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Abstract—In this paper, we introduce novel machine learning
based techniques to design multi-band microstrip antennas as
per user specifications over a broad range of frequencies. The
approach involves the design and training of a neural network
for approximating the electromagnetic simulations of antennas,
the so-called ‘forward’ problem. Here, the antenna is param-
eterized in terms of a checker-board pattern of metallic sub-
patches. Additionally, a second ‘tandem’ neural network is also
designed, which takes the user specification of a desired return-
loss spectrum and returns an antenna structure. We explore the
various machine learning innovations that are required in order
for this approach to succeed. Our approach makes way for rapid
designs of multi-band antennas, which is otherwise known to be
a tedious task requiring vast domain knowledge.

I. INTRODUCTION

Antennas are one of the most critical blocks at the front-
end of any radio frequency (RF) system. Sophisticated func-
tionalities in devices come with device complexity. Antenna
design involves expensive and time consuming electromag-
netic simulations. However, with the advances of machine
learning techniques, data-driven approaches are emerging as a
better paradigm for various photonic and RF design processes
instead of conventional approaches. These new approaches
offer the possibility of generalizing domain-specific tasks by
“black-boxing” input/output relations, thereby bringing down
the requirements of extensive domain knowledge.

In this paper, we propose neural network-driven methods for
antenna design, expanding on our preliminary work [1]. The
forward model predicts the return loss response (i.e. S11) for a
given microstrip antenna. Subsequently, given specifications of
the desired performance of an antenna, the proposed approach
is capable of designing compact and multi-band antennas.

Designing a device given a desired response is an emerging
field of research seen recently in photonic devices. Recently,
the backpropagation algorithm was used for the design of
multi-layered nanophotonic particles with a desired absorption
spectrum [2], [3]. Similarly, nanophotonic structures were
designed with the help of deep learning [4]; here, a novel
neural network solved the “data inconsistency” problem which
inherently exists in inverse electromagnetic problems via a
“tandem” architecture of neural networks for approximating
device design. Our neural network based approach is inspired
by this work, though with significant differences since the
domain of the device specification is in discrete space, whereas
in the original work it was in continuous space. However,
no references have been found to optimize and design the
microstrip patch antenna in the binary space using data-driven

algorithms to obtain multi-band resonant compact antennas.
A critical contribution of this research is the introduction of a
new activation layer, so called ST layer, short for ”Smooth
Thresholding,” which assists in the learning of a binary
mapping from real-valued to discrete space.

In this paper, we use a convolutional neural network (CNN)
framework for the forward modelling of the antennas and use
this pre-trained network to assist a tandem network to design
compact multi-band antennas. The proposed loss function for
training the tandem antenna is inspired by earlier work [5],
[6].

II. METHODS

The overall framework for the antenna design is shown in
Fig. 1.

Fig. 1. Proposed architecture for the inverse design of the antenna. xi

represents the true design, yi represents the true S11 response, x̂i represents
the predicted design and ŷi represents the predicted S11 response. BN: Batch
normalisation layer, FC: Fully-connected layer

A. Forward model

The dataset is generated using MATLAB to train our model;
in order to keep the large simulation time at a minimum, these
feature antenna structures with air rather than dielectric as the
substrate. A square metallic area is divided into equal area,
rectangular sub-patches, m, in number. Thus, the input vector
x contains 1s or 0s depending on whether or not a sub-patch
is to be metal or air, respectively. An element in the training
set is generated by choosing x at random, and simulating its
return loss spectrum, y, in MATLAB.
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The forward model approximates the antenna parameters,
given the antenna design, and is used as a cheap to evaluate
surrogate model to simulate the pixelated antenna structures.
This in turn replaces the full-wave solver, which is computa-
tionally expensive for simulating the response of the structure.
The first application of the network is to see how well it
approximates the simulation result on never before seen input
(for e.g. see Fig. 2), and as can be seen, is quite successful.

Fig. 2. Comparison of the forward model approximation and the full-wave
solver response of the antenna

B. Inverse model

In this approach, we connect the layers to be trained to the
pre-trained forward model (refer to Fig. 1). Our approach is
inspired by the methodology of this paper [4], but unlike in
our problem where the design is specified in terms of binary
variables, the problem space here is continuous for both the
input and output parameters. To address the issue of mapping
a real vector to a binary vector, we introduce an “ST layer”,
short for Smooth approximation of a Threshold function, in
the tandem network to map and learn the binary counterpart of
the real design vector. This “ST” activation function is defined
as y = 1

2 + 1
2 tanhm(x− 1

2 ), where “m” is an empirical
parameter that controls the sharpness of the transition from 0
to 1. The function acts as follows – if x ≤ 0.5, then y ≤ x; if
x ≥ 0.5, then y ≥ x, i.e. damping below 0.5 and amplifying
above 0.5 as a means of forcing the output to be either 0 or 1.
In addition, we add regularization terms to the loss function
to further boost the probability of the design being in the
binary space. An extensive study of the hyperparamters of the
network has been carried out in support of the tandem network
and its results.

III. NUMERICAL RESULTS

Fig. 3 (top) shows a compact inverse designed single-band
antenna using the proposed approach at 14 GHz. The inverse
designed antenna is approximately 50% compact with respect
to the conventional antenna at 14 GHz, with the same response
as shown in Fig. 3 (bottom). Fig. 4 shows a compact inverse
designed dual-band antenna using the proposed approach. It
takes approximately ≈ 3 - 4 seconds to design the antenna
once the tandem network is trained, which conventionally is
a tedious task.

Fig. 3. Inverse designed single-band antenna (top left) and the Conventional
antenna (top right): Compactness : 50% and comparison of the desired
spectrum, predicted spectrum and the EM solver spectrum of the inverse
designed antenna and the conventional antenna (bottom)

Fig. 4. Inverse designed dual-band antenna (left) and the comparison of
the desired spectrum, predicted spectrum and the EM solver spectrum of the
inverse designed antenna of a dual band antenna.

IV. CONCLUSION

In this paper, we have proposed a novel method for the
inverse design of antennas. Specifically, we addressed the
problem of designing miniaturized multi-band antennas with
the help of deep learning. This approach is computationally
time efficient when compared to the conventional methods of
designing the antennas by commercial software.
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