Mazanek, "Modal resonant frequencies and radiation quality factors of microstrip antennas," International Journal of Antennas and Propagation, vol. 2012, 2012.
- [40] K. Weiss, T. M. Khoshgoftaar, and D. Wang, "A survey of transfer learning," Journal of Big data, vol. 3, no. 1, pp. 1-40, 2016.
- [41] R. Pascanu, T. Mikolov, and Y. Bengio, "On the difficulty of training recurrent neural networks," in International conference on machine learning. Proceedings of Machine Learning Research (PMLR), 2013, pp. 1310-1318.
- [42] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778, 2016.
- [43] M. Roodschild, J. Gotay Sardiñas, and A. Will, "A new approach for the vanishing gradient problem on sigmoid activation," Progress in Artificial Intelligence, vol. 9, no. 4, pp. 351-360, 2020.
- [44] W. Chen, Q. Wang, J. S. Hesthaven, and C. Zhang, "Physics-informed machine learning for reduced-order modeling of nonlinear problems," Journal of Computational Physics, vol. 446, p. 110666, 2021.
- G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and [45] L. Yang, "Physics-informed machine learning," Nature Reviews Physics, vol. 3, no. 6, pp. 422-440, 2021.
- [46] S. Song and R. D. Murch, "An efficient approach for optimizing frequency reconfigurable pixel antennas using genetic algorithms," IEEE Transactions on Antennas and Propagation, vol. 62, no. 2, pp. 609-620, 2013.

Aggraj Gupta (Student Member, IEEE) is a graduate student in the Department of Electrical Engineering at the Indian Institute of Technology Madras, Chennai.

Emir Ali Karahan (Student Member, IEEE) is a graduate student in the Department of Electrical Engineering at Princeton University, New Jersey.

Chandan Bhat is a graduate student in the Department of Electrical Engineering at the Indian Institute of Technology Madras, Chennai.

Kaushik Sengupta (Senior Member, IEEE) received the B.Tech. and M.Tech. degrees in Electronics and Electrical Communication Engineering from the Indian Institute of Technology Kharagpur, Kharagpur, India, in 2007, and the M.S. and Ph.D. degrees in Electrical Engineering from the California Institute of Technology, Pasadena, CA, USA, in 2008 and 2012, respectively. He joined the Department of Electrical Engineering, Princeton University, Princeton, NJ, USA, as a Faculty Member, in 2013, where he is currently an Associate Professor. His current research interests include high-frequency ICs, electromagnetics, and optics for various applications in sensing, imaging, and high-speed communication.

Uday K Khankhoje (Senior Member, IEEE) received a B.Tech. degree in Electrical Engineering from the Indian Institute of Technology Bombay, Mumbai, in 2005, and the M.S. and Ph.D. degrees in Electrical Engineering from the California Institute of Technology, Pasadena, in 2010. He is currently an Associate Professor of Electrical Engineering at the Indian Institute of Technology Madras, Chennai, where he leads the numerical electromagnetics and optics (NEMO) research group which focuses on solving electromagnetics inspired inverse problems.