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Abstract—Antenna fault diagnosis for phased antenna arrays
is an important research area since faulty elements deteriorate
the expected field pattern, leading to degraded performance in
various applications. While several compressive sensing-based
techniques have been proposed, they rely on a simplified array
factor formula, ignoring mutual coupling effects among antennas.
We show that this assumption can lead to poor diagnosis
in the presence of significant mutual coupling by using two
popular models — the average embedded element pattern and
a port-level coupling matrix approach. Also, we optimize the
antenna excitations to minimize the mutual coherence of the
system measurement matrix, leading to a reduced number of
measurements required for fault diagnosis. Our simulation results
indicate that accounting for the effect of mutual coupling results
in a far more reliable diagnosis. Additionally, our framework is
executed using a single measurement probe fixed in space, thus
making a step towards practical fault diagnosis techniques that
can be deployed on antenna array systems.

Index Terms—Phased arrays, Fault diagnosis, Signal process-
ing, Optimization methods

I. INTRODUCTION

HASED ARRAY antennas play a vital role in applications

such as remote sensing, radar, and wireless communica-
tions [1], [2], as well as in applications requiring high beam ef-
ficiencies with upper bounds on power patterns [3]. As a result,
their proper functioning is fundamental for efficient operation.
Faulty elements in a large antenna array can lead to undesired
radiation patterns, resulting in degraded performance of the
overall system. Therefore, locating the faulty elements and
adopting necessary compensating/correction techniques are
inevitable tasks for the robust operation of a phased array.
Since the number of faults can be assumed to be small
compared to the total number of elements, this enables the use
of compressive sensing (CS) for fault diagnosis. Several works
[4]-[13] have been proposed in the past for efficient fault
diagnosis using CS, including some experimental validations
[14]. In most of these techniques, diagnosis is performed by
recovering a sparse solution from few far-field measurements
at a few locations in space, which indicates the healthy or
faulty status of the elements. More recent methods suggest that
fault diagnosis can be performed using measurements from a
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fixed point in space with a sequence of array excitations [10],
[11], [13]. In our recent work [13], optimizing the mutual
coherence of the sensing matrix was introduced to improve
the capability of diagnosis for a given number of fixed-probe
measurements.

However, these techniques use a simplified far-field model
based on the array factor. While this offers simplicity, ignoring
non-idealities may be questionable for practical fault diagno-
sis, particularly when the spacing between elements is sub-
wavelength. While recent works have been aimed at modeling
the multi-path channel to the fixed probe in the presence
of faults [15], [16], there are no works, to our knowledge,
that addresses the influence of mutual coupling [17] among
elements of the antenna array for fault diagnosis using a fixed
receiver probe for measurements.

In this paper, we investigate how to incorporate mutual
coupling in the fault diagnosis technique proposed in [13] and
demonstrate that not accounting for coupling effects leads to
poor fault diagnosis results. We show how the nature of our
fault diagnosis approach of using a fixed probe and optimized
excitations allows us to achieve optimal performance simply
even while mutual coupling (using any method) is taken into
account. We demonstrate numerical results involving average
embedded element patterns and port-level coupling matrix
approaches; these show that our approach effectively achieves
a much more reliable fault diagnosis.

We note that while there have been previous work [18]
attempting fault diagnosis in the presence of mutual coupling,
they are based on measurements at multiple locations, and
applicable to uniform linear arrays. Our method, in contrast,
applies to more general array geometries and provides efficient
fault diagnosis using measurements from a fixed location by
optimizing the excitations. Further, two approaches for model-
ing mutual coupling effects are provided in this paper, which
can be used depending on the antenna array’s characteristics
and the information available to the user about the antenna
array.

II. METHODS
A. Far Field of a Faulty Phased Array

It is known from the linearity of Maxwell’s equations that
the electromagnetic field emitted by a phased array system
can be represented in terms of a linear combination of the
excitations of the constituent antenna elements, i.e. E(r) =
Zﬁil a;(r) x;, where E(r) is the field at location r, the exci-
tations are x;, and the coefficients of the combination, a; (1),
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contain information about the electromagnetic environment of
the element in the array and the measurement setup, and N is
the number of array elements.

Since our objective is to perform fault diagnosis in the
presence of mutual coupling between the elements, we now
outline the mathematical steps that lead to a system model:

Modeling element faults: Here, we simply replace the
excitation x; by the expression x;p;, where p; € C captures
the fault state of the element (e.g. p; = 1 indicates no fault,
whereas p; = 0 indicated a dead element).

Modeling mutual coupling: In the simplest case, when the
coupling is ignored (isolated element pattern approach), «;
consists of terms that quantify the element gain and the phase
due to the path length between the measurement and antenna
element locations. On the other end of the spectrum, if the «;
terms are computed using the embedded (or active) element
patterns [19], then mutual coupling effects are fully taken into
account at the cost of N full-wave electromagnetic simulations
per measurement location. Various other techniques have been
proposed in the literature, including “average” embedded
patterns [20] and port-level, coupling matrix approaches [21],
[22] (also see [23] for an excellent review).

Thus, while the details of the mutual coupling model can
be changed as per the available computational resources, the
mathematical expression for the measured field can be written

as: N
r) =Y ziai(r)p;, (1)
=1

where the definition of the «; terms will depend on the specific
model used for mutual coupling effects.

B. Fault Diagnosis Methodology

In recent work [13] we showed how fault diagnosis of a
phased array could be accomplished utilizing a single probe
fixed in space; multiple measurements are realized by opti-
mally changing the element excitations. We generalize this
result in our work by incorporating the previously ignored
effect of mutual coupling between the antenna elements. Doing
so makes the fault diagnosis technique very practical and
relevant to phased arrays with sub-wavelength inter-element
spacing.

On examining (1), we observe that as long as the measure-
ment location is fixed, the «; terms do not change (henceforth
we drop the ‘r’ argument on o). Leveraging this observation,
we build a vector of M measurements, gy, and relate it to
the excitations as: y; = Z;V lx( )a7p], where x§) is the
excitation of element-j for measurement-z, which in turn leads
to the following succinct system model:

M a; 0 0 01

y=1 : 0 0 L | = Xdiag(a) p, ()
™10 0 an] |pn B

where 2 e CY*N consists of the element excitations for
the ™ measurement, resulting in an overall excitation matrix,
X € CMXN "and p € CV*! is the fault-state vector.
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As is common in fault diagnosis methodology, we assume
that a reference set of measurements, say y/¥), are available
for a known set of element states, p(/) (typically correspond-
ing to a fault-free array). If we further assume that the number
of faults with respect to this reference is sparse, then after
forming the differential measurement vector y = %) — §, the
optimization problem to solve for fault diagnosis is:

min||z]o, s.t. |y = Bzl < e z=p® —p, 3

where € is a parameter proportional to the standard deviation
of measurement noise.

To recover a sparse solution, it is desirable that the sensing
matrix B has low mutual coherence [24], [25]. In [13], the
excitation matrix X is optimized for mutual coherence by
approximating a Grassmannian matrix using an alternating
procedure [24], which shows improved performance when
compared to a randomized X [26]. Since B is defined as a
diagonal matrix multiplied by X, the mutual coherence of
the matrix B will be the same as that of X, thus allowing
us to optimize the mutual coherence oblivious to the type of
antenna mutual coupling model used. The key intuition here
is that the linear coupled forward model remains the same for
different excitations. It is important to note that this would not
have been possible if multiple locations were being used for
measurements.

Most fault diagnosis techniques formulate (3) as an /4
minimization problem, while others use a non-convex £, (0<
p < 1) minimization approach [7], [11]-[13] due to its
superior performance. By standard methods we convert (3)
into an unconstrained nonconvex optimization problem [13]:

min ||y — Bz|3 +n]lz[5, 0 <p <1, 4)
where 7 is an empirical hyperparameter. This is solved using
Iterative Reweighted ¢; minimization (IRL1) [27], [28] imple-
mented using the Alternating Direction Method of Multipliers
(ADMM) [29].

IIT. RESULTS

We consider a 7 x 7 dipole array in the x — y plane (see
Fig. 1), where the dipoles are oriented along an angle of 45°
in-plane. The maximum of the field pattern is along the z-
direction when uniform excitations are applied. Each dipole of
length 0. 47)\ has a resonant frequency of 3 GHz, with a radius
equal to 150 and is excited through a generator impedance of
50 Q. The choice of dipole orientation is motivated by two
considerations: (1) to prevent physical overlap of the elements
at low values of inter-element spacing, e.g. for d = 0.45),
and (2) to have a broadside radiation pattern commonly used
in wireless systems.

We now present fault diagnosis results from the complex
electric field (F,) measurements at a fixed measurement
position using optimized excitations. The field measurements
of healthy and faulty arrays (i.e. the a;’s of the forward
models in (1)) of the isolated pattern approach (based on the
array factor approach [1]), average embedded pattern approach
(based on [20, Eq. (11)]), and the coupling matrix approach
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Fig. 1. Square 7 x 7 array of center fed dipoles in the z — y plane.

(based on [22, Eq. (A9)]) were simulated using the MATLAB-
Antenna toolbox. We highlight that the choice of the mutual
coupling model is not restricted to the ones used in this
work. Any mutual coupling models can be used by computing
the appropriate «; terms, due to general formulation of our
framework (as per (2)).

The measurement location was fixed at a spherical angular
location (6o, ¢o) = (0,0) with r = 1000\ (along the z-axis).
The fault solution using these measurements is obtained using
IRL1. We fix the hyperparameters 7 in (4) 7 = 0.25|| B y||»
and p = 0.3 (p quasi-norm) for all the simulation results
of fault diagnosis presented in this paper. The value of 7
is obtained empirically from a grid search performed from
0.1/|BHy||o to || B y||s, where the upper limit || B y||, is
discussed in [24]. The amplitude and phase of the excitations
are restricted to the interval [0, 1] and [0, 2], respectively. The
excitations (both random and optimized) are quantized to 6-bit
amplitude and phase and the random excitations are generated
from a multinomial probability distribution.

The recovered solution is mapped to binary values by
thresholding the real part by 0.5, i.e. for the n'" element
pn = 1 if the reconstructed fault state is greater than 0.5,
else p, = 0. Fault recovery is considered a success when an
exact reconstruction of the number of faulty elements and their
location is achieved. We note that the thresholding operation
is not necessary in case we are to deal with non-binary faults.
We report our results in the rate of successful recovery (RSR)
metric, the percentage of realizations that lead to successful
recovery, and is calculated over 400 Monte-Carlo simulations
with randomized fault locations. We now outline our primary
findings.

A. Improvement in fault diagnosis by optimizing excitations

As stated earlier, our methodology can seamlessly incor-
porate the effects of mutual coupling. This means that we
should expect a similar performance improvement as in [13]
when using optimized excitations w.r.t. random excitations. We
validate this by analyzing the performance of fault diagnosis
using the coupling matrix model, with and without optimiza-
tion of the excitation matrix X at an SNR of 10dB; the
plots in Fig. 2 indicate that the optimization of the excitation
matrix X is indeed useful when using the coupling matrix
approach. Similar results were obtained using the average
embedded pattern approach as the mutual coupling model.
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Fig. 2. RSR plot for the coupling matrix approach using IRL1, N = 49
(dipole array), d = 0.45X at 10 dB SNR.
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Fig. 3. RSR plot using IRL1, N = 49 (dipole array), d=0.45), and optimized
excitations for two different number of measurements, M = 15 (left), M =
20 (right) with a shared legend.

This is a crucial finding: all the advantages of the optimized
element excitation approach [I3] continue to apply when
mutual coupling effects are taken into account. Similar results
are seen at higher SNR values, with a general improvement
in the RSR at any given number of faults.

B. Improvement in fault diagnosis by incorporating coupling

Fig. 3 shows the RSR (in %age) against number of faults for
recovery using the different coupling models using IRL1 and
optimized excitations at SNR of 10 dB and 20 dB, respectively.
The RSR is plotted against the number of faults for two
different numbers of measurements, M, and we see that:

1) In both cases, a clear improvement in the reliability
of fault diagnosis is seen when coupling effects are
taken into account. For example, at 10dB and M = 15
measurements with 3 faults, an RSR of 100 is achieved
when coupling is taken into account, as opposed to an
RSR of 85 when not (points A, B in Fig. 3). Similarly, at
10dB and M = 20 measurements with 4 faults, an RSR
of 98 is achieved when coupling is taken into account,
as opposed to an RSR of 83 when not (points C, D in
Fig. 3).
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Fig. 4. Minimum number of measurements M required to reach RSR-98 (a,b) and RSR-90 (c,d) with varying d for 5 faults in a 49-element array for
optimized (a,c) and random (b,d) excitations. The bars are unavailable for some cases, when the given RSR is not achieved for any M < N, i.e. the case

where more measurements than total element number are required.

2) The difference in accuracy (RSR value) when accounting
for mutual coupling is more significant when using low
SNR measurements, seen for e.g. by contrasting the
behavior of solid (low SNR) v/s dashed (high SNR)
lines in Fig. 3: the dashed lines are more bunched
up than the solid lines. In the case of high SNR, an
improvement in RSR by taking mutual coupling into
account is seen at larger fault numbers. For e.g. at 20 dB
and M = 20 measurements with 10 faults, the isolated
pattern approach achieves an RSR of 50 %, whereas
coupling aware models achieve ~ 70% RSR (regions
E, F in Fig. 3).

C. Analysis with varying inter-element spacing

As the effect of mutual coupling is more significant when
the antennas are closer, it is natural to expect that all the
approaches should converge to a similar performance at higher
inter-element spacing. As we demonstrate with our results,
this is true in terms of the minimum number of measurements
required for successful fault diagnosis.

The bar diagrams given in Fig. 4 show the number of mea-
surements M needed to reach RSR-98 & RSR-90 when fault
diagnosis is performed for different inter-element spacings
using the proposed models and optimized/random excitations.
The number of faults is fixed as 5, and SNR is set to 10 dB.
Among the bar diagrams shown in Fig 4, the lowest number of
measurements for fault diagnosis (i.e. most efficient diagnosis)
are obtained when using optimized excitations (see Figs. 4(a),
& 4(c)). Some of the other important takeaways include the
following:

1) The average embedded pattern and coupling matrix
models clearly outperform the isolated pattern approach
at any inter-element spacing. Moreover, the minimum
required M to reach RSR-90 is nearly the same for these
models, irrespective of the spacing.

2) The number of measurements needed for all the different
models is almost the same at larger spacing (d = 1.95)),
where we expect minimum mutual coupling.
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3) The difference between the coupling models and the
isolated pattern model increases with decreasing inter-
element spacing d, and the isolated pattern model fails
to achieve RSR-98 at small inter-element spacing (d =
0.45) for any number of measurements M < N (= 49).

Overall, the coupling matrix and the average embedded
pattern models (with optimized excitations) are shown to be
the best choices for fault detection in this example. However,
it is essential to note here that the coupling matrix approach
assumes that the impedance matrix of the array is available to
the user. If unavailable, the average embedded pattern model
may be suitable in a practical scenario with a sufficiently large
array since it needs only the embedded pattern response of the
center element, which is relatively easier to obtain.

IV. CONCLUSION

This paper presents two strategies to incorporate the effect
of mutual coupling for efficient fault diagnosis of an antenna
array using a novel compressive sensing technique that uses
measurements from a fixed probe and optimized excitations.
Depending on the information available about the antenna
array and its characteristic properties, either of these strategies
can be used. When the array is sufficiently large, the average
embedded pattern approach is a suitable forward model choice,
while the coupling matrix approach is valid for a specific class
of antennas. We have demonstrated the superior performance
of the forward models, which account for mutual coupling
effects and highlight the inadequacy of a forward model that
does not include these effects. Our novel method has been
validated and is shown to be very accurate and efficient in
identifying faults in antenna arrays where coupling effects
cannot be neglected.
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