Simulating with uncertainty : the rough surface scattering problem

Uday Khankhoje
Assistant Professor, Electrical Engineering Indian Institute of Technology Madras

A problem often encountered in numerical analysis

(1) A simulation, $\sigma(\mathbf{x}), \mathbf{x} \in \mathbb{D}$ is computationally expensive
© The input x or the domain \mathbb{D} displays uncertainty,
e.g. in simulating the modes of an optical fibre, the refractive index
might not be exactly known, or the boundary may be rough

In this light, more useful than $\sigma(\mathrm{x})$ is the expectation $\langle\sigma(\mathrm{x})\rangle$
Std. dev. in $\sigma(\mathbf{x})$ due to parameter uncertainty also interesting

A problem often encountered in numerical analysis

(1) A simulation, $\sigma(\mathbf{x}), \mathbf{x} \in \mathbb{D}$ is computationally expensive
(2) The input x or the domain \mathbb{D} displays uncertainty,
e.g. in simulating the modes of an optical fibre, the refractive index might not be exactly known, or the boundary may be rough
\square

A problem often encountered in numerical analysis

(1) A simulation, $\sigma(\mathbf{x}), \mathbf{x} \in \mathbb{D}$ is computationally expensive
(2) The input x or the domain \mathbb{D} displays uncertainty,
e.g. in simulating the modes of an optical fibre, the refractive index might not be exactly known, or the boundary may be rough

In this light, more useful than $\sigma(\mathbf{x})$ is the expectation $\langle\sigma(\mathbf{x})\rangle$ Std. dev. in $\sigma(\mathbf{x})$ due to parameter uncertainty also interesting

Computing the expectation and standard deviation

Assumptions

Setup: d-dimensional $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{d}\right]$
Each x_{i} is mutually independent, distributed with known pdf ρ_{i} Construct a multi-variate pdf, $\rho(\mathbf{x})=\prod_{i=1}^{n} \rho_{i}\left(x_{i}\right)$

Quantities of interest

Computing the expectation and standard deviation

Assumptions

Setup: d-dimensional $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{d}\right]$
Each x_{i} is mutually independent, distributed with known pdf ρ_{i}
Construct a multi-variate pdf, $\rho(\mathbf{x})=\prod_{i=1}^{n} \rho_{i}\left(x_{i}\right)$

Quantities of interest

Expectation $\langle\sigma(\mathbf{x})\rangle=\int_{\mathbb{D}} \sigma(\mathbf{x}) \rho(\mathbf{x}) d \mathbf{x}$
Std. dev. $\quad \Delta \sigma(\mathbf{x})=\sqrt{\int_{\mathbb{D}}(\sigma(\mathbf{x})-\langle\sigma(\mathbf{x})\rangle)^{2} \rho(\mathbf{x}) d \mathbf{x}}$

Any problem with $\langle\sigma(\mathbf{x})\rangle=\int_{\mathbb{D}} \sigma(\mathbf{x}) \rho(\mathbf{x}) d \mathbf{x}$?

Yes!
$\sigma(\mathrm{x})$ is only known numerically.
Recall: $\sigma(\mathbf{x})$ is the output of an (possibly expensive) simulation

Monte Carlo method
The most commonly used method to estimate expectation.
Instantiate several \mathbf{x}_{i} 's and approximate $\langle\sigma(\mathbf{x})\rangle=\sum_{i=1}^{n} \frac{1}{n} \sigma\left(\mathbf{x}_{i}\right)$
Convergence rate: independent of d, but slow $O\left(\frac{1}{\sqrt{n}}\right)$
Extra: Create a histogram from $\sigma\left(\mathbf{x}_{i}\right)$ values to estimate pdf of σ

Objective of this talk: Discuss alternatives to Monte Carlo

Any problem with $\langle\sigma(\mathbf{x})\rangle=\int_{\mathbb{D}} \sigma(\mathbf{x}) \rho(\mathbf{x}) d \mathbf{x}$?

Yes!
$\sigma(\mathrm{x})$ is only known numerically.
Recall: $\sigma(\mathbf{x})$ is the output of an (possibly expensive) simulation

Monte Carlo method
The most commonly used method to estimate expectation.
Instantiate several \mathbf{x}_{i} 's and approximate $\langle\sigma(\mathbf{x})\rangle=\sum_{i=1}^{n} \frac{1}{n} \sigma\left(\mathbf{x}_{i}\right)$
Convergence rate: independent of d, but slow $O\left(\frac{1}{\sqrt{n}}\right)$
Extra: Create a histogram from $\sigma\left(\mathbf{x}_{i}\right)$ values to estimate pdf of σ.
Objective of this talk: Discuss alternatives to Monte Carlo

Any problem with $\langle\sigma(\mathbf{x})\rangle=\int_{\mathbb{D}} \sigma(\mathbf{x}) \rho(\mathbf{x}) d \mathbf{x}$?

Yes!
$\sigma(\mathrm{x})$ is only known numerically.
Recall: $\sigma(\mathbf{x})$ is the output of an (possibly expensive) simulation

Monte Carlo method
The most commonly used method to estimate expectation.
Instantiate several \mathbf{x}_{i} 's and approximate $\langle\sigma(\mathbf{x})\rangle=\sum_{i=1}^{n} \frac{1}{n} \sigma\left(\mathbf{x}_{i}\right)$
Convergence rate: independent of d, but slow $O\left(\frac{1}{\sqrt{n}}\right)$
Extra: Create a histogram from $\sigma\left(\mathbf{x}_{i}\right)$ values to estimate pdf of σ.

Objective of this talk: Discuss alternatives to Monte Carlo

The alternatives to Monte Carlo

Broadly, two families of methods will be discussed:
(1) Galerkin Polynomial Chaos (gPC)

Need to code a new solver, works for small range of d values
(2) Stochastic Collocation (SC)

Uses an existing solver, works for small-medium range of d values Attractive, because compatible with commercial software

What about Monte Carlo?
 Use for benchmarking and for large range of d values

The alternatives to Monte Carlo

Broadly, two families of methods will be discussed:
(1) Galerkin Polynomial Chaos (gPC)

Need to code a new solver, works for small range of d values
(2) Stochastic Collocation (SC)

Uses an existing solver, works for small-medium range of d values
Attractive, because compatible with commercial software
What about Monte Carlo?
Use for benchmarking and for large range of d values

Start with Stochastic Collocation: Polynomial interpolation

For simplicity, consider a 1-D case of the simulation, $\sigma(x)$
Polynomial interpolation and integration

- Choose n-points to evaluate $\sigma(x)$ and construct a $n-1$ degree polynomial (Lagrange interpolation): $\sigma_{n-1}(x)=\sum_{i=1}^{n} \sigma\left(x_{i}\right) L_{i}(x)$
Recall, $L_{i}(x)=\prod_{j=1, j \neq i}^{n}\left(x-x_{j}\right) /\left(x_{i}-x_{j}\right)$
- Compute expectation as

- α_{i} can be pre-computed, and $\langle\sigma(x)\rangle$ is accurate to order $n-1$.

Start with Stochastic Collocation: Polynomial interpolation

For simplicity, consider a 1-D case of the simulation, $\sigma(x)$
Polynomial interpolation and integration

- Choose n-points to evaluate $\sigma(x)$ and construct a $n-1$ degree polynomial (Lagrange interpolation): $\sigma_{n-1}(x)=\sum_{i=1}^{n} \sigma\left(x_{i}\right) L_{i}(x)$ Recall, $L_{i}(x)=\prod_{j=1, j \neq i}^{n}\left(x-x_{j}\right) /\left(x_{i}-x_{j}\right)$
- Compute expectation as
$\langle\sigma(x)\rangle \approx \sum_{i=1}^{n} \sigma\left(x_{i}\right) \int L_{i}(x) \rho(x) d x=\sum_{i=1}^{n} \sigma\left(x_{i}\right) \alpha_{i}$
- α_{i} can be pre-computed, and $\langle\sigma(x)\rangle$ is accurate to order $n-1$.

Start with Stochastic Collocation: Polynomial interpolation

For simplicity, consider a 1-D case of the simulation, $\sigma(x)$
Polynomial interpolation and integration

- Choose n-points to evaluate $\sigma(x)$ and construct a $n-1$ degree polynomial (Lagrange interpolation): $\sigma_{n-1}(x)=\sum_{i=1}^{n} \sigma\left(x_{i}\right) L_{i}(x)$ Recall, $L_{i}(x)=\prod_{j=1, j \neq i}^{n}\left(x-x_{j}\right) /\left(x_{i}-x_{j}\right)$
- Compute expectation as $\langle\sigma(x)\rangle \approx \sum_{i=1}^{n} \sigma\left(x_{i}\right) \int L_{i}(x) \rho(x) d x=\sum_{i=1}^{n} \sigma\left(x_{i}\right) \alpha_{i}$
- α_{i} can be pre-computed, and $\langle\sigma(x)\rangle$ is accurate to order $n-1$.

Can we do better?

Stochastic Collocation: Gaussian quadrature

Yes! Gaussian quadrature

- Use the theory of orthogonal polynomials, i.e. find polynomials s.t. $\int p_{m}(x) p_{n}(x) \rho(x) d x=\delta_{m, n}$
- Pick the n points, $\left\{x_{i}\right\}$ to be roots of $n^{t h}$ degree polynomial, $p_{n}(x)$
- This also gives $\langle\sigma(x)\rangle \approx \sum_{i=1}^{n} \sigma\left(x_{i}\right) \alpha_{i}$, but now integral is accurate to order $2 n-1$
- Legendre, $x \in[-1,1], \rho(x)=1$
- Jacobi, $x \in(-1,1), \rho(x)=(1-x)^{\alpha}(1+x)^{\beta}, \alpha, \beta>-1$
- Hermite,

Stochastic Collocation: Gaussian quadrature

Yes! Gaussian quadrature

- Use the theory of orthogonal polynomials, i.e. find polynomials s.t. $\int p_{m}(x) p_{n}(x) \rho(x) d x=\delta_{m, n}$
- Pick the n points, $\left\{x_{i}\right\}$ to be roots of $n^{\text {th }}$ degree polynomial, $p_{n}(x)$
- This also gives $\langle\sigma(x)\rangle \approx \sum_{i=1}^{n} \sigma\left(x_{i}\right) \alpha_{i}$, but now integral is accurate to order $2 n-1$
- Legendre, $x \in[-1,1], \rho(x)=1$
- Jacobi, $x \in(-1,1), \rho(x)=(1-x)^{\alpha}(1+x)^{\beta}, \alpha, \beta>-1$
- Hermite, $x \in(-\infty, \infty), \rho(x)=e^{-x^{2}}$.

Stochastic Collocation: Gaussian quadrature

Yes! Gaussian quadrature

- Use the theory of orthogonal polynomials, i.e. find polynomials s.t. $\int p_{m}(x) p_{n}(x) \rho(x) d x=\delta_{m, n}$
- Pick the n points, $\left\{x_{i}\right\}$ to be roots of $n^{t h}$ degree polynomial, $p_{n}(x)$
- This also gives $\langle\sigma(x)\rangle \approx \sum_{i=1}^{n} \sigma\left(x_{i}\right) \alpha_{i}$, but now integral is accurate to order $2 n-1$

Common orthogonal polynomials

- Legendre, $x \in[-1,1], \rho(x)=1$.
- Jacobi, $x \in(-1,1), \rho(x)=(1-x)^{\alpha}(1+x)^{\beta}, \alpha, \beta>-1$.
- Hermite, $x \in(-\infty, \infty), \rho(x)=e^{-x^{2}}$.

But our problem is d-dimensional!

Solution: Extend one-dimensional Gaussian quadrature to d dimensions

- With $\mathbf{x}=\left[x_{i}, x_{2}, \ldots, x_{d}\right]$, express $\sigma(\mathbf{x})=\prod_{i=1}^{d} \sigma_{i}\left(x_{i}\right)$ (implicitly)
- The integral splits up: $\int \sigma(\mathbf{x}) \rho(\mathbf{x}) d \mathbf{x}=\prod_{i} \int \sigma_{i}\left(x_{i}\right) \rho_{i}\left(x_{i}\right) d x_{i}$
- Apply n-point Gaussian quadrature (GQ) in each dimension

- An example in 2D (x, y) and a 2-point GQ in each dimension $\langle\sigma(x, y)\rangle=\left[\sigma_{x}\left(x_{1}\right) \alpha_{1}+\sigma_{x}\left(x_{2}\right) \alpha_{2}\right]\left[\sigma_{y}\left(y_{1}\right) \alpha_{1}+\sigma_{y}\left(y_{2}\right) \alpha_{2}\right]=$ $\sigma\left(x_{1}, y_{1}\right) \alpha_{1,1}+\sigma\left(x_{1}, y_{2}\right) \alpha_{1,2}+\sigma\left(x_{2}, y_{1}\right) \alpha_{2,1}+\sigma\left(x_{2}, y_{2}\right) \alpha_{2,2}$

All dimensions are multiplied: called the tensor product rule

But our problem is d-dimensional!

Solution: Extend one-dimensional Gaussian quadrature to d dimensions

- With $\mathbf{x}=\left[x_{i}, x_{2}, \ldots, x_{d}\right]$, express $\sigma(\mathbf{x})=\prod_{i=1}^{d} \sigma_{i}\left(x_{i}\right)$ (implicitly)
- The integral splits up: $\int \sigma(\mathbf{x}) \rho(\mathbf{x}) d \mathbf{x}=\prod_{i} \int \sigma_{i}\left(x_{i}\right) \rho_{i}\left(x_{i}\right) d x_{i}$
- Apply n-point Gaussian quadrature (GQ) in each dimension: $\langle\sigma(\mathbf{x})\rangle=\prod_{i=1}^{d} \sum_{j=1}^{n} \sigma_{i}\left(x_{i, j}\right) \alpha_{j}$. Combine the σ_{i} 's to get $\sigma\left(\mathbf{x}_{k}\right)$.
- An example in 2D (x, y) and a 2-point GQ in each dimension: $\langle\sigma(x, y)\rangle=\left[\sigma_{x}\left(x_{1}\right) \alpha_{1}+\sigma_{x}\left(x_{2}\right) \alpha_{2}\right]\left[\sigma_{y}\left(y_{1}\right) \alpha_{1}+\sigma_{y}\left(y_{2}\right) \alpha_{2}\right]=$ $\sigma\left(x_{1}, y_{1}\right) \alpha_{1.1}+\sigma\left(x_{1}, y_{2}\right) \alpha_{1.2}+\sigma\left(x_{2}, y_{1}\right) \alpha_{2.1}+\sigma\left(x_{2}, y_{2}\right) \alpha_{2.2}$ All dimensions are multiplied: called the tensor product rule

But our problem is d-dimensional!

Solution: Extend one-dimensional Gaussian quadrature to d dimensions

- With $\mathbf{x}=\left[x_{i}, x_{2}, \ldots, x_{d}\right]$, express $\sigma(\mathbf{x})=\prod_{i=1}^{d} \sigma_{i}\left(x_{i}\right)$ (implicitly)
- The integral splits up: $\int \sigma(\mathbf{x}) \rho(\mathbf{x}) d \mathbf{x}=\prod_{i} \int \sigma_{i}\left(x_{i}\right) \rho_{i}\left(x_{i}\right) d x_{i}$
- Apply n-point Gaussian quadrature (GQ) in each dimension: $\langle\sigma(\mathbf{x})\rangle=\prod_{i=1}^{d} \sum_{j=1}^{n} \sigma_{i}\left(x_{i, j}\right) \alpha_{j}$. Combine the σ_{i} 's to get $\sigma\left(\mathbf{x}_{k}\right)$.
- An example in 2D (x, y) and a 2-point GQ in each dimension:

$$
\begin{aligned}
& \langle\sigma(x, y)\rangle=\left[\sigma_{x}\left(x_{1}\right) \alpha_{1}+\sigma_{x}\left(x_{2}\right) \alpha_{2}\right]\left[\sigma_{y}\left(y_{1}\right) \alpha_{1}+\sigma_{y}\left(y_{2}\right) \alpha_{2}\right]= \\
& \sigma\left(x_{1}, y_{1}\right) \alpha_{1,1}+\sigma\left(x_{1}, y_{2}\right) \alpha_{1,2}+\sigma\left(x_{2}, y_{1}\right) \alpha_{2,1}+\sigma\left(x_{2}, y_{2}\right) \alpha_{2,2}
\end{aligned}
$$

All dimensions are multiplied: called the tensor product rule

Visualizing the tensor product rule

- E.g. function evaluation points in a 2D 5-point GQ (25 evals) : Denote as $\langle\sigma\rangle_{5,5}$
- Curse of dimensionality is clear: number of function evaluations $=n^{d}$
- Can we do better?

Theorem: (Mysovskikh 1968, Möller 1976)
To attain a polynomial exactness equal to m, the (optimal) required number of grid-points has lower and upper bounds given by

Visualizing the tensor product rule

- E.g. function evaluation points in a 2D 5-point GQ (25 evals) : Denote as $\langle\sigma\rangle_{5,5}$
- Curse of dimensionality is clear: number of function evaluations $=n^{d}$
- Can we do better?

> Theorem: (Mysovskikh 1968, Möller 1976)
> To attain a polynomial exactness equal to m, the (optimal) required number of grid-points has lower and upper bounds given by

Visualizing the tensor product rule

- E.g. function evaluation points in a 2D 5-point GQ (25 evals) : Denote as $\langle\sigma\rangle_{5,5}$
- Curse of dimensionality is clear: number of function evaluations $=n^{d}$
- Can we do better?

Theorem: (Mysovskikh 1968, Möller 1976)
To attain a polynomial exactness equal to m, the (optimal) required number of grid-points has lower and upper bounds given by

$$
N_{\min }=\binom{d+\lfloor m\rfloor / 2}{\lfloor m\rfloor / 2} \leq N_{\mathrm{opt}} \leq\binom{ d+m}{m}=N_{\max }
$$

Sparse Grids: Smolyak (1963)

(1) Every $\langle\sigma\rangle_{i, j}$ is an approximation to the actual integral, $\langle\sigma\rangle$
(2) Introduce a "level" parameter $k=(i+j)$ and let the max level be denoted by $l=\max \{k\}$

Telescope a series of different levels to approximate $\langle\sigma\rangle$

- e.g. (Max) level $l=4$:
- e.g. (Max) level $l=5$:

As the max level increases, approximation becomes better

Sparse Grids: Smolyak (1963)

(1) Every $\langle\sigma\rangle_{i, j}$ is an approximation to the actual integral, $\langle\sigma\rangle$
(2) Introduce a "level" parameter $k=(i+j)$ and let the max level be denoted by $l=\max \{k\}$

Telescope a series of different levels to approximate $\langle\sigma\rangle$

Sparse Grids: Smolyak (1963)

(1) Every $\langle\sigma\rangle_{i, j}$ is an approximation to the actual integral, $\langle\sigma\rangle$
(2) Introduce a "level" parameter $k=(i+j)$ and let the max level be denoted by $l=\max \{k\}$

Telescope a series of different levels to approximate $\langle\sigma\rangle$

- e.g. (Max) level $l=4$:
$\langle\sigma\rangle \approx\left[\langle\sigma\rangle_{3,1}+\langle\sigma\rangle_{1,3}+\langle\sigma\rangle_{2,2}\right]_{\mathrm{k}=4}-\left[\langle\sigma\rangle_{2,1}+\langle\sigma\rangle_{1,2}\right]_{\mathrm{k}=3}$
- e.g. (Max) level $l=5$:
$\langle\sigma\rangle \approx\left[\langle\sigma\rangle_{3,2}+\langle\sigma\rangle_{2,3}+\langle\sigma\rangle_{1,4}+\langle\sigma\rangle_{4,1}\right]-\left[\langle\sigma\rangle_{3,1}+\langle\sigma\rangle_{1,3}+\langle\sigma\rangle_{2,2}\right]$

Sparse Grids: Smolyak (1963)

(1) Every $\langle\sigma\rangle_{i, j}$ is an approximation to the actual integral, $\langle\sigma\rangle$
(2) Introduce a "level" parameter $k=(i+j)$ and let the max level be denoted by $l=\max \{k\}$

Telescope a series of different levels to approximate $\langle\sigma\rangle$

- e.g. (Max) level $l=4$:

$$
\langle\sigma\rangle \approx\left[\langle\sigma\rangle_{3,1}+\langle\sigma\rangle_{1,3}+\langle\sigma\rangle_{2,2}\right]_{\mathrm{k}=4}-\left[\langle\sigma\rangle_{2,1}+\langle\sigma\rangle_{1,2}\right]_{\mathrm{k}=3}
$$

- e.g. (Max) level $l=5$:
$\langle\sigma\rangle \approx\left[\langle\sigma\rangle_{3,2}+\langle\sigma\rangle_{2,3}+\langle\sigma\rangle_{1,4}+\langle\sigma\rangle_{4,1}\right]-\left[\langle\sigma\rangle_{3,1}+\langle\sigma\rangle_{1,3}+\langle\sigma\rangle_{2,2}\right]$

As the max level increases, approximation becomes better

Visualizing the sparse grid rule

$$
\langle\sigma\rangle \approx\left[\langle\sigma\rangle_{3,1}+\langle\sigma\rangle_{1,3}+\langle\sigma\rangle_{2,2}\right]_{\mathrm{k}=4}-\left[\langle\sigma\rangle_{2,1}+\langle\sigma\rangle_{1,2}\right]_{\mathrm{k}=3}
$$

Sparse Grid Points

13 Points (SG) v/s 25 points (TP)!

Visualizing the sparse grid rule

$$
\langle\sigma\rangle \approx\left[\langle\sigma\rangle_{3,1}+\langle\sigma\rangle_{1,3}+\langle\sigma\rangle_{2,2}\right]_{\mathrm{k}=4}-\left[\langle\sigma\rangle_{2,1}+\langle\sigma\rangle_{1,2}\right]_{\mathrm{k}=3}
$$

Sparse Grid Points

Tensor Grid Points

Substantial
savings
higher dims

13 Points (SG) v/s 25 points (TP)!

Visualizing the sparse grid rule

$$
\langle\sigma\rangle \approx\left[\langle\sigma\rangle_{3,1}+\langle\sigma\rangle_{1,3}+\langle\sigma\rangle_{2,2}\right]_{\mathrm{k}=4}-\left[\langle\sigma\rangle_{2,1}+\langle\sigma\rangle_{1,2}\right]_{\mathrm{k}=3}
$$

Sparse Grid Points

Tensor Grid Points

Substantial savings in
higher dims

13 Points (SG) v/s 25 points (TP)!

Sparse Grid rule: finer points

TP rule: $\langle\sigma\rangle=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{d}=1}^{n_{d}} \sigma\left(x_{i_{1}}, \ldots, x_{i_{d}}\right) \alpha_{i_{1}} \ldots \alpha_{i_{d}}$
$=\left(Q^{n_{1}} \times Q^{n_{2}} \times \ldots \times Q^{n_{d}}\right)[\sigma]$
n_{i} point quadrature in the $i^{\text {th }} \mathrm{dim} ; \prod n_{i} \approx n^{d}$ points

- Nested quadrature rules (e.g. Clenshaw-Curtis, Gauss-Konrad) re-use fn evaluation points between levels.

Sparse Grid rule: finer points

TP rule: $\langle\sigma\rangle=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{d}=1}^{n_{d}} \sigma\left(x_{i_{1}}, \ldots, x_{i_{d}}\right) \alpha_{i_{1}} \ldots \alpha_{i_{d}}$
$=\left(Q^{n_{1}} \times Q^{n_{2}} \times \ldots \times Q^{n_{d}}\right)[\sigma]$
n_{i} point quadrature in the $i^{\text {th }} \operatorname{dim} ; \prod n_{i} \approx n^{d}$ points

SG rule: With max level l, and $k=k_{1}+k_{2}+\ldots+k_{d}$:
$\langle\sigma\rangle=\sum_{l-d+1 \leq k \leq l}(-1)^{l-k}\binom{d-1}{l-k}\left(Q^{k_{1}} \times Q^{k_{2}} \times \ldots \times Q^{k_{d}}\right)[\sigma]$

- Nested quadrature rules (e.g. Clenshaw-Curtis, Gauss-Konrad) re-use fn evaluation points between levels.

Sparse Grid rule: finer points

TP rule: $\langle\sigma\rangle=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{d}=1}^{n_{d}} \sigma\left(x_{i_{1}}, \ldots, x_{i_{d}}\right) \alpha_{i_{1}} \ldots \alpha_{i_{d}}$
$=\left(Q^{n_{1}} \times Q^{n_{2}} \times \ldots \times Q^{n_{d}}\right)[\sigma]$
n_{i} point quadrature in the $i^{\text {th }} \mathrm{dim} ; \prod n_{i} \approx n^{d}$ points

SG rule: With max level l, and $k=k_{1}+k_{2}+\ldots+k_{d}$:

$$
\langle\sigma\rangle=\sum_{l-d+1 \leq k \leq l}(-1)^{l-k}\binom{d-1}{l-k}\left(Q^{k_{1}} \times Q^{k_{2}} \times \ldots \times Q^{k_{d}}\right)[\sigma]
$$

- k_{i} point quadrature in the $i^{\text {th }} \operatorname{dim} ; \approx 2^{l} d^{l} / l$! points
- Nested quadrature rules (e.g. Clenshaw-Curtis, Gauss-Konrad) re-use fn evaluation points between levels.

Switching gears: from sampling to projection

The two methods (Monte Carlo, Stochastic Collocation) considered so far were of a "sampling" kind: $\langle\sigma\rangle$ estimated using samples of $\sigma(\mathbf{x})$.

Straightforward when x is spatio-temporal. But when stochastic?

Switching gears: from sampling to projection

The two methods (Monte Carlo, Stochastic Collocation) considered so far were of a "sampling" kind: $\langle\sigma\rangle$ estimated using samples of $\sigma(\mathbf{x})$.

Projection based approach: Overview of Galerkin method

- Governing equation: $\Theta f(\mathbf{x})=g(\mathbf{x})$, where Θ is an operator, g is a known function, and f is to be determined.
- Project f in a known basis, $\left\{\phi_{j}\right\}: f(\mathrm{x})=\sum_{j} u_{j} \phi_{j}(\mathrm{x})$
- Take an inner product with the same basis functions on both sides to get: $\sum_{j}\left\langle\phi_{i}(\mathbf{x}), \Theta \phi_{j}(\mathbf{x})\right\rangle u_{j}=\left\langle\phi_{i}(\mathbf{x}), g(\mathbf{x})\right\rangle . B C$ used to simplify.
- This is a system of equations; solve for u and get f

Straightforward when x is spatio-temporal. But when stochastic?

Switching gears: from sampling to projection

The two methods (Monte Carlo, Stochastic Collocation) considered so far were of a "sampling" kind: $\langle\sigma\rangle$ estimated using samples of $\sigma(\mathbf{x})$.

Projection based approach: Overview of Galerkin method

- Governing equation: $\Theta f(\mathbf{x})=g(\mathbf{x})$, where Θ is an operator, g is a known function, and f is to be determined.
- Project f in a known basis, $\left\{\phi_{j}\right\}: f(\mathbf{x})=\sum_{j} u_{j} \phi_{j}(\mathbf{x})$
- Take an inner product with the same basis functions on both sides to get: $\sum_{j}\left\langle\phi_{i}(\mathbf{x}), \Theta \phi_{j}(\mathbf{x})\right\rangle u_{j}=\left\langle\phi_{i}(\mathbf{x}), g(\mathbf{x})\right\rangle . B C$ used to simplify.
- This is a system of equations; solve for u and get f.

$$
\text { Straightforward when } \mathrm{x} \text { is spatio-temporal. But when stochastic? }
$$

Switching gears: from sampling to projection

The two methods (Monte Carlo, Stochastic Collocation) considered so far were of a "sampling" kind: $\langle\sigma\rangle$ estimated using samples of $\sigma(\mathbf{x})$.

Projection based approach: Overview of Galerkin method

- Governing equation: $\Theta f(\mathbf{x})=g(\mathbf{x})$, where Θ is an operator, g is a known function, and f is to be determined.
- Project f in a known basis, $\left\{\phi_{j}\right\}: f(\mathbf{x})=\sum_{j} u_{j} \phi_{j}(\mathbf{x})$
- Take an inner product with the same basis functions on both sides to get: $\sum_{j}\left\langle\phi_{i}(\mathbf{x}), \Theta \phi_{j}(\mathbf{x})\right\rangle u_{j}=\left\langle\phi_{i}(\mathbf{x}), g(\mathbf{x})\right\rangle . B C$ used to simplify.
- This is a system of equations; solve for u and get f.

Straightforward when \mathbf{x} is spatio-temporal. But when stochastic?

generalized Polynomial Chaos (gPC): a very brief history

- Polynomial Chaos (PC): coined by Norbert Wiener studying Gaussian stochastic processes (1938). Used Hermite polynomials as basis.
- Ghanem (1998) used theory of Wiener-Hermite PC to represent random processes in an orthogonal basis of Hermite polynomials.
- Xiu, Karniadakis (2002) generalize to non-Gaussian using other orthogonal polynomials, wavelets, etc: generalized PC (gPC)

Finally, solve the gPC system of equations using galerkin projection: stochastic galerkin (SG) method.

generalized Polynomial Chaos (gPC): a very brief history

- Polynomial Chaos (PC): coined by Norbert Wiener studying Gaussian stochastic processes (1938). Used Hermite polynomials as basis.
- Ghanem (1998) used theory of Wiener-Hermite PC to represent random processes in an orthogonal basis of Hermite polynomials.
- Xiu, Karniadakis (2002) generalize to non-Gaussian using other orthogonal polynomials, wavelets, etc: generalized PC (gPC)
\square

generalized Polynomial Chaos (gPC): a very brief history

- Polynomial Chaos (PC): coined by Norbert Wiener studying Gaussian stochastic processes (1938). Used Hermite polynomials as basis.
- Ghanem (1998) used theory of Wiener-Hermite PC to represent random processes in an orthogonal basis of Hermite polynomials.
- Xiu, Karniadakis (2002) generalize to non-Gaussian using other orthogonal polynomials, wavelets, etc: generalized PC (gPC)

Finally, solve the gPC system of equations using galerkin projection: stochastic galerkin (SG) method.

The basis functions in gPC

- Start with a RV, call it z as before. Let it have a distribution function, $F_{z}(\theta)=P(z \leq \theta)$ and a pdf $\rho(\theta)$ s.t. $d F_{z}(\theta)=\rho(\theta) d \theta$
- The generalized Polynomial Chaos basis functions are orthogonal basis functions, $\psi_{i}(z)$, satisfying $\left\langle\psi_{i}(z) \psi_{j}(z)\right\rangle=\int \psi_{i}(\theta) \psi_{j}(\theta) \rho(\theta) d \theta=\gamma_{i} \delta_{i j}$
- Construct linear space of polynomials of degree at most $n: \mathbb{P}_{n}(z)$
- Various kinds depending on $\rho(\theta)$
- Legendre, $\theta \in[-1,1], \rho(\theta)=1 / 2$.
- Jacobi, $\theta \in(-1,1), \rho(\theta)=(1-\theta)^{\alpha}(1+\theta)^{\beta}, \alpha, \beta>-1$.
- Hermite, $\theta \in(-\infty, \infty), \rho(\theta)=e^{-\theta}$

The basis functions in gPC

- Start with a RV, call it z as before. Let it have a distribution function, $F_{z}(\theta)=P(z \leq \theta)$ and a pdf $\rho(\theta)$ s.t. $d F_{z}(\theta)=\rho(\theta) d \theta$
- The generalized Polynomial Chaos basis functions are orthogonal basis functions, $\psi_{i}(z)$, satisfying :

$$
\left\langle\psi_{i}(z) \psi_{j}(z)\right\rangle=\int \psi_{i}(\theta) \psi_{j}(\theta) \rho(\theta) d \theta=\gamma_{i} \delta_{i j}
$$

- Construct linear space of polynomials of degree at most $n: \mathbb{P}_{n}(z)$
- Various kinds depending on $\rho(\theta)$

The basis functions in gPC

- Start with a RV, call it z as before. Let it have a distribution function, $F_{z}(\theta)=P(z \leq \theta)$ and a pdf $\rho(\theta)$ s.t. $d F_{z}(\theta)=\rho(\theta) d \theta$
- The generalized Polynomial Chaos basis functions are orthogonal basis functions, $\psi_{i}(z)$, satisfying :

$$
\left\langle\psi_{i}(z) \psi_{j}(z)\right\rangle=\int \psi_{i}(\theta) \psi_{j}(\theta) \rho(\theta) d \theta=\gamma_{i} \delta_{i j}
$$

- Construct linear space of polynomials of degree at most $n: \mathbb{P}_{n}(z)$
- Various kinds depending on $\rho(\theta)$
- Legendre, $\theta \in[-1,1], \rho(\theta)=1 / 2$.
- Jacobi, $\theta \in(-1,1), \rho(\theta)=(1-\theta)^{\alpha}(1+\theta)^{\beta}, \alpha, \beta>-1$.
- Hermite, $\theta \in(-\infty, \infty), \rho(\theta)=e^{-\theta^{2}}$.

A scalar example of gPC-SG

- Consider: a simple equation in one unknown, $u: a u=b$ Now: Let the system parameters a, b have some uncertainty, e.g. $a(\theta)=a_{0}+\alpha \theta$, where θ is a uniform RV in $[-0.5,0.5]$. In this case what is $\langle u\rangle$ or $\left\langle u^{2}\right\rangle$?
- Expand: solution in the ψ basis $-u(\theta)=\sum_{j=1}^{n} u_{j} \psi_{j}(\theta)$
- Do: Galerkin testing with the same basis functions: Get a system of equations, where we solve for u : $A u=b$, where

So: $\langle u\rangle=\int u(\theta) \rho(\theta) d \theta=\sum_{i} u_{i}\left\langle\psi_{i}(\theta)\right\rangle$ and $\left\langle u^{2}\right\rangle=\sum_{i} u_{i}^{2} \gamma_{i}$.
\Longrightarrow std. dev. in u can be computed : $\sqrt{\left\langle u^{2}\right\rangle-\langle u\rangle^{2}}$
\Longrightarrow uncertainty quantified!

A scalar example of gPC-SG

- Consider: a simple equation in one unknown, $u: a u=b$

Now: Let the system parameters a, b have some uncertainty,
e.g. $a(\theta)=a_{0}+\alpha \theta$, where θ is a uniform RV in $[-0.5,0.5]$. In this case what is $\langle u\rangle$ or $\left\langle u^{2}\right\rangle$?

- Expand: solution in the ψ basis $-u(\theta)=\sum_{j=1}^{n} u_{j} \psi_{j}(\theta)$
- Do: Galerkin testing with the same basis functions:

Get a system of equations, where we solve for u : $A u=b$, where

$$
\begin{aligned}
& A_{i j}=\left\langle\psi_{i}(\theta) a_{0} \psi_{j}(\theta)+\psi_{i}(\theta) \alpha \theta \psi_{j}(\theta)\right\rangle=a_{0} \gamma_{i} \delta_{i j}+\alpha\left\langle\psi_{i}(\theta) \theta \psi_{j}(\theta)\right\rangle \\
& \text { and } b_{j}=\left\langle\psi_{i}(\theta) b(\theta)\right\rangle
\end{aligned}
$$

So: $\langle u\rangle=\int u(\theta) \rho(\theta) d \theta=\sum_{i} u_{i}\left\langle\psi_{i}(\theta)\right\rangle$ and $\left\langle u^{2}\right\rangle=\sum_{i} u_{i}^{2} \gamma_{i}$.
\Longrightarrow std. dev. in u can be computed : $\sqrt{\left\langle u^{2}\right\rangle-\langle u\rangle^{2}}$
\Longrightarrow uncertainty quantified!

A scalar example of gPC-SG

- Consider: a simple equation in one unknown, $u: a u=b$

Now: Let the system parameters a, b have some uncertainty,
e.g. $a(\theta)=a_{0}+\alpha \theta$, where θ is a uniform RV in $[-0.5,0.5]$.

In this case what is $\langle u\rangle$ or $\left\langle u^{2}\right\rangle$?

- Expand: solution in the ψ basis $-u(\theta)=\sum_{j=1}^{n} u_{j} \psi_{j}(\theta)$
- Do: Galerkin testing with the same basis functions:

Get a system of equations, where we solve for u : $A u=b$, where

$$
\begin{aligned}
& A_{i j}=\left\langle\psi_{i}(\theta) a_{0} \psi_{j}(\theta)+\psi_{i}(\theta) \alpha \theta \psi_{j}(\theta)\right\rangle=a_{0} \gamma_{i} \delta_{i j}+\alpha\left\langle\psi_{i}(\theta) \theta \psi_{j}(\theta)\right\rangle \\
& \text { and } b_{j}=\left\langle\psi_{i}(\theta) b(\theta)\right\rangle
\end{aligned}
$$

So: $\langle u\rangle=\int u(\theta) \rho(\theta) d \theta=\sum_{i} u_{i}\left\langle\psi_{i}(\theta)\right\rangle$ and $\left\langle u^{2}\right\rangle=\sum_{i} u_{i}^{2} \gamma_{i}$.
\Longrightarrow std. dev. in u can be computed : $\sqrt{\left\langle u^{2}\right\rangle-\langle u\rangle^{2}}$
\Longrightarrow uncertainty quantified!

Random inputs? (More than just a collection of RVs!)

Example: A random surface - adjacent points are not independent of each other, there is some correlation:

Random inputs? (More than just a collection of RVs!)

Example: A random surface - adjacent points are not independent of each other, there is some correlation:
y

Kosambi-Karhunen-Loeve (KL) expansion is widely used to represent random processes: $s(x, \theta)=s_{0}(x)+\sum_{k=1}^{\infty} \sqrt{\eta_{k}} f_{k}(x) z_{k}(\theta)$

- $s_{0}(x)$ is the mean of the random process
- η, f solve this eigenvalue problem: $\int C(i, j) f_{k}(j) d j=\eta_{k} f_{k}(i)$ where
- $z(\theta)$ represents mutually uncorrelated normal $\operatorname{RVs}\left(\left\langle z_{k}\right\rangle=0\right)$
- Expansion truncated to d terms in practice

Random inputs? (More than just a collection of RVs!)

Example: A random surface - adjacent points are not independent of each other, there is some correlation:

Kosambi-Karhunen-Loeve (KL) expansion is widely used to represent random processes: $s(x, \theta)=s_{0}(x)+\sum_{k=1}^{\infty} \sqrt{\eta_{k}} f_{k}(x) z_{k}(\theta)$

- $s_{0}(x)$ is the mean of the random process
- η, f solve this eigenvalue problem: $\int C(i, j) f_{k}(j) d j=\eta_{k} f_{k}(i)$ where $C(i, j)=\operatorname{cov}\left(z_{i}, z_{j}\right)$ is the correlation between two $\mathrm{RV}, z_{i}, z_{j}$
- $z(\theta)$ represents mutually uncorrelated normal $\operatorname{RVs}\left(\left\langle z_{k}\right\rangle=0\right)$
- Expansion truncated to d terms in practice

Random inputs? (More than just a collection of RVs!)

Example: A random surface - adjacent points are not independent of each other, there is some correlation:

Kosambi-Karhunen-Loeve (KL) expansion is widely used to represent random processes: $s(x, \theta)=s_{0}(x)+\sum_{k=1}^{\infty} \sqrt{\eta_{k}} f_{k}(x) z_{k}(\theta)$

- $s_{0}(x)$ is the mean of the random process
- η, f solve this eigenvalue problem: $\int C(i, j) f_{k}(j) d j=\eta_{k} f_{k}(i)$ where $C(i, j)=\operatorname{cov}\left(z_{i}, z_{j}\right)$ is the correlation between two RV s, z_{i}, z_{j}
- $z(\theta)$ represents mutually uncorrelated normal $\operatorname{RVs}\left(\left\langle z_{k}\right\rangle=0\right)$
- Expansion truncated to d terms in practice

KL expansion for exponential correlation

$$
s(x, \theta)=s_{0}(x)+\sum_{k=1}^{\infty} \sqrt{\eta_{k}} f_{k}(x) z_{k}(\theta)
$$

- KL expansion eigenvalues and
functions can be analytically
calculated in some cases, e.g.
exponential correlation function
$C(i, j)=\exp (-|i-j| / l)$,
(correlation length l).
- Decay rate of eigenvalues
depends inversely on the
correlation length \Longrightarrow
more RVs for smaller l

KL expansion for exponential correlation

$$
s(x, \theta)=s_{0}(x)+\sum_{k=1}^{\infty} \sqrt{\eta_{k}} f_{k}(x) z_{k}(\theta)
$$

- KL expansion eigenvalues and functions can be analytically
calculated in some cases, e.g.
exponential correlation function
$C(i, j)=\exp (-|i-j| / l)$,
(correlation length l).
- Decay rate of eigenvalues
depends inversely on the
correlation length \Longrightarrow
more RVs for smaller l.

KL expansion for exponential correlation

$$
s(x, \theta)=s_{0}(x)+\sum_{k=1}^{\infty} \sqrt{\eta_{k}} f_{k}(x) z_{k}(\theta)
$$

- KL expansion eigenvalues and functions can be analytically calculated in some cases, e.g. exponential correlation function $C(i, j)=\exp (-|i-j| / l)$, (correlation length l).
- Decay rate of eigenvalues depends inversely on the correlation length \Longrightarrow more RVs for smaller l.

The case of multiple random variables with correlation

Consider again the random rough surface ...

given by the KL expansion: $s(x, \theta)=s_{0}(x)+\sum_{k=1}^{d} \sqrt{\eta_{k}} f_{k}(x) z_{k}(\theta)$ consists of multiple random variables, z_{i}.

- Multivariate gPC (i.e. tensor product of univariate gPC) $\Psi_{\mathbf{i}}(\vec{z})=\psi_{i_{1}}\left(z_{1}\right) \ldots \psi_{i_{d}}\left(z_{d}\right), \quad 0 \leq \sum_{j=1}^{d} i_{j} \leq n$ (max degree) where $\mathrm{i}=\left(i_{1}, \ldots, d\right)$: indices, $\vec{z}=\left(z_{1}, \ldots, z_{d}\right)$ RVs Belong to the space \mathbb{P}_{n}^{d} of dimension $w=\binom{n+d}{n}$
- As in univariate case, proceed by Galerkin method and compute mean, variance, etc

The case of multiple random variables with correlation

Consider again the random rough surface ...

given by the KL expansion: $s(x, \theta)=s_{0}(x)+\sum_{k=1}^{d} \sqrt{\eta_{k}} f_{k}(x) z_{k}(\theta)$ consists of multiple random variables, z_{i}.

- Multivariate gPC (i.e. tensor product of univariate gPC) $\Psi_{\mathbf{i}}(\vec{z})=\psi_{i_{1}}\left(z_{1}\right) \ldots \psi_{i_{d}}\left(z_{d}\right), \quad 0 \leq \sum_{j=1}^{d} i_{j} \leq n$ (max degree) where $\mathbf{i}=\left(i_{1}, \ldots, _d\right)$: indices, $\vec{z}=\left(z_{1}, \ldots, z_{d}\right)$ RVs Belong to the space \mathbb{P}_{n}^{d} of dimension $w=\binom{n+d}{n}$
- As in univariate case, proceed by Galerkin method and compute mean, variance, etc

The case of multiple random variables with correlation

Consider again the random rough surface ...

given by the KL expansion: $s(x, \theta)=s_{0}(x)+\sum_{k=1}^{d} \sqrt{\eta_{k}} f_{k}(x) z_{k}(\theta)$ consists of multiple random variables, z_{i}.

- Multivariate gPC (i.e. tensor product of univariate gPC) $\Psi_{\mathbf{i}}(\vec{z})=\psi_{i_{1}}\left(z_{1}\right) \ldots \psi_{i_{d}}\left(z_{d}\right), \quad 0 \leq \sum_{j=1}^{d} i_{j} \leq n$ (max degree) where $\mathbf{i}=\left(i_{1}, \ldots, d\right)$: indices, $\vec{z}=\left(z_{1}, \ldots, z_{d}\right)$ RVs Belong to the space \mathbb{P}_{n}^{d} of dimension $w=\binom{n+d}{n}$
- As in univariate case, proceed by Galerkin method and compute mean, variance, etc

Changing gears ...

So far ...
This completes an overview of stochastic computation:
(1) Monte Carlo (MC)
(2) Stochastic Collocation (SC)
(3) Stochastic Galerkin (SG) using generalized Polynomial Chaos
\qquad
\square electromagnetic scattering from a random rough surface: e.g. seen in microwave remote sensing, $[\mathrm{MC}]^{a},[S C, S G]^{b}$
> ${ }^{a}$ Khankhoje et al. "Computation of radar scattering from heterogeneous rough soil using the finite element method", 2013 IEEE TGRS
> ${ }^{b}$ Khankhoje et al. "Stochastic Solutions to Rough Surface Scattering using the finite element method"

> 2017 IEEE TAP

Changing gears ...

So far ...
This completes an overview of stochastic computation:
(1) Monte Carlo (MC)

- Stochastic Collocation (SC)
- Stochastic Galerkin (SG) using generalized Polynomial Chaos

Moving on ...
To make matters more concrete, consider the problem of computing the electromagnetic scattering from a random rough surface:
e.g. seen in microwave remote sensing, $[\mathrm{MC}]^{a},[\mathrm{SC}, \mathrm{SG}]^{b}$

[^0]
Traditional FEM setup for rough surface scattering

- Random rough surface instance generated, and the domain meshed
- Based on incident field, Radar cross-section (RCS) computed
- Above steps repeated for several (≈ 100) instances
- Quite inefficient!

Traditional FEM setup for rough surface scattering

- Random rough surface instance generated, and the domain meshed
- Based on incident field, Radar cross-section (RCS) computed
- Above steps repeated for several (≈ 100) instances
- Quite inefficient!

Traditional FEM setup for rough surface scattering

- Random rough surface instance generated, and the domain meshed
- Based on incident field, Radar cross-section (RCS) computed
- Above steps repeated for several (≈ 100) instances
- Quite inefficient!

Handle the rough surface intelligently

Note that the mesh need only change near the surface ...

Partition the domain into parts that can move, and those that

- Zero deformation by the time need not

Handle the rough surface intelligently

Note that the mesh need only change near the surface ...

- Let $s(x)$ define rough surface (e.g. KL expansion)
- Move each node smoothly within

- CD will deform to rough surface

Partition the domain into parts that can move, and those that need not

- Zero deformation by the time

Handle the rough surface intelligently

Note that the mesh need only change near the surface ...

- Let $s(x)$ define rough surface (e.g. KL expansion)
- Move each node smoothly within 'sandwich' region: $y \rightarrow y+\Delta y$

$$
\Delta y=\left\{\begin{array}{l}
s(x)\left(\frac{h_{t}-y}{h_{t}}\right), 0<y<h_{t} \\
s(x)\left(\frac{y+h_{b}}{h_{b}}\right),-h_{b}<y<0
\end{array}\right.
$$

Partition the domain into parts that can move, and those that need not

Handle the rough surface intelligently

Note that the mesh need only change near the surface ...

Partition the domain into parts that can move, and those that

- Let $s(x)$ define rough surface (e.g. KL expansion)
- Move each node smoothly within 'sandwich' region: $y \rightarrow y+\Delta y$

$$
\Delta y=\left\{\begin{array}{l}
s(x)\left(\frac{h_{t}-y}{h_{t}}\right), 0<y<h_{t} \\
s(x)\left(\frac{y+h_{b}}{h_{b}}\right),-h_{b}<y<0
\end{array}\right.
$$

- CD will deform to rough surface
- Zero deformation by the time $y=h_{t}$ or $y=-h_{b}$ need not

The standard FEM recipe: deterministic solver

2D vector FE basis functions \vec{W}

Maxwell's equations in weak form:

$$
\int \vec{W} \cdot\left[\nabla \times\left(\frac{1}{\epsilon_{r}} \nabla \times \vec{H}\right)-k_{0}^{2} \mu_{r} \vec{H}\right] d S=0
$$

- First order absorbing boundary conditions on $A-B-F-E-A$ - Performing Galerkin testing

The standard FEM recipe: deterministic solver

2D vector FE basis functions \vec{W}

Maxwell's equations in weak form:

$$
\int \vec{W} \cdot\left[\nabla \times\left(\frac{1}{\epsilon_{r}} \nabla \times \vec{H}\right)-k_{0}^{2} \mu_{r} \vec{H}\right] d S=0
$$

- First order absorbing boundary conditions on $A-B-F-E-A$
- Performing Galerkin testing

The standard FEM recipe: deterministic solver

2D vector FE basis functions \vec{W}

Maxwell's equations in weak form:

$$
\int \vec{W} \cdot\left[\nabla \times\left(\frac{1}{\epsilon_{r}} \nabla \times \vec{H}\right)-k_{0}^{2} \mu_{r} \vec{H}\right] d S=0
$$

- First order absorbing boundary conditions on $A-B-F-E-A$
- Performing Galerkin testing

$$
\begin{aligned}
A \mathbf{u} & =\mathbf{b}, A \in \mathbb{C}^{m \times m}, \mathbf{u}, \mathbf{b} \in \mathbb{C}^{m}, \\
A_{p q} & =\sum_{e} \alpha_{e, p q}\left(\vec{r}_{e}\right)+\delta_{p q} \nu_{p}\left(\vec{r}_{p}\right), \\
b_{p} & =\tau_{p}\left(\vec{r}_{p}\right), \quad \text { where } \\
\vec{r}_{e} & =\left(x_{i}, x_{j}, x_{k}, y_{i}, y_{j}, y_{k}\right), e^{\mathrm{th}} \text { ele } \\
\vec{r}_{p} & =\left(x_{i}, x_{j}, y_{i}, y_{j}\right), p^{\text {th }} \text { edge }
\end{aligned}
$$

The standard FEM recipe: deterministic solver

Quantity of interest: radar cross-section $\sigma_{2 D}=\lim _{r \rightarrow \infty} 2 \pi r\left|\frac{E_{z}^{f}}{E_{z}^{i}}\right|^{2}$
$E_{z}^{f}(\vec{r})=\sqrt{\frac{k_{0}}{8 \pi}} \frac{e^{-i\left(k_{0} r-\pi / 4\right)}}{\sqrt{r}} \times \oint \hat{z} \cdot\left(\hat{r} \times \vec{M}\left(\overrightarrow{r^{\prime}}\right)+Z_{0} \mu_{r} \hat{r} \times \hat{r} \times \vec{J}\left(\overrightarrow{r^{\prime}}\right)\right) e^{i k_{0} \hat{r} \cdot \vec{r}^{\prime}} d l^{\prime}$
© Start with a "blank" mesh:
rough surface is flat
(2) Deform mesh "virtually" using

KL expansion for rough surface
(3) Compute $\sigma_{2 D}$ for this mesh

- Reset the mesh and go to (2)
till convergence (≈ 100 times)

The standard FEM recipe: deterministic solver

Quantity of interest: radar cross-section $\sigma_{2 D}=\lim _{r \rightarrow \infty} 2 \pi r\left|\frac{E_{z}^{f}}{E_{z}^{i}}\right|^{2}$ $E_{z}^{f}(\vec{r})=\sqrt{\frac{k_{0}}{8 \pi}} \frac{e^{-i\left(k_{0} r-\pi / 4\right)}}{\sqrt{r}} \times \oint \hat{z} \cdot\left(\hat{r} \times \vec{M}\left(\overrightarrow{r^{\prime}}\right)+Z_{0} \mu_{r} \hat{r} \times \hat{r} \times \vec{J}\left(\overrightarrow{r^{\prime}}\right)\right) e^{i k_{0} \hat{r} \cdot \vec{r}^{\prime}} d l^{\prime}$
(1) Start with a "blank" mesh: rough surface is flat
(2) Deform mesh "virtually" using KL expansion for rough surface
(- Reset the mesh and go to (2)
till convergence (≈ 100 times)

The standard FEM recipe: deterministic solver

Quantity of interest: radar cross-section $\sigma_{2 D}=\lim _{r \rightarrow \infty} 2 \pi r\left|\frac{E_{z}^{f}}{E_{z}^{z}}\right|^{2}$ $E_{z}^{f}(\vec{r})=\sqrt{\frac{k_{0}}{8 \pi}} \frac{e^{-i\left(k_{0} r-\pi / 4\right)}}{\sqrt{r}} \times \oint \hat{z} \cdot\left(\hat{r} \times \vec{M}\left(\overrightarrow{r^{\prime}}\right)+Z_{0} \mu_{r} \hat{r} \times \hat{r} \times \vec{J}\left(r^{\prime}\right)\right) e^{i k_{0} \hat{r} \cdot r^{\prime}} d l^{\prime}$

(1) Start with a "blank" mesh: rough surface is flat
(2) Deform mesh "virtually" using KL expansion for rough surface
(3) Compute $\sigma_{2 D}$ for this mesh
(9) Reset the mesh and go to (2) till convergence (≈ 100 times)

What is deterministic here?

Input to the FEM solver:
(1) Incidence angle, $\epsilon(r)$ for object
(2) Set of d normal $\mathrm{RVs},\left\{z_{k}\right\}$, to use in the KL expansion:

$$
s(x, \theta)=s_{0}(x)+\sum_{k=1}^{d} \sqrt{\eta_{k}} f_{k}(x) z_{k}(\theta)
$$

What is deterministic here?

Input to the FEM solver:
(1) Incidence angle, $\epsilon(r)$ for object
(2) Set of d normal $\mathrm{RVs},\left\{z_{k}\right\}$, to use in the KL expansion:

$$
s(x, \theta)=s_{0}(x)+\sum_{k=1}^{d} \sqrt{\eta_{k}} f_{k}(x) z_{k}(\theta)
$$

The FEM is run for a specified surface, hence "deterministic" solver

- Monte Carlo process converges as $\mathbb{O}\left(1 / \sqrt{n_{m c}}\right)$, independent of d. (Recall: d depends on the correlation length of the surface) i.e. $\langle\sigma\rangle=\sum_{i=1}^{n_{m c}} \sigma\left(\vec{r}, \vec{z}_{i}\right) / n_{m c}$
- Can we keep the same solver, but have faster convergence?

Possibly: Let's try stochastic collocation

What is deterministic here?

Input to the FEM solver:
(1) Incidence angle, $\epsilon(r)$ for object
(2) Set of d normal $\mathrm{RVs},\left\{z_{k}\right\}$, to use in the KL expansion:

$$
s(x, \theta)=s_{0}(x)+\sum_{k=1}^{d} \sqrt{\eta_{k}} f_{k}(x) z_{k}(\theta)
$$

The FEM is run for a specified surface, hence "deterministic" solver

- Monte Carlo process converges as $\mathbb{O}\left(1 / \sqrt{n_{m c}}\right)$, independent of d. (Recall: d depends on the correlation length of the surface) i.e. $\langle\sigma\rangle=\sum_{i=1}^{n_{m c}} \sigma\left(\vec{r}, \vec{z}_{i}\right) / n_{m c}$
- Can we keep the same solver, but have faster convergence?

Possibly: Let's try stochastic collocation

From Monte Carlo to Stochastic Collocation

(1) Construct multivariate pdf of the d random normal variables: $\rho(\vec{z})=\prod_{j=1}^{d} \rho_{j}\left(z_{j}\right)$ over domain $\mathcal{D}^{d}, \mathcal{D}=(-\infty, \infty)$
(2) Express expected value as $\langle\sigma\rangle=\int_{\mathcal{D}^{d}} \sigma(\vec{r}, \vec{z}) \rho(\vec{z}) d \vec{z}$
(3) Consider $n_{s c}$ evals of the above integral at predecided quadrature points, $\overrightarrow{z_{i}}$.
(1) Express $\sigma(\vec{r}, \vec{z})$ in terms of interpolating multivariate polynomials (e.g. Langrage) $\left\{P^{(i)}(\vec{z})\right\}_{i=1}^{d}$ giving $\sigma(\vec{r}, \vec{z})=\sum_{i=1}^{n_{s c}} \sigma\left(\vec{r}, \overrightarrow{z_{i}}\right) P^{(i)}$
Finally, $\langle\sigma\rangle=\sum_{i=1}^{n_{s c}} \sigma\left(\vec{r}, \vec{z}_{i}\right) \alpha_{i}$ where $\alpha_{i}=\int_{\mathcal{D}^{d}} \rho(\vec{z}) P^{(i)}(\vec{z}) d \vec{z}$

From Monte Carlo to Stochastic Collocation

(1) Construct multivariate pdf of the d random normal variables: $\rho(\vec{z})=\prod_{j=1}^{d} \rho_{j}\left(z_{j}\right)$ over domain $\mathcal{D}^{d}, \mathcal{D}=(-\infty, \infty)$
(2) Express expected value as $\langle\sigma\rangle=\int_{\mathcal{D}^{d}} \sigma(\vec{r}, \vec{z}) \rho(\vec{z}) d \vec{z}$
(3) Consider $n_{s c}$ evals of the above integral at predecided quadrature points, $\overrightarrow{z_{i}}$.
(9) Express $\sigma(\vec{r}, \vec{z})$ in terms of interpolating multivariate polynomials (e.g. Langrage) $\left\{P^{(i)}(\vec{z})\right\}_{i=1}^{d}$ giving $\sigma(\vec{r}, \vec{z})=\sum_{i=1}^{n_{s c}} \sigma\left(\vec{r}, \overrightarrow{z_{i}}\right) P^{(i)}(\vec{z})$

From Monte Carlo to Stochastic Collocation

(1) Construct multivariate pdf of the d random normal variables: $\rho(\vec{z})=\prod_{j=1}^{d} \rho_{j}\left(z_{j}\right)$ over domain $\mathcal{D}^{d}, \mathcal{D}=(-\infty, \infty)$
(2) Express expected value as $\langle\sigma\rangle=\int_{\mathcal{D}^{d}} \sigma(\vec{r}, \vec{z}) \rho(\vec{z}) d \vec{z}$
(3) Consider $n_{s c}$ evals of the above integral at predecided quadrature points, $\overrightarrow{z_{i}}$.
(4) Express $\sigma(\vec{r}, \vec{z})$ in terms of interpolating multivariate polynomials (e.g. Langrage) $\left\{P^{(i)}(\vec{z})\right\}_{i=1}^{d}$ giving $\sigma(\vec{r}, \vec{z})=\sum_{i=1}^{n_{s c}} \sigma\left(\vec{r}, \overrightarrow{z_{i}}\right) P^{(i)}(\vec{z})$
(5) Finally, $\langle\sigma\rangle=\sum_{i=1}^{n_{s c}} \sigma\left(\vec{r}, \vec{z}_{i}\right) \alpha_{i}$ where $\alpha_{i}=\int_{\mathcal{D}^{d}} \rho(\vec{z}) P^{(i)}(\vec{z}) d \vec{z}$

Stochastic Collocation for rough surface scattering

SC recipe: $\langle\sigma\rangle=\sum_{i=1}^{n_{\text {sc }}} \sigma\left(\vec{r}, \vec{z}_{i}\right) \alpha_{i}$
This just looks like the old MC formula! $\langle\sigma\rangle=\sum_{i=1}^{n_{m c}} \sigma\left(\vec{r}, \vec{z}_{i}\right) / n_{m c}$
So, we can use the same solver for $\sigma\left(\vec{r}, \vec{z}_{i}\right)$

Results

How many function
evals using sparse grid? $\approx 2^{l} d^{l} / l$
\leftarrow Compare MC and SC for $d=50, l=1$
Evals:
MC=100, SC=101

Stochastic Collocation for rough surface scattering

$$
\text { SC recipe: }\langle\sigma\rangle=\sum_{i=1}^{n_{s c}} \sigma\left(\vec{r}, \vec{z}_{i}\right) \alpha_{i}
$$

This just looks like the old MC formula! $\langle\sigma\rangle=\sum_{i=1}^{n_{m c}} \sigma\left(\vec{r}, \vec{z}_{i}\right) / n_{m c}$
So, we can use the same solver for $\sigma\left(\vec{r}, \vec{z}_{i}\right)$

Results

How many function
evals using sparse grid? $\approx 2^{l} d^{l} / l$
\leftarrow Compare MC and SC for $d=50, l=1$
Evals:
$M C=100, S C=101$

The devil is in the details

For the same surface as before, what happens if you reduce d ?

The devil is in the details

For the same surface as before, what happens if you reduce d ?

\leftarrow Compare MC and SC for $d=20, l=1$
Evals:
$M C=100, S C=41$

Conclusions about Stochastic Collocation

- Given surface needs to be accurately represented by the finite KL expansion, i.e. there is an optimal d.
- For MC, found that ≈ 100 iterations give convergence to within 1dB.
- The cheapest SC would have level $l=1$, giving $n_{s c} \approx 2 d$ \Longrightarrow if the surface requires $d>50, \mathrm{MC}$ is better
- This critical number may decrease if we employ anisotropic sparse grids. Why? KL eigen values decay and not all dims are as important.

Conclusions about Stochastic Collocation

- Given surface needs to be accurately represented by the finite KL expansion, i.e. there is an optimal d.
- For MC, found that ≈ 100 iterations give convergence to within 1 dB .
- The cheapest SC would have level $l=1$, giving $n_{s c} \approx 2 d$ \Longrightarrow if the surface requires $d>50, \mathrm{MC}$ is better
- This critical number may decrease if we employ anisotropic sparse grids. Why? KL eigen values decay and not all dims are as important.

Conclusions about Stochastic Collocation

- Given surface needs to be accurately represented by the finite KL expansion, i.e. there is an optimal d.
- For MC, found that ≈ 100 iterations give convergence to within 1 dB .
- The cheapest SC would have level $l=1$, giving $n_{s c} \approx 2 d$ \Longrightarrow if the surface requires $d>50, \mathrm{MC}$ is better
- This critical number may decrease if we employ anisotropic sparse grids. Why? KL eigen values decay and not all dims are as important.

Moving over to Stochastic Galerkin

- Recall the earlier (scalar) example of $a u=b$, where we replaced $a \rightarrow a_{0}+\alpha \theta$, where θ was a uniform RV.
- In the case of the FEM, we have a sparse matrix equation $\mathrm{Au}=\mathrm{b}$ to solve. Now, $A_{p q}$ must be transformed as per the KL expansion for the surface. Recall:

$$
\begin{aligned}
A_{p q} & =\sum_{e} \alpha_{e, p q}\left(\vec{r}_{e}\right)+\delta_{p q} \nu_{p}\left(\vec{r}_{p}\right), \\
b_{p} & =\tau_{p}\left(\vec{r}_{p}\right), \quad \text { where } \\
\vec{r}_{e} & =\left(x_{i}, x_{j}, x_{k}, y_{i}, y_{j}, y_{k}\right), e^{\text {th }} \text { ele } \\
\vec{r}_{p} & =\left(x_{i}, x_{j}, y_{i}, y_{j}\right), p^{\text {th }} \text { edge }
\end{aligned}
$$

Moving over to Stochastic Galerkin

- Recall the earlier (scalar) example of $a u=b$, where we replaced $a \rightarrow a_{0}+\alpha \theta$, where θ was a uniform RV.
- In the case of the FEM, we have a sparse matrix equation $A \mathbf{u}=\mathbf{b}$ to solve. Now, $A_{p q}$ must be transformed as per the KL expansion for the surface. Recall:

$$
\begin{aligned}
A_{p q} & =\sum_{e} \alpha_{e, p q}\left(\vec{r}_{e}\right)+\delta_{p q} \nu_{p}\left(\vec{r}_{p}\right), \\
b_{p} & =\tau_{p}\left(\vec{r}_{p}\right), \quad \text { where } \\
\vec{r}_{e} & =\left(x_{i}, x_{j}, x_{k}, y_{i}, y_{j}, y_{k}\right), e^{\text {th }} \text { ele } \\
\vec{r}_{p} & =\left(x_{i}, x_{j}, y_{i}, y_{j}\right), p^{\text {th }} \text { edge }
\end{aligned}
$$

Moving over to Stochastic Galerkin

- Recall the earlier (scalar) example of $a u=b$, where we replaced $a \rightarrow a_{0}+\alpha \theta$, where θ was a uniform RV.
- In the case of the FEM, we have a sparse matrix equation $A \mathbf{u}=\mathbf{b}$ to solve. Now, $A_{p q}$ must be transformed as per the KL expansion for the surface. Recall:

$$
\begin{aligned}
A_{p q} & =\sum_{e} \alpha_{e, p q}\left(\vec{r}_{e}\right)+\delta_{p q} \nu_{p}\left(\vec{r}_{p}\right) \\
b_{p} & =\tau_{p}\left(\vec{r}_{p}\right), \quad \text { where } \\
\vec{r}_{e} & =\left(x_{i}, x_{j}, x_{k}, y_{i}, y_{j}, y_{k}\right), e^{\text {th }} \text { ele } \\
\vec{r}_{p} & =\left(x_{i}, x_{j}, y_{i}, y_{j}\right), p^{\mathrm{th}} \text { edge }
\end{aligned}
$$

Use our mesh deformation scheme, which transformed $y \rightarrow y+\Delta y$.
This leads to $A_{p q} \rightarrow \tilde{A}_{p q}, b_{p} \rightarrow \tilde{b}_{p}$

Steps in Stochastic Galerkin

(1) Accomplish the perturbations by Taylor expanding to second order:
($1^{\text {st }}, 2^{\text {nd }}$ derivatives are computed by finite differences)

$$
\begin{aligned}
& \tilde{A}_{p q}=\beta_{p q}+\sum_{i=1}^{d} \beta_{p q}^{(i)} z_{i}+\sum_{i, j=1}^{d} \beta_{p q}^{(i, j)} z_{i} z_{j}, \leftarrow \text { matrices } m \times m \\
& \tilde{b}_{p}=\zeta_{p}+\sum_{i=1}^{d} \zeta_{p}^{(i)} z_{i}, \leftarrow \text { vectors } m \times 1
\end{aligned}
$$

(3) Now do Galerkin testing in the basis of orthogonal polynomials corresponding to the PDF of the RVs:

- Expand each $u \rightarrow \sum_{i=1}^{w} u_{i} \Psi_{i}(\vec{z})$
- Take inner products with $\Psi_{i}(\vec{z})$ on both sides of $A \mathrm{u}=\mathrm{b}$
(3) Resulted in another bigger system of equations:

Steps in Stochastic Galerkin

(1) Accomplish the perturbations by Taylor expanding to second order:
($1^{\text {st }}, 2^{\text {nd }}$ derivatives are computed by finite differences)

$$
\begin{aligned}
& \tilde{A}_{p q}=\beta_{p q}+\sum_{i=1}^{d} \beta_{p q}^{(i)} z_{i}+\sum_{i, j=1}^{d} \beta_{p q}^{(i, j)} z_{i} z_{j}, \leftarrow \text { matrices } m \times m \\
& \tilde{b}_{p}=\zeta_{p}+\sum_{i=1}^{d} \zeta_{p}^{(i)} z_{i}, \leftarrow \text { vectors } m \times 1
\end{aligned}
$$

(2) Now do Galerkin testing in the basis of orthogonal polynomials corresponding to the PDF of the RVs:

- Expand each $u \rightarrow \sum_{i=1}^{w} u_{i} \Psi_{i}(\vec{z})$
- Take inner products with $\Psi_{i}(\vec{z})$ on both sides of $A \mathbf{u}=\mathbf{b}$
(3) Resulted in another bigger system of equations:

Steps in Stochastic Galerkin

(1) Accomplish the perturbations by Taylor expanding to second order:
($1^{\text {st }}, 2^{\text {nd }}$ derivatives are computed by finite differences)

$$
\begin{aligned}
& \tilde{A}_{p q}=\beta_{p q}+\sum_{i=1}^{d} \beta_{p q}^{(i)} z_{i}+\sum_{i, j=1}^{d} \beta_{p q}^{(i, j)} z_{i} z_{j}, \leftarrow \text { matrices } m \times m \\
& \tilde{b}_{p}=\zeta_{p}+\sum_{i=1}^{d} \zeta_{p}^{(i)} z_{i}, \leftarrow \text { vectors } m \times 1
\end{aligned}
$$

(2) Now do Galerkin testing in the basis of orthogonal polynomials corresponding to the PDF of the RVs:

- Expand each $u \rightarrow \sum_{i=1}^{w} u_{i} \Psi_{i}(\vec{z})$
- Take inner products with $\Psi_{i}(\vec{z})$ on both sides of $A \mathbf{u}=\mathbf{b}$
(3) Resulted in another bigger system of equations:

$$
F \mathbf{v}=\mathbf{g}, F \in \mathbb{C}^{m w \times m w}, \mathbf{v}, \mathbf{g} \in \mathbb{C}^{m w}
$$

Details of Stochastic Galerkin

- What is a the structure of: $F \mathbf{v}=\mathbf{g}, F \in \mathbb{C}^{m w \times m w}, \mathbf{v}, \mathbf{g} \in \mathbb{C}^{m w}$

- Each block is sparse, multiplied by stochastic inner products like: $E_{a b}=\left\langle\Psi_{a}(\vec{z}) \Psi_{b}(\vec{z})\right\rangle$ $E_{a b}^{(i)}=\left\langle\Psi_{a}(\vec{z}) z_{i} \Psi_{b}(\vec{z})\right\rangle$, $E_{a b}^{(i, j)}=\left\langle\Psi_{a}(\vec{z}) z_{i} z_{j} \Psi_{b}(\vec{z})\right\rangle$, - Needs to be solved only once

Once we solve this equation, we get an expression for the far field, and from that we get the RCS as $\left.\left.\langle | E^{f}(\vec{r})\right|^{2}\right\rangle$.

Details of Stochastic Galerkin

- What is a the structure of: $F \mathbf{v}=\mathbf{g}, F \in \mathbb{C}^{m w \times m w}, \mathbf{v}, \mathbf{g} \in \mathbb{C}^{m w}$

- Each block is sparse, multiplied by stochastic inner products like: $E_{a b}=\left\langle\Psi_{a}(\vec{z}) \Psi_{b}(\vec{z})\right\rangle$,

$$
\begin{aligned}
& E_{a b}^{(i)}=\left\langle\Psi_{a}(\vec{z}) z_{i} \Psi_{b}(\vec{z})\right\rangle \\
& E_{a b}^{(i, j)}=\left\langle\Psi_{a}(\vec{z}) z_{i} z_{j} \Psi_{b}(\vec{z})\right\rangle
\end{aligned}
$$

- Needs to be solved only once and from that we get the RCS as

Details of Stochastic Galerkin

- What is a the structure of: $F \mathbf{v}=\mathbf{g}, F \in \mathbb{C}^{m w \times m w}, \mathbf{v}, \mathbf{g} \in \mathbb{C}^{m w}$

$m w$
- Each block is sparse, multiplied by stochastic inner products like: $E_{a b}=\left\langle\Psi_{a}(\vec{z}) \Psi_{b}(\vec{z})\right\rangle$,

$$
E_{a b}^{(i)}=\left\langle\Psi_{a}(\vec{z}) z_{i} \Psi_{b}(\vec{z})\right\rangle
$$

$$
E_{a b}^{(i, j)}=\left\langle\Psi_{a}(\vec{z}) z_{i} z_{j} \Psi_{b}(\vec{z})\right\rangle,
$$

- Needs to be solved only once

Once we solve this equation, we get an expression for the far field, and from that we get the RCS as $\left.\left.\langle | E^{f}(\vec{r})\right|^{2}\right\rangle$.

Computational details of Stochastic Galerkin

In solving $F \mathbf{v}=\mathbf{g}, F \in \mathbb{C}^{m w \times m w}, \mathbf{v}, \mathbf{g} \in \mathbb{C}^{m w}$

- Not a "cheap" computation: direct matrix solvers, use an iterative method: $\mathrm{BiCgStab}+$ block-diagonal, mean-based pre-conditioner
- The matrix F is never stored explicitly, instead we only need to be able to compute the product of F with another vector for the iterative method to work
- Compute times and memory demands are still much higher than MC/SC. Scope for lot of research in sparse data structures for $F, \mathrm{~g}$

SG-gPC	MC
1200s (10 iters), 10 GB RAM	950s (100 surfaces), 150 MB RAM

Computational details of Stochastic Galerkin

In solving $F \mathbf{v}=\mathbf{g}, F \in \mathbb{C}^{m w \times m w}, \mathbf{v}, \mathbf{g} \in \mathbb{C}^{m w}$

- Not a "cheap" computation: direct matrix solvers, use an iterative method: $\mathrm{BiCgStab}+$ block-diagonal, mean-based pre-conditioner
- The matrix F is never stored explicitly, instead we only need to be able to compute the product of F with another vector for the iterative method to work
- Compute times and memory demands are still much higher than MC/SC. Scope for lot of research in sparse data structures for $F, \mathrm{~g}$

SG-gPC	MC
1200s (10 iters), 10 GB RAM	950s (100 surfaces), 150 MB RAM

Computational details of Stochastic Galerkin

In solving $F \mathbf{v}=\mathbf{g}, F \in \mathbb{C}^{m w \times m w}, \mathbf{v}, \mathbf{g} \in \mathbb{C}^{m w}$

- Not a "cheap" computation: direct matrix solvers, use an iterative method: $\mathrm{BiCgStab}+$ block-diagonal, mean-based pre-conditioner
- The matrix F is never stored explicitly, instead we only need to be able to compute the product of F with another vector for the iterative method to work
- Compute times and memory demands are still much higher than MC/SC. Scope for lot of research in sparse data structures for F, \mathbf{g}

SG-gPC	MC
1200s (10 iters), 10 GB RAM	950s (100 surfaces), 150 MB RAM

Computational details of Stochastic Galerkin

In solving $F \mathbf{v}=\mathbf{g}, F \in \mathbb{C}^{m w \times m w}, \mathbf{v}, \mathbf{g} \in \mathbb{C}^{m w}$

- How do we choose the number of edges in the FEM formulation, m ? Horizontally: Long enough to capture several correlation lengths Vertically: Sufficient for boundary conditions to be accurate
- How many basis functions to keep, w? Recall: $\Psi_{\mathbf{i}}(\vec{z})=\psi_{i_{1}}\left(z_{1}\right) \ldots \psi_{i_{d}}\left(z_{d}\right), \quad 0 \leq \mathbf{i}=\sum_{j=1}^{d} i_{j} \leq n$ (max degree) belong to the space \mathbb{P}_{n}^{d} of dimension $w=\binom{n+d}{n}$ Choose d : no of $K L$ terms till eigenvalue falls by $1 / 10$ Choose n : depends on available computer resources

Computational details of Stochastic Galerkin

In solving $F \mathbf{v}=\mathbf{g}, F \in \mathbb{C}^{m w \times m w}, \mathbf{v}, \mathbf{g} \in \mathbb{C}^{m w}$

- How do we choose the number of edges in the FEM formulation, m ?

Horizontally: Long enough to capture several correlation lengths
Vertically: Sufficient for boundary conditions to be accurate

- How many basis functions to keep, w ? Recall:
$\Psi_{\mathbf{i}}(\vec{z})=\psi_{i_{1}}\left(z_{1}\right) \ldots \psi_{i_{d}}\left(z_{d}\right), \quad 0 \leq \mathbf{i}=\sum_{j=1}^{d} i_{j} \leq n(\max$ degree $)$
belong to the space \mathbb{P}_{n}^{d} of dimension $w=\binom{n+d}{n}$
Choose d : no of KL terms till eigenvalue falls by $1 / 10$
Choose n : depends on available computer resources

Computational details of Stochastic Galerkin

In solving $F \mathbf{v}=\mathbf{g}, F \in \mathbb{C}^{m w \times m w}, \mathbf{v}, \mathbf{g} \in \mathbb{C}^{m w}$

- How do we choose the number of edges in the FEM formulation, m ?

Horizontally: Long enough to capture several correlation lengths
Vertically: Sufficient for boundary conditions to be accurate

- How many basis functions to keep, w ? Recall:
$\Psi_{\mathbf{i}}(\vec{z})=\psi_{i_{1}}\left(z_{1}\right) \ldots \psi_{i_{d}}\left(z_{d}\right), \quad 0 \leq \mathbf{i}=\sum_{j=1}^{d} i_{j} \leq n$ (max degree)
belong to the space \mathbb{P}_{n}^{d} of dimension $w=\binom{n+d}{n}$
Choose d : no of KL terms till eigenvalue falls by $1 / 10$
Choose n : depends on available computer resources

Values of $d \mathrm{v} / \mathrm{s}$ surface length (a) and correlation length (l)

$\downarrow l \backslash \mathrm{a} \rightarrow$	15	30
1	15	29
0.5	29	58

Compare Stochastic Galerkin with Monte Carlo

$$
h=0.05 /(2 \pi) \quad h=0.20 /(2 \pi)
$$

$$
\theta_{i}=40^{\circ}, \epsilon_{r}=4-j, a=20, l=1, \lambda=1 \quad d=15, n=1
$$

Reflections

- SG-gPC is a deal breaker for even small values of d \rightarrow Computational innovation required
- For small-moderate values of d, (e.g. $d<50$) SC methods are a powerful alternative to MC \rightarrow Can be improved by anisotropic sparse grids.
- For higher values of d, MC is the still optimal \rightarrow Can be improved by Markov chain monte carlo

Reflections

- SG-gPC is a deal breaker for even small values of d
\rightarrow Computational innovation required
- For small-moderate values of d, (e.g. $d<50$) SC methods are a powerful alternative to MC
\rightarrow Can be improved by anisotropic sparse grids.
- For higher values of d, MC is the still optimal
\rightarrow Can be improved by Markov chain monte carlo

Reflections

- SG-gPC is a deal breaker for even small values of d
\rightarrow Computational innovation required
- For small-moderate values of d, (e.g. $d<50$) SC methods are a powerful alternative to MC
\rightarrow Can be improved by anisotropic sparse grids.
- For higher values of d, MC is the still optimal
\rightarrow Can be improved by Markov chain monte carlo

Thanks!

Most of this talk was based on:
"Stochastic Solutions to Rough Surface Scattering using the finite element method", Uday K Khankhoje and Shreyas Padhy; IEEE Transactions on Antennas and Propagation, 65(08) 2017.

Refer to http://www.ee.iitm.ac.in/uday for full-text of relevant papers. Or just Google my name.

E-mail: uday@ee.iitm.ac.in

Aside: Why is Guass quadrature so effective?

- To approximate $\int f(x) w(x) d x$ by an n-point rule, express $f(x)$ in terms of: nth order polynomial $p_{n}(x)$, a quotient $q(x)$ (degree $<n$), \& a remainder $r(x)($ degree $<n)$:

$$
\begin{equation*}
f(x)=q(x) * p_{n}(x)+r(x) \tag{1}
\end{equation*}
$$

- Integrate w.r.t. $w(x)$, and use orthogonality property of $p_{n}(x)$: we get $\int f(x) w(x) d x=\int r(x) w(x) d x$. Next, construct a $n-1$ degree polynomial from n points (Lagrange interpolation) and get:
- Here's where the choice of points x_{i} is crucial: If x_{i} is a root of $p_{n}(x)$, then from (1) it follows that $f\left(x_{i}\right)=r\left(x_{i}\right)$ and from (2) that
- Thus we say that Gauss quadrature is accurate to order $2 n-1$

Aside: Why is Guass quadrature so effective?

- To approximate $\int f(x) w(x) d x$ by an n-point rule, express $f(x)$ in terms of: nth order polynomial $p_{n}(x)$, a quotient $q(x)$ (degree $<n$), \& a remainder $r(x)($ degree $<n)$:

$$
\begin{equation*}
f(x)=q(x) * p_{n}(x)+r(x) \tag{1}
\end{equation*}
$$

- Integrate w.r.t. $w(x)$, and use orthogonality property of $p_{n}(x)$: we get $\int f(x) w(x) d x=\int r(x) w(x) d x$. Next, construct a $n-1$ degree polynomial from n points (Lagrange interpolation) and get:

$$
\begin{equation*}
\int f(x) w(x) d x=\sum_{i=1}^{n} r\left(x_{i}\right) \int w(x) L_{i}(x) d x=\sum_{i=1}^{n} r\left(x_{i}\right) \alpha_{i} \tag{2}
\end{equation*}
$$

- Here's where the choice of points x_{i} is crucial: If x_{i} is a root of $p_{n}(x)$, then from (1) it follows that $f\left(x_{i}\right)=r\left(x_{i}\right)$ and from (2) that: - Thus we say that Gauss quadrature is accurate to order $2 n-1$

Aside: Why is Guass quadrature so effective?

- To approximate $\int f(x) w(x) d x$ by an n-point rule, express $f(x)$ in terms of: nth order polynomial $p_{n}(x)$, a quotient $q(x)$ (degree $<n$), \& a remainder $r(x)($ degree $<n)$:

$$
\begin{equation*}
f(x)=q(x) * p_{n}(x)+r(x) \tag{1}
\end{equation*}
$$

- Integrate w.r.t. $w(x)$, and use orthogonality property of $p_{n}(x)$: we get $\int f(x) w(x) d x=\int r(x) w(x) d x$. Next, construct a $n-1$ degree polynomial from n points (Lagrange interpolation) and get:

$$
\begin{equation*}
\int f(x) w(x) d x=\sum_{i=1}^{n} r\left(x_{i}\right) \int w(x) L_{i}(x) d x=\sum_{i=1}^{n} r\left(x_{i}\right) \alpha_{i} \tag{2}
\end{equation*}
$$

- Here's where the choice of points x_{i} is crucial: If x_{i} is a root of $p_{n}(x)$, then from (1) it follows that $f\left(x_{i}\right)=r\left(x_{i}\right)$ and from (2) that:

$$
\begin{equation*}
\int f(x) w(x) d x=\sum_{i=1}^{n} f\left(x_{i}\right) \alpha_{i} \tag{3}
\end{equation*}
$$

Aside: Why is Guass quadrature so effective?

- To approximate $\int f(x) w(x) d x$ by an n-point rule, express $f(x)$ in terms of: nth order polynomial $p_{n}(x)$, a quotient $q(x)$ (degree $<n$), \& a remainder $r(x)($ degree $<n)$:

$$
\begin{equation*}
f(x)=q(x) * p_{n}(x)+r(x) \tag{1}
\end{equation*}
$$

- Integrate w.r.t. $w(x)$, and use orthogonality property of $p_{n}(x)$: we get $\int f(x) w(x) d x=\int r(x) w(x) d x$. Next, construct a $n-1$ degree polynomial from n points (Lagrange interpolation) and get:

$$
\begin{equation*}
\int f(x) w(x) d x=\sum_{i=1}^{n} r\left(x_{i}\right) \int w(x) L_{i}(x) d x=\sum_{i=1}^{n} r\left(x_{i}\right) \alpha_{i} \tag{2}
\end{equation*}
$$

- Here's where the choice of points x_{i} is crucial: If x_{i} is a root of $p_{n}(x)$, then from (1) it follows that $f\left(x_{i}\right)=r\left(x_{i}\right)$ and from (2) that:

$$
\begin{equation*}
\int f(x) w(x) d x=\sum_{i=1}^{n} f\left(x_{i}\right) \alpha_{i} \tag{3}
\end{equation*}
$$

- Thus we say that Gauss quadrature is accurate to order $2 n-1$

[^0]: ${ }^{a}$ Khankhoje et al. "Computation of radar scattering from heterogeneous rough soil using the finite element method", 2013 IEEE TGRS
 ${ }^{b}$ Khankhoje et al. "Stochastic Solutions to Rough Surface Scattering using the finite element method", 2017 IEEE TAP

