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Electromagnetic field imaging in arbitrary scattering
environments
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Abstract—In this paper, we propose a method to reconstruct
the total electromagnetic field in an arbitrary two-dimensional
scattering environment without any prior knowledge of the
incident field or the permittivities of the scatterers. However,
we assume that the region between the scatterers is homogeneous
and that the approximate geometry describing the environment is
known. Our approach uses field measurements and a compressive
sensing inspired algorithm to estimate the incident field and
the tangential electric and magnetic fields on the scatterers’
surfaces. These estimates are then used to predict the field
everywhere using Huygens’ principle. Further, we identify the
best measurement locations in the environment, which reduces
the estimation error to approximately half of the error obtained
when using random locations. We show that in an indoor
scenario with up to four scattering objects, the total electric
field is recovered with less than 10% error when the number
of measurements is just 0.3 times the number of unknowns in
which the problem is formulated. The formulated problem is
solved using ‘Total field - Compressive sensing based subspace
optimization method’ – an algorithm that leverages the sparsity of
the tangential fields in known transformation domains to obtain
an optimal solution.

Index Terms—Compressive Sensing, Electromagnetic Fields,
Sensor Placement, Subspace Optimization

I. INTRODUCTION

Knowledge of the electromagnetic (EM) fields is useful in
many applications like network planning, WiFi access point
planning in indoor scenarios, and indoor localization [1]–[4].
Existing methods in the literature that address this problem
are based on ray tracing [5], [6]. It is well known that the
ray-tracing model fails to account for the effects of diffraction
around the corners of the objects, waveguiding in the corridors,
and multiple reflections [7, Fig. 3]. Another popular approach
is to assume that the EM fields are sparse in the spatial Fourier
domain, and to leverage this information to reconstruct the
fields [8]. This assumption works well when the domain of
interest is far from the scatterers and the sources. Moreover,
in most of the literature on EM inverse problems, information
on the scattered fields is needed to solve the problem, which
implies that the incident field should also be known [9], [10].
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In this paper, we present a method to reconstruct the total
EM field from total field measurements at optimal sampling
locations. We do not assume any prior knowledge of the inci-
dent field or the permittivities of the scatterers. However, we
assume that the region between the scatterers is homogeneous
and that the approximate geometry of the scatterers and the
source is known. Our method is based on surface integral
formulations and is therefore a significant improvement over
existing ray tracing methods in the literature. In recent work
[11], we presented a method for reconstructing the scattered
EM fields by making measurements at random locations, but
assumed knowledge of the incident field. In the current work,
we generalize this method to recover the total field without
any prior knowledge of the incident field. We also identify
optimal sampling locations in the environment. The problem
setup is graphically represented in Fig. 1.
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Fig. 1: Problem depiction with a source (J) radiating in the
presence of objects, enclosed within a wall. Field measure-
ments are made at strategic locations as indicated by filled
dark circles. The objective is to predict the field at any point
outside the object(s) and within the walls. To achieve this,
tangential electromagnetic fields are estimated on object and
wall boundaries.

Our approach: The total field at a point can be expressed
as the sum of the incident field and scattered field. According
to the Huygens’ Principle [12], the scattered field can be
written in terms of the free-space Green’s function and the
tangential electric and magnetic fields on the scatterer surfaces.
Additionally, the Extinction theorem [12] provides relations
between these tangential electric and magnetic fields. Finally,
Grafs’ addition theorem [13, Section 9.1] is used to express
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the incident field in a known basis. In our method, we measure
the field at various locations in the environment, using which
we solve for the incident field and the tangential fields on the
surfaces of the scatterers. The estimated incident field and the
tangential fields are then substituted back into the Huygens’
Principle to find the total field everywhere.

Central to our approach for solving this system is the idea
of compressive sensing (CS), which exploits sparsity of the
unknown signal in certain domains in order to recover it from
fewer samples than dictated by the Shannon sampling theorem
[14], [15]. Using the principles of CS, we leverage the fact that
the tangential fields are sparse in the discrete Fourier transform
(DFT) domain. We also employ the framework of the Subspace
Optimization Method (SOM) [16], which allows us to split the
solution into two orthogonal spaces; one part of the solution
is recovered from the measured data, and CS is applied to
recover the remaining part of the solution.

Sensor Placement: The problem of finding the optimal sam-
pling locations is commonly referred to as ‘sensor placement’
in the literature. Formally, sensor placement is the selection
of the ‘best’ M sensor locations out of P (P �M ) possible
locations in the environment.

The brute force way to solve the problem of sensor place-
ment is to try out all the

(
P
M

)
possibilities, and choose

that combination which results in the least error (of some
predefined metric). This combinatorial approach is NP-hard
and is intractable even for small values of P (eg.

(
50
25

)
> 1014).

The problem of obtaining the optimal sensor locations at
a lower computational cost has been studied extensively in
the literature. Early approaches include heuristics like cross-
entropy optimization [17], genetic algorithms [18], and tabu
search [19]. However, these heuristics neither provide any
performance bounds nor guarantee convergence to the optimal
solution. [20] formulated the sensor selection problem as
a non-convex optimization of the determinant of the error
covariance matrix and proposed to solve a convex relaxation
of it. They also provided a lower bound on the performance,
which can be used to determine how suboptimal the solution is.
Due to the convex relaxation, this method sometimes results
in an ill-conditioned matrix, especially when the number of
sensors is limited. Few greedy approaches have also been pro-
posed based on proxies of the estimation error like condition
number [21], [22], and frame potential [23]. However, these
proxies may also result in an ill-conditioned matrix. Moreover,
minimizing these proxies results in the optimal solution only
if the rows of the observation matrix are unit norm. Jiang
et al. proposed MPME (Maximal Projection on Minimum
Eigenspace) [24], a greedy sensor selection algorithm that
maximizes the minimum eigenvalue of the observation matrix
in a computationally efficient manner. MPME outperforms
condition number and frame potential based methods (in terms
of the mean squared error). Further, it does not assume that
the observation vectors are unit norm. These advantages make
MPME a suitable algorithm for our problem. In later sections,
we show that using the optimal sampling locations returned
by MPME instead of random sampling locations reduces the
error by almost 50% in some cases.

Paper Organization: The rest of the paper is organized as

follows. In Section II, we describe the problem statement
and the mathematical formulation. In Section III, we discuss
the algorithms used for sensor selection and for solving the
system. Section IV contains the numerical results for sensor
selection and EM field reconstruction. We conclude the paper
with a discussion of the results in Section V.

II. PROBLEM FORMULATION

Consider the two dimensional (2D) schematic shown in
Fig. 2. For the transverse magnetic (TM) polarization, the
total field at any point ~r in Region 1 can be expressed using
Huygens’ principle as [25]:

φ(~r) = φin(~r)

−
∮
Sw

[g(~r, ~r
′
)∇′φw(~r

′
)− φw(~r

′
)∇′g(~r, ~r

′
)] · n̂w dl′

−
∮
So

[g(~r, ~r
′
)∇′φo(~r

′
)− φo(~r

′
)∇′g(~r, ~r

′
)] · n̂o dl′, (1)

where φ(~r) is the total electric field at ~r, φin(~r) is the incident
field, g(~r, ~r

′
) = − j4H

(2)
0 (k0|~r − ~r

′ |) is the 2D free space
Green’s function (k0 is the free space wavenumber) and n̂
is the unit normal from the surfaces Sw and So into Region
1. φo, φw are the tangential electric fields on the object and
wall respectively, and∇φo.n̂o,∇φw.n̂w are proportional to the
tangential magnetic fields on the object and wall, respectively.

Region 1

Region 2

Region 0

Fig. 2: Problem geometry: Sw is the inner surface of the
enclosing wall and So is the outer surface of a non-magnetic
scatterer. Vin denotes the volume enclosing the source, whose
distribution is unknown. n̂w and n̂o are the normals to the
scattering surfaces of the wall and object respectively.

As per the Uniqueness theorem of electromagnetics [26],
the field at any point in a region is uniquely specified by a
specification of the source(s) and one of following over the
boundaries (S) enclosing a region:
(a) the tangential electric field over S, or (b) the tangential
magnetic field over S, or (c) the tangential electric field over a
part of S, and the tangential magnetic field over the remaining
part.
However, in our expression of the Huygens’ principle in
Eq. (1), we have used both the tangential electric and magnetic
fields. This redundancy is lifted when we use another relation

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCI.2021.3055982

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

between the tangential electric and magnetic fields, given by
the Extinction theorem for Region 1 [25]:

φin(~r)−
∮
Sw

[g(~r, ~r
′
)∇′φw(~r

′
)−φw(~r

′
)∇′g(~r, ~r

′
)]·n̂w dl′

−
∮
So

[g(~r, ~r
′
)∇′φo(~r

′
)− φo(~r

′
)∇′g(~r, ~r

′
)] · n̂o dl′

= 0, ~r ∈ {Sw, So}. (2)

A. Expanding the unknowns in a basis

The unknown quantities in Eqs. (1) and (2) are the tangential
fields on the scatterers’ surfaces and the incident field. Our
approach is to expand the unknowns in terms of a known
basis, and to estimate the coefficients of the basis functions
using the field measurements.

The incident field φin(~r) is expressed in terms of the current
density J(~r) as [25],

φin(~r) = −jωµ0

∫
Vin

g(~r, ~r
′
)J(~r

′
)dV ′, (3)

where Vin is the volume enclosing the source. Using the Grafs’
addition theorem [13, Section 9.1], we simplify the above
equation as,

φin(~r) =

b(Ni/2)c∑
i=−b(Ni/2)c

ci si(~r), (4)

where, ci =

∫
Vin

Ji(k0|~r0 − ~r
′
|)e−jiθ

′
J(~r

′
)dV ′

and si(~r) = (−1)i+1ωµ0

4
ejiθH

(2)
i (k0|~r0 − ~r|)

Here, ~r0 is the center of the region Vin and θ is the azimuthal
angle of the vector ~r0−~r. Details of this derivation are given
in Appendix A.

The tangential fields are expanded in a pulse basis (see [11,
Sec. 3]) as,

φo(r) =

No∑
i=1

aoi pi(r), ∇φo(r) · n̂o =

No∑
i=1

boi pi(r), (5)

φw(r) =

Nw∑
i=1

awi qi(r), ∇φw(r) · n̂w =

Nw∑
i=1

bwi qi(r), (6)

where lowercase r denotes the parametrized distance along
each surface (So or Sw). pi(r), i = 1, 2, . . . , No, and qi(r),
i = 1, 2, . . . , Nw are the sets of pulse basis functions and aoi ,
boi , a

w
i and bwi are their corresponding unknown coefficients.

The tangential electric field on the surface of a perfect
electric conductor (PEC) is zero. Therefore, if an object in
the scattering domain is a PEC, we can set the corresponding
coefficients (ai for the ith object) to zero. This reduces the
number of unknowns (and therefore the number of required
measurements).

B. Defining the Data equation

Substituting Eqs. (4), (5) and (6) in Eq. (1) and making field
measurements at M locations, we get,

[
E F G H S

]
︸ ︷︷ ︸

Ad



ao

bo

aw

bw

c


︸ ︷︷ ︸
x

=


φ(~r1)

φ(~r2)
...

φ(~rM )

+ ν

︸ ︷︷ ︸
bd

(7)

where {E,F} ∈ CM×No , {G,H} ∈ CM×Nw , and S ∈
CM×Nin are submatrices that constitute the matrix Ad ∈
CM×N , x ∈ CN is the unknown vector formed by vertically
stacking the vectors {ao, bo} ∈ CNo , {aw, bw} ∈ CNw , and
c ∈ CNin ; N = 2(Nw + No) + Nin denotes the total number
of unknowns. The total field at a location ~ri, denoted by
φ(~ri), is corrupted by noise given in ν. The elements of the
submatrices E,F,G,H are computed as per the relations in
[11, Eq. (9)]. The elements of the submatrix S are given as
sm,i = si(~rm), where ~rm denotes the measurement location of
the mth measurement point. We call Eq. (7) the ‘Data equation’
and Ad the ‘Data matrix’.

For notational convenience, we denote a row of Ad by
ad(~r). In terms of ad(~r), we can write the total field at a
point ~r in Region 1 (in Fig. 2) as,

ad(~r)x = φ(~r) + ν, (8)

where ν is the noise corrupting the total field measurement.

C. Defining the State equation

Similarly, substituting Eqs. (4), (5) and (6) in Eq. (2), and
specifying the Extinction theorem at the midpoints of the
discretized edges (as defined by the pulse basis in Eqs. (5),(6))
of So and Sw (total No +Nw in number) gives,

Asx = 0, (9)

where 0 ∈ RNo+Nw is a vector of zeros. We call Eq. (9) the
‘State equation’ and As the ‘State matrix’.

D. Outline of our Method

We propose to predict EM fields using the following ap-
proach:

1) Determine the M optimal sampling locations in the
region in between the scatterers (Region 1 in Fig. 2),
and measure the total field at these locations.

2) Find the tangential field and incident field coefficients
that satisfy the Data and State equations.

3) Substitute the recovered fields into the Huygens’ princi-
ple to estimate the total field at desired locations.

III. METHODS

In the previous section, we derived the data equation and
the state equation and provided an outline of our approach for
field prediction. In this section, we flesh out the details of the
different steps in our method.
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A. Strategies for choosing the measurement locations

The first step in our method involves making M mea-
surements in the region in between the scatterers. A natu-
ral question arises regarding the choice of the measurement
locations. The simplest answer to this question is to choose
the measurement locations randomly (called random sampling
or ‘RS’ henceforth). However, it is easy to see that random
sampling is not optimal. Firstly, it could result in measurement
locations being very close to each other. This would increase
the number of measurements without improving the quality
of the reconstruction significantly, while also degrading the
numerical properties of the Data matrix. Further, it does not
factor in any information about the scattering environment,
or the scattering phenomenon. Therefore, by exploiting the
information about the scattering environment and the physics
of the problem, it is possible to come up with a better sampling
scheme.

As mentioned earlier, sensor placement deals with choosing
an optimal set of sensor locations from a large pool of potential
locations. The latter are typically obtained by a fine spatial
discretization of the scattering environment. The total field, y,
at the potential sampling locations {~r p

1 , ~r
p

2 , . . . , ~r
p
P } can be

expressed as: 
ad(~r

p
1 )

ad(~r
p

2 )
...

ad(~r
p
P )


︸ ︷︷ ︸

B

x =


φ(~r p

1 )

φ(~r p
2 )
...

φ(~r p
P )

+ ν

︸ ︷︷ ︸
y

, (10)

where ν ∈ CP is complex additive white gaussian noise,
and the matrix, B ∈ CP×N , (called the ‘Propagator’) is con-
structed by row vectors of the form defined in (8). Typically,
we have P � N .

Since the Propagator is constructed by finely discretizing
the environment, it closely approximates the continuous space
operator that maps the intermediate variables to the total field.
Thus, sensor placement can be defined as selecting the best
M rows from the Propagator B such that the estimation error
is minimum. Out of the many approaches that have been
proposed in the literature for sensor placement, we choose
the MPME algorithm [24] which has shown the best results
for sensor placement in our problem.

MPME v/s random sampling: In order to compare MPME
and random sampling, we present some results for sensor
placement for an indoor scenario with a single scattering
object. Fig. 3 shows a comparison of the sampling points
obtained from MPME and random selection. As expected,
random samples are found everywhere in the region in between
the scatterers whereas, the MPME samples closely circum-
scribe the scatterers and the source. This observation is con-
sistent with the Huygens’ principle of electromagnetics [26]
stated earlier in Sec. II: making measurements on a contour
that closely circumscribes the scatterer surfaces amounts to
(approximately) specifying the tangential electric field on the
surface of the scatterer, which in turn is sufficient to compute
the field outside the surface.

In order to obtain a more quantitative method for compari-
son, we construct Data matrices, AR and AM , that correspond
to the random samples and the MPME samples, respectively.
As described earlier, the rows of the matrix AM are those rows
of the Propagator, B, that correspond to the optimal sampling
locations selected by MPME. We then compare the singular
spectra of these two matrices with that of the Propagator in
Fig. 4. We make two important observations from Fig. 4:

1) The spectrum of AM more closely approximates the
spectrum of the Propagator than that of AR, which
suggests that the MPME samples approximate the Prop-
agator better than random samples.

2) The matrix AR has a worse condition number than AM .
This makes field recovery using AR more sensitive to
noise and discretization errors.

These figures are provided for illustrative purposes, and give
us a good intuition as to why MPME outperforms random
sampling in the detailed results that follow in Section IV.

-2.5 0 2.5 
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-2.5 

0

2.5 
Y
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-2.5 

0
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(b)(a)

Fig. 3: Comparison of the sampling points (M=132) obtained
from (a) MPME and (b) random sampling schemes in an
indoor scenario with a single scattering object (shown in red
color). The source, J , is placed at the center and is shaded
in brown. While random samples are scattered throughout the
domain, MPME samples are spaced further apart and closer
to the boundaries.

0 100 200 300 400
Singular value index (i)

-100

-50

0
MPME Propagator RSmin RSmax

Fig. 4: Comparison of the (normalized) spectrum of the
Propagator with that of the Data matrix, AM , constructed with
132 MPME samples, and AR constructed with 132 random
samples. For 100 different instances of random sampling, the
spectrum of AR lies between the curves denoted by RSmin and
RSmax.
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B. Dimensionality reduction of the Propagator

A standard assumption in most sensor placement literature
is that the number of measurements is more than the number
of unknowns describing the problem, i.e. M > N . However,
in our problem, taking more measurements than N is not
practical because the tangential fields are discretized on a
fine scale for reasons of numerical convergence. In order to
overcome this, we perform a crucial dimensionality reduction
of the Propagator B.

To arrive at this reduction, we start by asserting that the
solution x ∈ CN can be expressed in the basis given by the
right singular vectors of the Propagator matrix. However, as
is evident by the spectrum of the operator shown in Fig. (4),
the significance of these vectors decays at higher indices of
singular values. Thus, we can restrict x to a smaller sub-space
of dimensionality ζ by expressing it in terms of a β ∈ Cζ :

x = [w1 w2 . . . wζ ]β = W β (11)

where W ∈ CN×ζ , {wi}Ni=1 are the right singular vectors of
B, and the parameter ζ denotes the number of ‘degrees of
freedom’ of the electromagnetic field [27]–[29]. The latter is
defined as [30]:

ζ = min

(
m :

∑m
i=1 |σB,i|2∑N
i=1 |σB,i|2

≥ f

)
, (12)

where σB,i are the singular values of B arranged in descending
order, and the value of 0 < f < 1 is chosen heuristically. We
find that the set of locations returned by MPME is not very
sensitive to small variations in the value of f . Thus, we can
speak of an ‘effective‘ Propagator given by B′ = BW , and
by restricting ζ < M , we can perform the sensor placement
algorithm, MPME, on B′ instead. Note that we only use the
concept of dimensionality reduction for the purpose of finding
out the optimal sensing locations.

C. Solving for the tangential field and incident field coeffi-
cients

We now discuss the algorithm used to solve for the vector
x. In our earlier work [11], we proposed CS-SOM to solve
for the tangential fields using scattered field measurements.
The method was based on the Subspace optimization method
(SOM) [16], and exploited the principles of Compressive
sensing (CS) to achieve low reconstruction errors. In the
current paper, we adapt CS-SOM to the case where total
field measurements are considered and call this algorithm ‘To-
tal field - Compressive sensing based subspace optimization
method’ (TCS-SOM). In the rest of this section, we elaborate
the different stages of TCS-SOM. In the framework of SOM,
we split the solution space into two orthogonal spaces, viz. the
major space and the minor space1. While the major space
is spanned by the top L0 right singular vectors of the Data
matrix, Ad, the minor space is spanned by the remaining
N − L0 right singular vectors, where L0 < M . We then

1In our earlier work, we referred to these vector spaces as the signal and
noise spaces, respectively.

recover the component of the solution in each of these two
spaces separately.

Major space component: Consider the singular value de-
composition (SVD) of the Data matrix, Ad =

∑
i uiσiv

H
i

where {ui}Mi=1, {vi}Ni=1 are the left and right singular vectors
of Ad respectively, and {σi}Mi=1 are the singular values of Ad
arranged in descending order. The major space component, x1

is recovered using the truncated SVD solution given by,

x1 =

L0∑
i=1

(uHi bd
σi

)
vi (13)

The value of L0 is chosen using the Morozov Discrepancy
Principle [31] as,

L0 = min(l : ‖Ad

[
l∑
i=1

(uHi bd
σi

)
vi

]
− bd‖2 < ε) (14)

where ε is the square root of the variance of the noise, i.e. ε =
‖bd‖/10(SNR/20), where SNR is the signal to noise ratio in dB.
We have observed that the estimation error is not very sensitive
to the choice of L0, which is in agreement with other studies
in literature [16], [32].

Minor space component: The minor space is spanned by the
bottom-most N − L0 right singular vectors. This component
cannot be recovered by the truncated SVD method. However,
as we have observed in our previous work [11, Fig. 2], the
tangential fields on the surfaces of the scatterers are sparse
in the DFT domain. This observation allows us to exploit
the principles of Compressive Sensing (CS) [14] to recover
the minor space component. In fact, [33, Fig. 6.14] shows
that enforcing sparsity is a general principle in all problems
involving the radiation operator. This is because the right
singular vectors of the radiation operator corresponding to
the large singular values resemble the low frequency Fourier
bases, whereas singular vectors corresponding to the small
singular values resemble the high frequency bases.

The optimization problem to be solved: We denote the minor
space component by x2. Keeping x1 constant, we solve the
following convex optimization problem that is constrained
using both the Data and State equations to recover x2:

minimize
x2

‖MI1(x1 + x2)‖1 + t‖I2(x1 + x2)‖2

subject to ‖Ad(x1 + x2)− bd‖2 ≤ε,
‖As(x1 + x2)‖2 ≤η

(15)

whereM = F or D is the discrete fourier transform (DFT) or
the discrete cosine transform (DCT) basis respectively, chosen
as candidates for sparse representations, I1 ∈ R2(No+Nw)×N

and I2 ∈ RNi×N are blockwise identity matrices which when
multiplied with a N dimensional vector return the first 2(No+
Nw) and last Ni elements of that vector respectively, and t is a
regularization parameter; η is an estimate of the discretization
error in the state equation. We solve the problem (Eq. (15))
using the CVX package [34], [35].

IV. NUMERICAL RESULTS

In this Section, we present the results of various numeri-
cal simulations to evaluate the performance of the proposed
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Fig. 5: The schematic of a 10λ × 10λ simulation domain,
where λ is the wavelength of the incident wave in free space.
The domain includes a wall, 4 objects and a source. Object 1
is a square of side λ, object 2 is a circle with radius 0.75λ,
object 3 is a rectangle with sides 1λ× 2.5λ and object 4 is a
circle with radius 1λ. The relative permittivities of respective
objects are εr1 = 3.7−2.1j, εr2 = 1.7−1.1j, εr3 = 2.7−3.7j
, εr4 = 1.2− 1.1j and the relative permittivity of the wall is
εrw = 3.7 − 2.1j. The objects 1,2,3 and 4 are centered at
(−2.5λ, 1.5λ), (2λ, 2λ), (1λ,−2.5λ) and (−2.5λ,−1λ). The
source is placed within a λ/4×λ/4 square that is centered at
origin. The exact shape of the objects are indicated by the filled
regions and the dotted contours are the approximate object
contours used in the problem solution.

method. All the simulations are programmed in MATLAB
R2019b on a 2.4 GHz Quad-Core Intel Core i5 processor,
using 8GB RAM.

A. Simulation setup

The simulation domain mimics an indoor scenario with a
wall enclosing objects of various sizes and permittivities as
seen in Fig. 5. The exact shape and permittivites of the objects
are only required to generate the synthetic measurements using
a forward solver. The dotted contours, which approximate
the spatial support of the objects, are the only object-specific
information provided to the field reconstruction algorithm. The
approximate contours are no closer than a distance of 0.1λ
from the exact contours, and measurement locations are chosen
at a distance of at least 0.1λ from the approximate contours.

B. Source function

The source current, J , is placed within a region Vin (see
Fig. 5) at the center of the domain. We consider the following
z−directed source current for all our simulations:

J(x, y) =

{
I0(x2 + y2 − x+ y) (x, y) ∈ Vin

0 else
(16)

where I0 is a normalization constant such that the magnitude
of the incident field at a radius of 10λ is approximately
unity. A 6× 6 Gauss Legendre quadrature rule in 2D is used

to calculate the true incident field for generating synthetic
measurements (by substituting Eq. (16) into Eq. (3)). We stress
that the reconstruction algorithm works for any general source
distribution; it is only for illustrative purposes that we have
considered the above asymmetric current distribution.

C. Generate synthetic measurements : forward solver

The total field measurements are synthetically generated
using a Boundary Integral (BI) solver [25] with pulse basis
functions discretized at λ/40, and delta testing functions. The
frequency of operation is 1.5 GHz. Fig. 7 shows the magnitude
of the true total EM field for the above simulation setup. The
permittivity and the exact geometry of the objects are used
only in the forward solver. We validate the BI solver with
the Mie series solution for scattering from a single infinite
cylinder of a radius λ. We also verify that there are no internal
resonances around the operating frequency.

D. Inverse solver

The dotted contours that represent the approximate object
geometries are discretized at a value of λ/5. This value is
empirically chosen and provides an optimal trade-off between
accuracy and computational cost. The number of unknown
variables obtained by discretizing the inexact surfaces of wall
and four objects (in that order) are: 2 × (196 + 24 + 32 +
30 + 42) = 648. The source is enclosed in a square of side
λ/4, which gives the number of coefficients (see Appendix
A, Eq. (23)) as Ni = 5. Therefore, the total number of
variables are N = 653. To find the degrees of freedom, we
(heuristically) set f = 0.999 i.e. the first ζ singular values that
account for 99.9% of Eq. (12). Using this value of ζ, we run
the MPME algorithm to get the optimal sampling locations.

The Data matrices AM and AR are constructed from the
sampling locations obtained from MPME and random sam-
pling (RS) schemes. At the sampling locations, we measure the
total field, which is corrupted by additive white gaussian noise
(AWGN). We consider two different noise levels correspond-
ing to 25 dB and 10 dB signal to noise ratio (SNR) and report
the estimation errors for different number of measurements.
We also report the sampling rate (SR), which is defined as
the ratio of the number of measurements to the total number
of unknowns. The major part of the solution (see Eq. (13))
is estimated using the Morozov discrepancy principle. To
get the minor part, we solve Eq. (15) with the DCT as
the sparsifying transform. The regularization parameter, t in
Eq. (15) is set to 1. However, we note that the algorithm is
not very sensitive to the choice of t. In our simulations, the
value of the discretization error in the State equation (obtained
using the forward solver) is ‖Asx‖ ≈ 0.03. Therefore, we set
η = 0.1. We note that in general, setting η = 0.1 is a good
rule of thumb, and gives good reconstructions in most of the
extensive numerical simulations that we have studied.

The computational complexity of the MPME algorithm is
O(PMN2) [24], and it takes 144 s to identify the optimal
sampling locations. We average our results for both MPME
and random sampling over 100 Monte carlo iterations. The
run time for a single iteration of the inverse solver is less than
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2 minutes. This includes the major space estimation (O(M2+
MN)), the minor space estimation (O(N2M2.5+M3.5)), and
field prediction (O(QN) — Q is number of points where the
field is predicted). For predicting the field, we precompute a
prediction matrix. The construction of this matrix takes around
30 minutes. However, this is a one time cost. Overall, the total
time taken for 100 Monte Carlo iterations for MPME sampling
is around 4 hours, and for random sampling is around 4.5
hours.

E. Error definition

To test the accuracy of our algorithm, we compare the
reconstructed and true fields and define three error metrics as:
tangential field error ∆T , 2D grid error ∆G, and the incident
field error ∆I .

The tangential field error (∆T ) is defined as:

∆T =
‖x̂− x‖2
‖x‖2

, (17)

where x̂ and x are the estimated and true tangential fields
respectively. Once the incident field and the tangential coeffi-
cients are estimated we substitute them in Eq. (1) to get the
field over the 10λ × 10λ region (discretized on a grid with
pitch equal to λ/20). The error in field prediction over this
grid is defined as:

∆G =
‖φ̂− φ‖2
‖φ‖2

, (18)

where φ̂ and φ are the estimated and true total fields over the
2D grid of points respectively. Finally, the error in incident
field estimation is defined as:

∆I =
‖φ̂i − φi‖2
‖φi‖2

, (19)

where φ̂i and φi are the estimated and true incident fields
over the 2D grid of points respectively.

We also define the relative error at a location ~r as:

|φ̂(~r)− φ(~r)|
|φ(~r)|

(20)

where φ̂(~r) and φ(~r) are the estimated and true fields at ~r,
respectively. For the purpose of error calculation, we do not
consider locations internal to the scatterers, and locations that
are at a distance less than λ/10 from the scatterer surface.

F. Field prediction results : MPME vs RS

Table I shows the reconstruction errors for both MPME and
RS schemes for different SR and noise levels. Measurements
done using locations obtained from MPME performs better
than RS.

To study how the results generalize, we study the error
performance for a different number of objects. Table II shows
the reconstruction errors for 2 and 4 objects for a fixed SR of
0.3. The reconstruction errors reported are averaged over 100
Monte Carlo iterations. Although not reported here, we have
verified that the errors for 1 and 3 objects follow a similar

TABLE I: Comparison of error from MPME and RS

Scheme
Measurements/ Sampling rate

194/0.3x 356/0.55x
∆T ∆G ∆I ∆T ∆G ∆I

SNR : 25 dB

MPME
Mean 19 8 5 17 5 4
SD 1 1 1 1 1 1

RS
Mean 30 15 8 20 6 4
SD 4 2 4 3 2 4

SNR : 10 dB

MPME
Mean 38 30 23 38 26 16
SD 2 2 5 2 2 3

RS
Mean 55 36 25 44 32 20
SD 10 6 8 8 6 7

Percentage error in the estimated tangential field (∆T ), pre-
dicted field (∆G) and incident field (∆I ) over a 10λ × 10λ
grid, for four objects with different sampling rates and SNR
values. The error is calculated for 100 monte carlo iterations.
SD is the standard deviation.

TABLE II: Error for varying number of scatterers

SNR
Number of Objects

2 4
∆T ∆G ∆I ∆T ∆G ∆I

25dB
Mean 17 10 6 19 8 5
SD 2 1 2 1 1 1

10dB
Mean 35 32 24 38 30 23
SD 3 3 5 2 2 5

Percentage error in the estimated tangential field (∆T ), pre-
dicted field (∆G) and incident field (∆I ) over a 10λ × 10λ
grid, for different number of objects at 0.3 sampling rate. The
error is calculated for 100 monte carlo iterations. SD is the
standard deviation. The number of objects are considered in
serial wise as shown in Fig. 5

trend as has been shown for 4 objects with respect to SNR
and sampling ratio.

The estimated tangential fields on the wall for MPME
sampling locations, 0.3 SR (194 noisy measurements with
SNR of 25 dB), are plotted along with the true tangential
fields in Fig. 6.

The tangential field error (∆T ) in this case is 17%. Figs. 7
and 8 show the magnitude and phase, respectively, of the true
and reconstructed field for SR= 0.3 over the entire 2D domain
outside the scattering objects. The reconstruction error on the
grid for this case is ∆G = 8%.

For the same measurement setup, the incident field is
estimated with a very good accuracy of 5%. Fig. 9 shows a
comparison between the true and reconstructed incident fields
for the two sampling schemes.

Finally, in order to study the locations in the domain that
contribute the most error, we report a plot of relative total-field
error in Fig. 10.

Error analysis: From the results in Table I, it can be seen
that MPME outperforms random sampling and has a better
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Fig. 6: The normalized magnitudes of the estimated tangential
fields for MPME samples (at 0.3 SR) on the inexact wall,
along with the true tangential fields. The measurements have
an SNR of 25 dB. The tangential fields are estimated with ∆T

17% error.
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Fig. 7: The normalized magnitudes of (a) true and (b) recon-
structed 2D total fields over a 10λ× 10λ obtained from an
SR of 0.3 (194 measurements). The sampling locations are
obtained by MPME and the measurements have an SNR of
25 dB. The colorbar shows the field magnitude in V/m.
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Fig. 8: The phase of (a) true and (b) reconstructed 2D
total fields over a 10λ× 10λ obtained from an SR of 0.3
(194 measurements). The sampling locations are obtained by
MPME and the measurements have an SNR of 25 dB. The
colorbar shows the phase in radians.
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Fig. 9: The normalized magnitude of (a) true and (b) recon-
structed 2D incident fields over a 10λ× 10λ obtained from
an SR of 0.3 (194 measurements). The sampling locations are
obtained by MPME and the measurements have an SNR of
25 dB. The colorbar shows the field magnitude in V/m.
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Fig. 10: The relative error in prediction of total fields over a
10λ× 10λ obtained from an SR of 0.3 (194 measurements)
(a) MPME and (b) RS measurement. The measurements have
an SNR of 25 dB. The colorbar shows the relative error.

field reconstruction accuracy. It turns out that the major space
of AM has a much higher dimension than the major space
of AR (This can be seen in Fig. 4, where the magnitude of
the normalized singular values of AM is greater than that of
AR). It is generally observed that the error in reconstructing
the major space components is lower than the error encoun-
tered in the minor space components, provided sufficient data
(measurements) is available. We find that the major space
recovery is of comparable accuracy between the MPME and
RS approaches. However, the minor space recovery is found
to be more accurate in the case of MPME as compared to
the RS approach. Due to this, the error in reconstruction of
the tangential field and the incident field coefficients is much
lower for the MPME approach.

V. DISCUSSION

Summary: In this paper, we have proposed a method for
recovering the total field in an arbitrary scattering environment
by making a few measurements of the electromagnetic field.
No assumptions about the permittivities of the scatterers or the
source distribution are made, though the region in between the
scatterers is assumed to be homogeneous and the approximate
geometries of the scatterers and the source are also assumed
to be known. Further, we have used the MPME algorithm to
identify the optimal locations for making field measurements.
Using this method we have recovered the total field with an
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average error of 8% for a sampling ratio (SR) of 0.3 and an
SNR of 25 dB. The tangential fields are recovered with an
error of 17% and the incident field is recovered with an error
of 5%. We have also shown that by making field measurements
at the MPME locations instead of random locations, the error
in total field reconstruction can be reduced by almost half at
lower SRs. At higher SRs, this improvement becomes less
significant.

On why MPME does better than random sampling: In
Section III-A, we provided evidence to suggest that the MPME
samples will perform better than random samples (see Fig. 4
and Table I). Now, we provide a physical reason to support
this. The tangential fields on the scattering surfaces also
produce near-fields that are confined in the proximity of
these surfaces. These fields diminish as we move away from
the scatterers [25]. As seen in Fig. 3b, the random samples
are scattered throughout the interior of the domain and the
samples which are far away from the scattering surface fail
to capture this near field information. The optimal sensor
placement algorithm, MPME, picks out the best locations that
are close to the scattering surfaces. The near field information
obtained from the optimal samples helps to achieve up to
twice the accuracy compared with RS for the same number
of measurements.

Limitations of our method: Our proposed method suffers
from the following limitations:
• One of the objectives of MPME is to choose the optimal

locations such that the mean square error in the unknown
vector, x lies below a certain bound. While this error
(∆T ) is of importance, we are also interested in the
error in the reconstructed 2D field (∆G). No bounds can
be provided for this quantity and therefore we cannot
guarantee optimality in terms of ∆G.

• It was mentioned in Section III-A that a dimensionality
reduction of the Propagator is done, using the concept of
the number of degrees of freedom (DoF). In general, DoF
is an SNR dependent quantity [30, Section 9]. However,
our current definition (see Eq. (12)) is independent of the
SNR. While this works well for higher SNRs, at lower
SNRs, we notice a degradation in performance.

• The number of unknowns in our problem depends on the
number of scatterers, i.e. if there are more scatterers, we
need more basis functions to expand the tangential fields
and therefore more unknowns. If there are more number
of unknowns, we need more measurements to recover
them. Therefore, as the number of scatterers increase, the
number of measurements needed to recover the fields will
also increase.

Extensions of this work: In many situations, it is expensive
(and sometimes impossible) to take measurements with phase
[36]–[39]. The problem of phase retrieval is non convex, and
therefore more difficult to solve than the current problem
at hand. Many successful approaches have been proposed in
literature for phase retrieval [40]–[45]. One of the immediate
extensions of our work concerns the recovery of EM fields
from phaseless measurements.

It was mentioned in Section III-A that the MPME samples
closely circumscribe the scatterers and the source, and that

this is a consequence of the Huygens’ principle. In future
versions of our work, we plan to exploit this observation in
order to make the process of sensor placement computationally
efficient.

We also plan to extend the current work to vectorial and
three dimensional scenarios.

APPENDIX A
DERIVATION OF EQ. 4

The incident field φin(~r) in Eq. (1) can be written in terms
of the source J(~r) with support Vin as:

φin(~r) = −jωµ0

∫
Vin

g(~r, ~r
′
)J(~r

′
)dV ′ (21)

Graf’s addition theorem [13, Section 9.1] states that,

H
(2)
0 (η|~rj |) =

∞∑
i=−∞

H
(2)
i (η|~Rjl|)Ji(η|~rl|)eji(π−θl+θjl)

(22)
where ~rj and ~rl are two position vectors, ~Rjl = ~rl − ~rj , θl
and θjl are the azimuthal angles of ~rl and ~Rjl respectively,
H

(2)
i is the ith order Hankel function of the second kind and

Ji is the ith order bessel function of the first kind. Note that
Eq. (22) is valid only for |~rl| < |~Rjl|.

Using this theorem, the Green’s function can be expanded
as,

g(~r, ~r
′
) = − j

4
H

(2)
0 (k0|~r − ~r

′
|)

=− j

4

∞∑
i=−∞

(H
(2)
i (k0|~r0 − ~r|)Ji(k0|~r0 − ~r

′
|)eji(π−θ

′+θ))

where ~r0 is the center of the region Vin, ~rj = ~r−~r ′
, and θ′ and

θ are the azimuthal angles of ~rl = ~r0−~r
′

and ~Rjl = ~rl−~rj =
~r0 − ~r respectively. The above expression is substituted in
Eq. (21) to get

φin(~r) = −ωµ0

4

∫
Vin

∞∑
i=−∞

[
(H

(2)
i (k0|~r0 − ~r|)eji(π+θ))

Ji(k0|~r0 − ~r
′
|)e−jiθ

′
]
J(~r

′
)dV ′

Since H(2)
i (k0|~r0 − ~r|)eji(π+θ) is independent of the integra-

tion variable, we can take it out of the integral and simplify
the above expression as,

φin(~r) =
∞∑

i=−∞

(
(−1)i+1ωµ0

4
ejiθH

(2)
i (k0|~r0 − ~r|)

∫
Vin

Ji(k0|~r0 − ~r
′
|)e−jiθ

′
J(~r

′
)dV ′

)
(23)

Setting ci =
∫
Vin
Ji(k0|~r0 − ~r

′ |)e−jiθ′J(~r
′
)dV ′ and si(~r) =

(−1)i+1 ωµ0

4 ejiθH
(2)
i (k0|~r0 − ~r|),

φin(~r) =
∞∑

i=−∞
si(~r)ci (24)
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When the volume Vin lies inside a circle of radius a, the infinite
summation can be truncated to Ni = d2k0a + 1e terms [46].
Using this result, we finally arrive at Eq. (4):

φin(~r) =

b(Ni/2)c∑
i=−b(Ni/2)c

ci si(~r) (25)
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