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Abstract—We introduce a Deep Learning based framework to
solve electromagnetic inverse scattering problems. This frame-
work builds on and extends the capabilities of existing physics-
based inversion algorithms. These algorithms, such as the Con-
trast Source Inversion, Subspace-Optimization Method and their
variants face a problem of getting trapped in false local minima
when recovering objects with high permittivity. We propose a
novel Convolutional Neural Network architecture, termed the
Contrast Source Network, that learns the noise space compo-
nents of the radiation operator. Together with the signal space
components directly estimated from the data, we iteratively refine
the solution and show convergence to the correct solution in cases
where traditional techniques fail without any significant increase
in computational time. We also propose a novel multi-resolution
strategy that helps in producing high resolution solutions without
any significant increase in computational costs. Through extensive
numerical experiments, we demonstrate the ability to recover
high permittivity objects which include homogeneous, heteroge-
neous, and lossy scatterers.

Index Terms—inverse scattering, contrast source inversion,
subspace-based optimization, deep learning, convolutional neural
networks

I. INTRODUCTION

Electromagnetic inverse scattering problems (ISP) deal with
reconstructing the spatial permittivities of unknown objects
by measuring the scattered electromagnetic fields with a few
receivers. It is well-known that the ISP is an ill-posed and non-
linear problem (in terms of the object permittivity), leading to
a large variety of numerical solutions being proposed such as
the Born iterative method (BIM) [1–4] and the Distorted Born
iterative method (DBIM) [5] which involve iterative solutions
to the problem. Another class of iterative methods decouple the
non-linear problem into data and state equation and optimize
over an objective function involving the two terms. Contrast
Source Inversion (CSI) [6–8] and Subspace based Optimiza-
tion (SOM) [9–13] are examples of such numerical techniques.
Yet another approach to combat the non-linearity of the inverse
problem has been to use data collected at multiple frequencies
[14], [15]. Recently, a family of new integral equations (NIE)
[12] along with a new inversion method have been proposed to
account for the global non-linearity of the problem and have
shown to reconstruct scatterers with high permittivity and large
electrical dimensions, something which the aforementioned
techniques failed to achieve.

Deep learning (DL), and more specifically convolutional
neural networks (CNNs), have enjoyed a great deal of recent
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success in computer vision tasks such image recognition [16–
18] and object detection [19], [20]. They have also been
successfully employed to solve inverse problems as well; we
refer the reader to [21] for an extensive review of how deep
learning tools have been used to solve inverse problems of
different kinds such as denoising, inpainting, nonblind image
deconvolution, super-resolution etc. Earlier machine learning
based techniques like support vector machines (SVMs) [22],
[23] and neural networks [24–27] were employed to solve
the ISP with varying levels of success. More recent formula-
tions have employed CNNs for greater success. For example,
[28] employed a three-layer CNN for super-resolution of
inverse scattering solutions and [29] formulated deep-learning
schemes for ISP which were able to generate quick, good
quantitative results by training the U-Net [30], a unique CNN
architecture originally designed for bio-medical segmentation.

Fig. 1: Proposed pipeline for incorporating deep learning in
inverse scattering solutions: An initial guess of the contrast
source is generated using the scattered field in (I), this is used
as input to a convolutional neural network, which generates
an estimate of the total contrast source in (II), and finally this
estimate is refined in (III) using iterative strategies such as
variations of SOM and CSI to obtain a final solution.

On the one hand, it might be tempting to use DL to
directly learn the relation between the scattered fields and the
object permittivity. However, this idea has a few drawbacks.
The neural networks trained to solve the inverse problem are
relatively obscure models which are difficult to interpret and
there is no direct way to incorporate prior knowledge about
the unknown signal into the solution. These drawbacks have
led researchers to look for ways to integrate deep learning
into existing and well-understood techniques. For example,
[31], [32] trained a neural network which could learn the
underlying signal prior and could be used as a proximal
operator in optimization-based approaches to solve inverse
problems. Similarly, [33] mapped the well known alternating
direction method of multipliers (ADMM) algorithm to a data-
flow graph with trainable parameters such as the image trans-
forms, shrinkage functions; this method achieved improved
reconstruction accuracy in a compressed sensing-MRI system
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without any increase in computational time.
In this paper, we show how to effectively use Deep Learning

in ISPs with a similar spirit of integration into existing
techniques. It is well known that the relation between the
scattered fields and object permittivity is nonlinear. However,
the relation between the scattered fields and an intermediate
variable (the contrast source) is linear. In order to avoid
challenging nonlinear inversion techniques, we work with the
contrast source variable, where we are faced with a linear
inverse problem, and our solution strategy is inspired by
the DeepInverse network [34]. The proposed method can be
divided into three stages as shown in Figure 1:
• (Stage I) An initial guess of the contrast source,
• (Stage II) a forward pass through a custom CNN to obtain

a better estimate of the contrast source,
• (Stage III) further refinement using an iterative optimiza-

tion procedure.
In the absence of Deep Learning, Stage I would directly feed
to Stage III. Through numerical experiments, we demonstrate
that the proposed method is able to reconstruct objects of much
higher permittivity than the original versions of these methods
(minus Deep Learning), could have reconstructed.

The paper is organized as follows. Section II explains the
problem statement and defines the problem notation. Section
III motivates the Deep Learning framework and describes the
the three stages mentioned above. Section IV describes the
implementation details, involving how to estimate the signal-
space components of the contrast source, the training of the
CNN, and a finally a multi-resolution strategy to estimate high
resolution objects by using results of low resolution inversions.
Numerical experiments are discussed in Section V, where
various types of objects are reconstructed by existing and the
proposed technique. Finally, the paper is concluded in Section
VI with a short summary and directions for future extension.

II. PROBLEM DEFINITION

In this paper we investigate a two dimensional (2D) trans-
verse magnetic (TM, i.e. Ez polarization) inverse scattering
problem (ISP). The object of interest is within an imag-
ing domain D and has complex permittivity varying in the
x − y plane. The relationship between the total, incident
and scattered field (E,E(i), E(s), respectively), and complex
permittivity, ε(~r), is given by an integral equation of Fredholm
type [35]:

E(~r)− E(i)(~r) = E(s)(~r) =

∫∫
D

G(~r, ~r′)χ(~r′)E(~r′)d~r′

(1)

where χ(~r) = ε(~r)− 1 denotes the contrast of the object. The
scattered field is measured with NS receivers per illumination
with a total of NI illuminations in a single experiment.
For sake of numerical experiments, we solve the discretized
version of the Eq. (1) by partitioning D into an M×M square
grid using the method of moments [35]. Defining a ‘contrast
source’ variable (sometimes referred to as the induced current)
as the product of the contrast (x) and the internal field (d) at
any point in D, we get the following associated discretized

equations (the first two are referred to as ‘state’ and ‘data’
equations, respectively):

dn = en +GDwn (2a)
sn = GSwn (2b)
wn = Xdn = Xen +XGDwn (2c)

where dn ∈ CM2×1, en ∈ CM2×1 refer to the total internal
and incident fields for the nth illumination, respectively, wn ∈
CM2×1 refers to the contrast source, sn ∈ CNS×1 refers to
the scattered field, x ∈ CM2×1 refers to the contrast of the
imaging domain, while X ∈ CM2×M2

is the diagonal form
of the vector x. Finally, GS ∈ CNS×M2

and GD ∈ CM2×M2

are discrete versions of the radiation operators.
The inverse scattering problem is to estimate x given noisy

measurements, sn + η, where η denotes noise, for various
illuminations (n), and as is typically assumed, en is taken
to be known.

III. METHODS

A. Motivation

The ill-posedness of the inverse scattering problem (ISP)
stems from the fact that the measurements sn in Eq. (2b)
come from an under-determined system of equations. Further,
it can be seen from Eq. (2) that to solve the inverse problem,
a non-linear and ill-conditioned system of equations between
the scattered fields and the object contrast have to be inverted.
Such a system will have infinite solutions, and hence some
form of regularization that incorporates prior information, is
required to pick out a meaningful solution. However the choice
of regularization term is not straightforward in this case, as
there is no well-known prior which could be employed for a
general contrast source image.

To obtain a better estimate of the contrast source from the
linear set of equations from Eq. (2b) using the underlying
prior, we look towards deep-learning (DL) based approaches.
Specifically, we adopt the approach in [34] where a CNN is
trained to learn both a representation of the signals and an
inverse map approximating a greedy/convex recovery algo-
rithm. This technique, known as DeepInverse, performs at-
par with state-of-the-art compressive sensing solvers but takes
significantly less run time. In a similar spirit, we propose a
three stage DL solution to the ISP which learns and exploits
the underlying prior of contrast source images and is able to
reconstruct strong scatterers. The overall framework has been
elucidated in Fig. 1, and we now expand on the individual
stages.

B. Initial Guess (Stage - I)

Similar to the approach taken in SOM, we partition the
contrast source into signal and noise subspace components
based on the singular values of the GS operator, i.e. w =
ws +wn. The former are uniquely determined by the L-term
truncated singular value decomposition (SVD) as follows:

ws =

L∑
i=1

uHi s

σi
vi (3)



2333-9403 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2019.2915580, IEEE
Transactions on Computational Imaging

3

Fig. 2: Relative distribution of true contrast-source variable
intensity between signal and noise subspaces, studied as a
function of increasing values of dielectric contrast of Austria
profile object discussed subsequently in the text (see Fig. 7(a)).

where u, v represent the left and right singular vectors, and
σ the corresponding singular values in the SVD of GS .
The signal subspace is spanned by the first L (≤ NS)
right singular vectors and noise subspace is spanned by the
remaining. The choice of L is crucial and its selection is
defined in Section IV. Defining a basis for the latter subspace
as VN = [vL+1 . . . vM2−L], the complete contrast source can
be expressed as

w = ws + VNα (4)

where α are coefficients of the basis vectors for the noise
subspace and are as yet unknown.

Therefore, as an initial guess of the contrast source we use
the signal subspace component ws; this is used as input to the
CNN in the subsequent stage.

C. Contrast Source Network (Stage - II)

We propose a novel CNN architecture, termed as the Con-
trast Source Net (CS-Net), which takes as input the signal
subspace of the contrast source and outputs an estimate of the
total contrast source. It does so by learning the underlying
prior of similar contrast source images which are generated
from homogeneous scatterers of varying permittivities.

It is found by extensive numerical studies that the fraction
of energy of the contrast source in the noise subspace increases
steadily as the contrast of the object is increased, seen graph-
ically in Fig. 2 for a popular benchmark object known as the
‘Austria’ profile (more details in Section IV). Thus, the part
of the solution that can be estimated from the scattered field
data alone, the signal subspace component, becomes lesser as
the contrast increases, highlighting the challenge of ISPs.

It is worth noting that the above challenge manifests in a
different form when the ISP is formulated directly with the
contrast as the variable of optimization. Here we find that
there are several local minima seen in the proximity of the
path from the origin to the true solution [36], and the solution
get stuck in any one of them.

Traditional iterative strategies such as the SOM or CSI
typically initialize the search for the noise space components
(i.e. the α’s in Eq. (4)) from the origin, thereby increasing the

chances of falling into corresponding local minima on the way
to the global minima. At the heart of our innovative strategy
is this: we learn the noise subspace components using our
custom CS-Net. As a result, the local minima issue is avoided
for a larger range of object permittivities than previously
possible.

D. Iterative Refinement (Stage - III)

The third stage aims at refining the contrast source estimate
obtained at the output of CS-Net. This is done by optimizing
a objective function involving state and data equation terms
and initializing the variables in optimization using the contrast
source estimate obtained from previous stage. In principle, one
can employ cost functions similar to those used in CSI or
variants of SOM initialized by estimates of contrast source
obtained from the previous stage. In this paper, we limit
the discussion to SOM and one of its variations, two-fold
SOM (TSOM) [10]. Additionally, we also impose an additive
total variation (TV) regularizer on contrast images, terming
the resulting inversion strategies as either ‘SOM+TV’ or
‘TSOM+TV’. This regularization is applicable for piece-wise
constant scatterers and a similar strategy has been recently
used [37].

As mentioned above, there are many choices of objective
functions which one can choose to optimize as a part of
Stage - III. For example, an objective function which employs
TSOM+TV is as follows:

F (β1, β2, . . . , βNI
, X) =

NI∑
n=1

(
||sn −GS(w

s
n + V ′Dβn||22)

||sn||22

+
||Aβn − bn||22
||ws

n||22

)
+ γ||TV (x)||1

(5)

where A := (I −XGD)V ′D, (6)
bn := Xen − (I −XGD)ws

n, (7)

V ′D := (I − V (L)
S V

(L)H

S )V
(M0)
D (8)

TV (x) =


Dv 0
Dh 0
0 Dv

0 Dh

[<(x)=(x)

]
(9)

such that V (L)
S , V

(M0)
D are matrices with top L, M0 right

singular vectors of GS , GD matrices respectively, Dh, Dv

are matrices representing the first order horizontal and vertical
difference operators respectively, <(x),=(x) denote the real
and imaginary components of x, respectively, V ′Dβn represents
the null space components of the contrast source, and H
represents conjugate transpose of a matrix. M0 is a hyper-
parameter used in TSOM which affects the regularization on
the contrast source domain by controlling the subspace to
which it can belong.

As noted earlier, in the original versions of the above itera-
tive techniques, the noise subspace coefficients are initialized
to zero whereas in the proposed method they are estimated in
Stage - II.
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E. Comparison with related schemes

A popular method of dealing with the non-linearity of the
inverse problem has been to use multi-frequency data [14],
[15]. These are based on the principle that lower frequency
reconstructions are less affected by the issue of non-linearity,
hence these reconstructions can be used as a priori information
for high frequency reconstructions which would otherwise
fail. The difference between these and our methods can be
conceived of as the manner in which a priori information is
incorporated; in one case from lower frequency data, and in
our case, from the CS-Net at a single frequency. We compare
these two approaches via numerical results in Section V-B.

A related DL-based inversion procedure, the Dominant
Current Scheme (DCS) was recently proposed [29] to solve the
ISP. The DCS estimates the induced current (w) and obtains
the contrast (x) from it; this contrast is used as input to a
trained U-Net and the output is used as the final solution
for each illumination. The DCS and our scheme use different
inputs to the corresponding CNNs, as the former trains the
U-Net on contrast and the latter trains the CS-Net on the
contrast source. Another significant difference between the
two schemes is that the DCS is aimed at obtaining a good
quantitative result as quickly as possible, while our scheme is
aimed at retrieving high contrast objects by leveraging existing
schemes.

IV. IMPLEMENTATION DETAILS

Fig. 3: This plot displays the variation of the scattered field
residue norm, estimated as ||s − GSw

s||2, with number of
singular values L used in Stage - I and compares it with the
noise variance for different values of SNR. The scattered field
used to plot the figure is obtained from the Austria profile of
contrast 2.

A. Morozov’s Discrepancy Principle

In order to implement Stage - I of our algorithm, we need
to determine the number of singular values, L, to be used
to define the signal subspace as per Eq. (3). The optimal
choice for number of singular values varies with the signal
to noise ratio (SNR) of the measurements and is determined
from Morozov’s discrepancy principle [38]. It states that the
optimal values L is chosen as the least value for which the
norm of the residue from the data equation comes within a

(close to unity) factor of the noise variance – in other words,
L is chosen such as to avoid fitting the noise. The variation of
the residue norm with L is shown in Fig. 3. In our numerical
experiments, we add synthetic noise with SNR = 25dB to
the scattered fields, and so L = 19 is the optimal choice for
number of singular values as evident from Fig. 3.

Our general assumption is that in a given experimental
setup, the SNR values will be known, or can be estimated
using calibration targets. For whatever reason, if this is not
possible, it is important to assess the performance of the
proposed scheme for a variety of SNR values. As can be
seen from Fig. 3, the optimum value of L varies from 13
to 19 as SNR goes from 5 to 25 dB. In the absence of exact
knowledge of SNR, as suggested in [9], the value of L can be
chosen empirically to be the point where the singular values
“noticeably change the slope in the spectrum” of singular
values of the scattering operator. In our numerical studies, we
have found that the performance is not very sensitive to the
chosen L number, an observation that has also been made
previously [9].

B. CS-Net: Architecture and Training
The architecture details of the Contrast Source Network

(CS-Net) used for estimation of noise subspace components
are described in detail in Fig.4. The first layer of the network
consists of convolutional filters of varying sizes. The convolu-
tion across the channels of the image ensure that information
from multiple illuminations is combined and different filter
sizes are used to capture features from different spatial scales.
A similar convolutional layer is used in the last layer to convert
the penultimate stage into a contrast source image.

The training procedure for the CNN is as follows:
(1) The MNIST dataset [39] consisting of 60,000 digit images
of size 28×28 pixels, are used to generate the contrast images
(See Fig. (6) for samples). The digits image are re-scaled to
16× 16 pixels and multiplied by a random number such that
the resulting image has maximum contrast lying uniformly
between 1 and 7.
(2) These images are now treated as dielectric objects, and
are given as input to a method of moments based forward
solver [35] to generate internal electromagnetic fields; hence
a corresponding contrast source image is generated for each
illumination (since contrast source is defined as the product
of the contrast with the internal field at each pixel within the
object per Eq. (2c)).
(3) The network is trained with the average mean squared loss
between estimated and true induced current and the network
parameters are tuned with Adam optimizer [40] with learning
rate 10−4.
We note that the ‘strength’ of a scatterer is roughly given
in terms of the product of the contrast and an approximate
size of the scatterer [41], and it is important for there to be
parity between the strength of the scatterers in the training and
testing stages. Since the digit-like objects from the MNIST
database have many features that are ‘thin’ (see Fig. (6)), it is
necessary to train the CS-Net on digit-like objects with much
higher contrast if the CS-Net is going to be applied to different,
larger objects during the testing phase.
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Fig. 4: Architecture details of CS-Net. The network takes into input the signal subspace of the contrast source and outputs an
estimate of the true contrast source. The input is represented as 16× 16 image with V = 16 channels. The first layer performs
convolution with different filter sizes i.e. (3 × 3), (5 × 5), (7 × 7), and (9 × 9), each with 8 channels, and stacks the filter
activations to form a 16 × 16 image with 32 channels. The image is then vectorized and passed through 3 fully connected
layers, each with a ReLU activation. The output vector is reshaped to an 8 channel 16×16 image again and a last convolution
layer is used to generate the estimate of true contrast source.

Fig. 5: Proposed scheme for integrating deep learning in SOM. Firstly, the signal subspace of contrast source is obtained at
a low resolution Stage - I and pushed through the contrast source network to obtain an estimate of the total contrast source
(Stage - II). The noise subspace components of the estimate from Stage - II are used to initialize noise subspace of contrast
source in Stage-III and hence used to obtain a low resolution estimate of the contrast. This initial guess is interpolated using
cubic interpolation to a high resolution and used to initialize Stage - III(c) at that resolution. See text in Sec. (IV-D) for further
details.

C. Optimization Procedure in Stage - III

In Stage - III, an objective function in terms of noise
subspace and contrast variables, e.g. Eq. (5), are optimized by
an alternative optimization strategy commonly used in SOM
or CSI type algorithms. First, the contrast source noise sub-
space components (i.e. β’s) are updated using Polak-Ribiere
conjugate gradient method. Then, the contrast variables (X)
in Eq. (5) are updated using 20 sub-iterations of the ADMM
algorithm [42]; the latter algorithm provides a convenient way
of solving TV regularization problems by variable splitting
[43].

Note that in absence of the additive TV regularization
term, the contrast update can be formulated as a least squares
problem which has a closed form solution, as suggested in
the original version of SOM [9]. The optimization procedure
is terminated when either the relative change in cost function
falls below 10−4 or 2000 iterations are complete, whichever
happens first.

D. Multi-Resolution Strategy

In designing the CS-Net, we are faced with a design choice
between image resolution and the training time. While the
resolution of MNIST dataset images is sufficient to represent
high contrast (x) objects, it is not possible to represent the
corresponding internal fields (d), and therefore the contrast
source variables (w) at the same resolution. This is because
of the fact that as the contrast value increases, the spatial
frequencies of the internal fields increase, and need finer
resolution for representation in the pixel domain. On the other
hand, the computational burden during the learning phase will
increase significantly if we train on high resolution images.

To resolve this issue, we instead propose a multi-resolution
strategy where we take a middle ground by training on lower
resolution images and then up-scale the learned image before
the final iterative stage, effectively applying the SOM twice
with variations. As an example, the entire multi-resolution
strategy, using TSOM+TV for contrast source refinement, is
explained in detail in Fig. 5. The key steps are as follows:
(1) In Stage - II, the CS-Net takes as input contrast source
images of size 16 × 16 pixels and outputs contrast source
estimate of the same size
(2) The preceding output is sent to Stage - III (employing a
SOM algorithm) which produces a contrast estimate of size
16× 16 pixels.
(3) This contrast is up-scaled to size 64×64 pixels using cubic
interpolation.
(4) The forward solver is run on this up-scaled contrast
image to generate the contrast source images, w′, at this
higher resolution. The noise space estimates are obtained by
projecting w′ onto the noise subspace.
(5) The signal space components are obtained by running
Stage - I on the scattered field at the higher resolution.
Together with the noise space estimates from the earlier step,
a final iterative strategy (like SOM/TSOM+TV) is used to
recover the contrast at the desired, higher resolution.

V. NUMERICAL EXPERIMENTS

In this section, we describe the numerical experiments
through which we compare the proposed scheme and its non-
Deep Learning (DL) counterparts. Throughout, we assume the
object is confined in a square domain of side 2m; the incident
field frequency is 400 MHz (i.e. wavelength λ = 0.75m);
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measurements are taken on a circle of radius Rs = 4m, with
the center of the circle coinciding with the center of the object
domain; Ns = 32 receivers are placed on the measurement
domain in an equiangular manner, and Ni = 16 transceivers
are placed on a circular domain of radius Ri = 6m for
different illuminations. We generate the scattered field using
a forward solver [35] at a resolution of 100 × 100 pixels.
Unless otherwise mentioned, the scattered field is corrupted
with additive Gaussian noise such that the SNR is 25dB. To
compare different schemes, we define the total and internal
error (i.e. the mean relative error) between the ground truth
and reconstructed profile as follows:

Total Error =
1

M2

∑
i : [1,M2]

|εt,i − εr,i|
|εt,i|

Internal Error =
1

|S|
∑
i : S

|εt,i − εr,i|
|εt,i|

where εr, εt are the reconstructed and true (complex) permit-
tivity profiles respectively and S is the support of the object.

All numerical experiments in this paper are performed on an
Intel-i7 processor running at 3.45 GHz with 32GB RAM. The
training procedure, which includes running the forward solver
at each iteration, ran for 50 epochs, with each epoch consisting
of 3000 iterations, totalling to approximately 36 hours.

A. Homogeneous Scatterers

The first objects investigated are digit images from the test
dataset in MNIST. The contrast source obtained as the output
of the CS-Net is converted to the equivalent contrast image.
No iterative strategy is used to obtain the solution in this case
and the reconstruction results are shown in Fig. 6, showing
a good quantitative match between the ground truth and the
reconstructions.

Next, the proposed scheme is evaluated on the Austria
profile for different contrasts; this consists of one central
ring with inner and outer radius equal to 0.3m and 0.6m
respectively and two disks each of radius equal to 0.3m. The
central ring’s center is located at (0, 0.2m) and smaller disks
are located at (−0.3m,−0.6m), (0.3m,−0.6m). The profile
is homogeneous and contrast of the rings and disks varies
from 1 to 4, and the reconstruction results are displayed in
Fig. 7. This figure also highlights the role that regularization
plays in reconstructing high contrast objects; in particular the
presence of a TV regularizer leads to a good solution as seen in
Fig. 7(e), as compared to Fig. 7(f), where no such regularizer
is applied. Additionally, we show the results of reconstructions
when the SNR value of the scattered field data is different that
what was used during training; in particular, Fig. 7(g),(h) show
reconstructions for 10 and 15 dB, respectively. Evidently, as
SNR values begin to degrade, so does the performance.

B. Comparison with non Deep Learning approaches

In order to better appreciate the virtues of DL in solving the
ISP, we compare the proposed scheme with a multiresolution
strategy which does not contain a CS-Net in the pipeline,
i.e. we run through the pipeline shown in Fig. (5) with

(a) (b)

(c) (d)

(e) (f)

Fig. 6: Estimated contrast from CS-Net output on MNIST
test images. The contrast source obtained as output from the
network is used to calculate the contrast directly without any
iterative strategy. The internal errors for reconstructions are
0.297, 0.441 and 0.179 respectively. The colour bar in this
and all subsequent images in the paper refer to the (real or
−1×imaginary) value of the contrast.

Stage - II removed and the noise space components of the
contrast source set to zero. Through this experiment, we aim to
demonstrate the significance of deep learning in the pipeline.

Reconstructions of the Austria profile for a particularly
challenging value of contrast equal to 4, using DL and non-
DL version of the proposed schemes, are shown in Figure
8 and the respective errors of reconstructions are listed in
Table I. As clearly observed from Figure 8e, the non-DL
version of the scheme is trapped in a false minima due to
unsuitable initialization of the noise subspace components.
At contrast as high as 4 for the Austria profile, the noise
subspace coefficients become more significant and as a result
they cannot be initialized to zeros any more. Through the
proposed DL-based framework, a rough estimate of the noise
subspace for the strong scatterers is provided and hence the DL
multi-resolution strategy converges closer to the true solution.
We note however, that the Austria profile with contrast 5 fails
to be reconstructed (with internal error 0.401), ostensibly due
to a lack of such strong scatterers in the training database. The
suggested solution for inverting objects of higher contrast is to
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7: (a) True Austria profile (b)-(e) Reconstruction of Aus-
tria profile for different contrasts using the proposed scheme
(TSOM+TV with DL). The contrast of the true profiles are as
follows: (b) 1.0 (c) 2.0 (d) 3.0 and (e) 4.0. (f) Austria (contrast
= 4) reconstruction with SOM with DL, in Stage-III at 64×64
resolution (g), (h) Austria (contrast = 4) reconstructions with
SNR = 10 dB and 15dB respectively. The respective internal
errors are (b) 0.099 (c) 0.106 (d) 0.150 (e) 0.162 (f) 0.270 (g)
0.201 (h) 0.161

(a) (b)

(c) (d)

(e)

Fig. 8: Reconstruction results of Austria profile (contrast =
4) from (a) non-DL, TSOM+TV, (b) non-DL, SOM+TV, (c)
DL, TSOM+TV (d) DL, SOM+TV, and (e) variation of cost
function with iterations for the DL and non-DL variants of
TSOM+TV. It is clear from the figure that non-DL multi-
resolution scheme converges to a false minima. The respective
internal errors of the reconstructions are (a) 0.711 (b) 0.712
(c) 0.162 (d) 0.150 respectively.

train the CS-Net with objects of higher electrical size (contrast
and dimensions) and a larger image size (i.e. more pixels).
The latter allows CS-Net access to more high frequency
information of the contrast source due to the increased spatial
resolution.

To demonstrate the generality of our scheme, we incorporate
DL into both SOM+TV and TSOM+TV (recall that the latter
regularizes the contrast source by considering a finite number
of the singular vectors of the GD operators in Eq. (2c)).
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Inverse Scattering Technique Internal Error Total Error
SOM+TV without DL 0.711 0.328

TSOM+TV without DL 0.712 0.317
SOM with DL 0.270 0.438

SOM+TV with DL 0.150 0.223
TSOM+TV with DL 0.162 0.288

TABLE I: Reconstruction errors for Austria profile (contrast =
4.0) with different schemes. Whenever TSOM is used in Stage
- III, the number of singular values of GD operator, i.e. M0,
is set as 500.

Time (s) →
Experiment↓

Stage
I

Stage
II

Stage
III(a)

Stage
III(b)

Stage
III(c)

Total
Time

x = 1,DL 0.004 0.091 25.3 7.61 166 199
x = 1,no DL 0.004 - 31.8 7.62 155 194
x = 4,DL 0.002 0.011 95.5 55.9 4546 4697
x = 4,no DL 0.002 - 29.1 16.4 2746 2791*

TABLE II: Computational time taken for each stage of the
methods for homogeneous Austria profile with different con-
trasts, x. ‘∗’ denotes experiments in which Stage III (c)
converged to a false solution.

To further illustrate the above comparisons we show in
Table II the stage-wise breakups of the compute times on
reconstruction attempts of the benchmark Austria profile for
both, deep learning (DL) and non-DL algorithms. As can be
seen, higher contrasts lead to higher iteration times due to the
increased nonlinearity of the problem. The time taken in the
DL step is insignificant, and non-DL approaches fail for higher
contrasts.

Based on Table II, it is clear that the iterative procedure
in SOM Stage III(c) is the most time consuming part of
the entire scheme and the forward pass through CS-Net
takes a tiny fraction of the entire computational scheme. The
iterative refinement portion of the Stage-III has computational
complexity O(I×NI×M2 logM) where I is the total number
of iterations, NI is the number of illuminations and M2 is the
number of pixels in imaging domain. Each gradient and step
calculation for a single view takes O(M2 logM) instead of
O(M4) as all matrix-vector operations with matrix GD are
performed using fast Fourier transform (FFT) operations.

To conclude this discussion on comparisons with non-DL
schemes, we compare the proposed method with a conven-
tional method used to address the issue of non-linearity:
the multi-frequency (MF) approach [15], which has been
discussed earlier. We consider two frequencies, 400MHz and
a lower frequency (in our case: 100MHz and 200MHz).
Using the MF approach we attempt to reconstruct an Austria
profile object of contrast 4, using the reconstruction of the
lower frequency to aid the reconstruction at 400 MHz. This
numerical experiment for 200MHz ends in failure, as can be
seen in Fig. 9(b). We repeat this experiment a second time,
but with the use of the 100MHz solution as the initial guess
for TSOM+TV at 400MHz. It is found that the object is
successfully reconstructed, as seen in Fig. 9(a) and achieves a
similar result as that of the DL-based method. Thus, to achieve
similar results as that of the proposed scheme using multi-

(a) (b)

Fig. 9: Reconstruction of Austria profile for contrast = 4
using solution obtained from at lower frequencies to initialize
TSOM+TV at 400MHz. The initial guess is provided by
solution from (a) 100MHz and (b) 200MHz. The respective
internal error numbers are (a) 0.159 (b) 0.714

(a) (b)

(c) (d)

Fig. 10: Reconstruction of Heterogeneous Austria profile for
different contrasts using the proposed scheme. The contrast of
central ring in the true profiles are as follows (a) 1.0 (b) 2.0
(c) 3.0 and (d) 4.0. The left circle has contrast 0.5 less than the
central ring and the right circle has contrast 0.5 more than the
central ring in the true profiles. The respective internal errors
are (a) 0.094 (b) 0.107 (c) 0.153 (d) 0.205.

frequency methods, scattered fields from frequency as low as
100MHz are required and thus lead to larger data acquisition
times compared to the proposed scheme, which only requires
single frequency data.

C. Heterogeneous Scatterers

The contrast source network is trained using the contrast
profile of homogeneous scatterers and hence one might argue
that the proposed scheme might not give accurate results for
objects where the contrast attains different values within the
same object. We investigate this hypothesis numerically, and
in Fig. 10 report the results of testing the proposed scheme
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(a) (b)

(c) (d)

(e) (f)

Fig. 11: (a) Real and (b) Imaginary part of the true lossy
scatterers. Real and Imaginary part of reconstruction results
using (c),(d) DL, TSOM+TV and (e),(f) non-DL, TSOM+TV.
The respective internal errors are 0.091 and 0.512 respectively.

on the Heterogeneous Austria profile. This is spatially similar
to the Austria profile; however the permittivity of the left disk
is 0.5 less than that of the central ring and permittivity of
the right disk is 0.5 more than that of the central ring. The
reconstruction error is found to be similar to that in case of
the homogeneous Austria profile.

As the results indicate, the proposed scheme can also
reconstruct heterogeneous scatterers, since Stage - III ensures
that the final contrast and noise subspace of contrast source
are in agreement with the scattered field data by satisfying
the data and state equations. The primary reason for this
success is that even though the training is on homogeneous
objects, those objects themselves contain multiple scattering
interfaces (e.g. the two extremities of the digit “seven” scatter
waves multiple times between each other); thus the network is
implicitly trained to recognize multiple scattering that happen
when the contrast is spatially heterogeneous.

D. Lossy Scatterers

After having demonstrated the proposed scheme on lossless
objects, we now consider lossy scatterers (based on [11] but
with higher values of the real part of the contrast). The
scatterer consists of: disks of contrast 2.0 of radius 0.3m lo-
cated at (−0.4m,−0.6m) and (0.4m,−0.6m); two rectangles
(of dimensions 1m, 0.6m and 1.6m, 1m respectively) each

centered at (0m, 0.3m) and have contrasts equal to 1.5− i0.5
and 0.5− i0.2, as seen in Fig. 10. The reconstruction obtained
through non-DL and DL versions of the proposed scheme are
shown in Fig. 11.

It is clear from Fig. 11 that without DL the results are far
from satisfactory. Even though the CS-Net has not explicitly
been trained on lossy objects, it’s incorporation in TSOM+TV
results in internal errors of less than 15% on such objects, thus
conferring a large degree of generality on the CS-Net.

E. Reconstructions on Experimental Data

Having demonstrated numerical results on synthetic data,
we now consider reconstructions obtained by running our
algorithm on experimental scattered field data; in particular we
use the so-called ‘Fresnel’ database [44], [45], and attempt the
reconstruction of two inhomogeneous objects, FoamDielIntTM
and FoamTwinDielTM using scattered field data obtained at 6
GHz (see Fig. 12(a),(b)). This high frequency has been chosen
because it is particularly challenging for conventional, single-
frequency methods to reconstruct (see Fig. 12(c),(d) for corre-
sponding results. Correspondingly, the results of our method
are shown in Fig. 12(e),(f) which demonstrate the success in
reconstructing the objects with very low error (around 0.17).
At lower frequencies, both methods give comparable results,
thereby demonstrating the power of the proposed method at
higher frequencies where the effect of nonlinearity is more.

F. Sensitivity of Training Configuration

An important consideration that comes up is the sensitivity
of the proposed method to changes in the measurement con-
figuration compared to what the CS-Net has been trained for.
We discuss the sensitivity to the following setup parameters:
(1) Frequency: If the frequency is altered but all other exper-
imental features are unchanged, e.g. the position of transmit-
ters/receivers and object dimensions, then a drop in perfor-
mance is observed, since the test configuration differs from
the training. However, we find that the drop in performance
is not abrupt. For e.g. the CS-Net was trained for experiments
at 400 MHz, and was able to reconstruct the Austria profile
of contrast 4. When we lowered the frequency to 300 MHz,
we found that the same object with contrast 2 (but no higher)
could be reconstructed. This is still better than the conventional
method, which fails beyond contrast 1.5, but not as good as
the results at 400 MHz.
(2) Number of illuminating antennas: The input to the CS-Net
is of size M×M×NI where M2 is the number of pixels in the
image and NI is the number of illuminations. So, changing the
latter number can possibly require a retraining of the network.
However, under certain simplifying assumptions, such as the
transmitters being placed in an equiangular manner on a
circle, we can interpolate the illuminations to match the CS-
Net requirements. Since ours is not a “black-box” approach,
the physics-based parts of the algorithm should be able to
reconstruct the object provided the null space components have
been approximately inferred by the CS-Net.
(3) Number of receiving antennas: Changing this number
does not alter the CS-Net architecture in any way, since
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(a) (b)

(c) (d)

(e) (f)

Fig. 12: (a) FoamDielIntTM and (b) FoamTwinDielTM profile
from the Fresnel dataset. (c),(d) Respective reconstruction
results at 6 GHz using proposed method without DL and (e),(f)
Respective reconstruction results using proposed method with
DL. The respective internal errors are (c) 0.301 (d) 0.267 (e)
0.172 (f) 0.167.

Stage I estimates the signal space from available receiver data
(provided the number of receivers is not too low and that they
are uniformly spaced).
(4) Change in spatial configuration of antennas: In case there
is a significant change in the location of the transmitters and
receivers from what was used in the training, it becomes
necessary to retrain the CS-Net. For instance, when using the
experimental Fresnel data [45], scattered field information was
available only for a field of view of 240◦ and not the entire
360◦. In this case, we re-trained the CS-Net to mimic the
experimental configuration.

VI. CONCLUSION

In this paper we have introduced a deep-learning based
framework that can incorporate existing iterative techniques
for solving ISPs and thereby extend the range and quality of
reconstructions of high permittivity objects. Specifically, we
addressed the problem of strategies (like SOM) converging
to false minima as the non-linearity of the ISP becomes

more pronounced when reconstructing strong scatterers. This
issue was mitigated by obtaining a better estimate of the
contrast source through exploiting the underlying prior with
CNNs and fine-tuning the estimate by using it as initializa-
tion for iterative techniques such as SOM and TSOM with
suitable regularizations. Extensive numerical experiments were
conducted to demonstrate that the proposed technique could
reconstruct strong loss-less (Austria profile up to contrast 4,
both homogeneous and heterogeneous), lossy scatterers, as
well as experimental objects.

However, a major drawback of the proposed scheme is
lack of interpretablity in the deep learning stage. As shown
in previous Section, the proposed scheme’s reconstructions
are starkly superior to its non-DL counterparts. However, the
underlying prior learned by CS-Net in the second stage is not
well-understood – leading to uncertainty as to how the CNN
is able to extrapolate the entire contrast source from signal
subspace. We must add however, that this is an issue that
plagues much work that involves deep learning.

Future work involves formulating techniques which can
reconstruct objects of much larger permittivities and sizes.
One possible way is by exploiting the group sparsity prior
of contrast source images using compressive sensing. Other
possible direction is to increase the resolution for which CS-
Net is trained to sizes larger than presently used, thereby
allowing the CNN access to higher frequency information
which wasn’t available at the current resolution of 16 × 16
pixels. Additionally, there is scope to modify the existing
techniques to incorporate explicit information on the objects
such as box constraints on the permittivity of the scatterer
and/or explicit regularization on the contrast image such as
Total Variation (TV) `1 norm.
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