
Simulating with uncertainty :
the rough surface scattering problem

Uday Khankhoje

Assistant Professor, Electrical Engineering
Indian Institute of Technology Madras

Uday Khankhoje (EE, IITM) Simulating with uncertainty 0 / 36

A problem often encountered in numerical analysis

1 A simulation, σ(x), x ∈ D is computationally expensive

2 The input x or the domain D displays uncertainty,

e.g. in simulating the modes of an optical fibre, the refractive index

might not be exactly known, or the boundary may be rough

In this light, more useful than σ(x) is the expectation 〈σ(x)〉
Std. dev. in σ(x) due to parameter uncertainty also interesting

Uday Khankhoje (EE, IITM) Simulating with uncertainty 1 / 36

A problem often encountered in numerical analysis

1 A simulation, σ(x), x ∈ D is computationally expensive

2 The input x or the domain D displays uncertainty,

e.g. in simulating the modes of an optical fibre, the refractive index

might not be exactly known, or the boundary may be rough

In this light, more useful than σ(x) is the expectation 〈σ(x)〉
Std. dev. in σ(x) due to parameter uncertainty also interesting

Uday Khankhoje (EE, IITM) Simulating with uncertainty 1 / 36

A problem often encountered in numerical analysis

1 A simulation, σ(x), x ∈ D is computationally expensive

2 The input x or the domain D displays uncertainty,

e.g. in simulating the modes of an optical fibre, the refractive index

might not be exactly known, or the boundary may be rough

In this light, more useful than σ(x) is the expectation 〈σ(x)〉
Std. dev. in σ(x) due to parameter uncertainty also interesting

Uday Khankhoje (EE, IITM) Simulating with uncertainty 1 / 36

Computing the expectation and standard deviation

Assumptions

Setup: d-dimensional x = [x1, x2, . . . , xd]

Each xi is mutually independent, distributed with known pdf ρi

Construct a multi-variate pdf, ρ(x) =
∏n
i=1 ρi(xi)

Quantities of interest

Expectation 〈σ(x)〉 =

∫
D
σ(x)ρ(x)dx

Std. dev. ∆σ(x) =

√∫
D

(σ(x)− 〈σ(x)〉)2ρ(x)dx

Uday Khankhoje (EE, IITM) Simulating with uncertainty 2 / 36

Computing the expectation and standard deviation

Assumptions

Setup: d-dimensional x = [x1, x2, . . . , xd]

Each xi is mutually independent, distributed with known pdf ρi

Construct a multi-variate pdf, ρ(x) =
∏n
i=1 ρi(xi)

Quantities of interest

Expectation 〈σ(x)〉 =

∫
D
σ(x)ρ(x)dx

Std. dev. ∆σ(x) =

√∫
D

(σ(x)− 〈σ(x)〉)2ρ(x)dx

Uday Khankhoje (EE, IITM) Simulating with uncertainty 2 / 36

Any problem with 〈σ(x)〉 =
∫
D σ(x)ρ(x)dx?

Yes!

σ(x) is only known numerically.

Recall: σ(x) is the output of an (possibly expensive) simulation

Monte Carlo method

The most commonly used method to estimate expectation.

Instantiate several xi’s and approximate 〈σ(x)〉 =
∑n

i=1
1
nσ(xi)

Convergence rate: independent of d, but slow O(1√
n

)

Extra: Create a histogram from σ(xi) values to estimate pdf of σ.

Objective of this talk: Discuss alternatives to Monte Carlo

Uday Khankhoje (EE, IITM) Simulating with uncertainty 3 / 36

Any problem with 〈σ(x)〉 =
∫
D σ(x)ρ(x)dx?

Yes!

σ(x) is only known numerically.

Recall: σ(x) is the output of an (possibly expensive) simulation

Monte Carlo method

The most commonly used method to estimate expectation.

Instantiate several xi’s and approximate 〈σ(x)〉 =
∑n

i=1
1
nσ(xi)

Convergence rate: independent of d, but slow O(1√
n

)

Extra: Create a histogram from σ(xi) values to estimate pdf of σ.

Objective of this talk: Discuss alternatives to Monte Carlo

Uday Khankhoje (EE, IITM) Simulating with uncertainty 3 / 36

Any problem with 〈σ(x)〉 =
∫
D σ(x)ρ(x)dx?

Yes!

σ(x) is only known numerically.

Recall: σ(x) is the output of an (possibly expensive) simulation

Monte Carlo method

The most commonly used method to estimate expectation.

Instantiate several xi’s and approximate 〈σ(x)〉 =
∑n

i=1
1
nσ(xi)

Convergence rate: independent of d, but slow O(1√
n

)

Extra: Create a histogram from σ(xi) values to estimate pdf of σ.

Objective of this talk: Discuss alternatives to Monte Carlo

Uday Khankhoje (EE, IITM) Simulating with uncertainty 3 / 36

The alternatives to Monte Carlo

Broadly, two families of methods will be discussed:

1 Galerkin Polynomial Chaos (gPC)

Need to code a new solver, works for small range of d values

2 Stochastic Collocation (SC)

Uses an existing solver, works for small–medium range of d values

Attractive, because compatible with commercial software

What about Monte Carlo?

Use for benchmarking and for large range of d values

Uday Khankhoje (EE, IITM) Simulating with uncertainty 4 / 36

The alternatives to Monte Carlo

Broadly, two families of methods will be discussed:

1 Galerkin Polynomial Chaos (gPC)

Need to code a new solver, works for small range of d values

2 Stochastic Collocation (SC)

Uses an existing solver, works for small–medium range of d values

Attractive, because compatible with commercial software

What about Monte Carlo?

Use for benchmarking and for large range of d values

Uday Khankhoje (EE, IITM) Simulating with uncertainty 4 / 36

Start with Stochastic Collocation: Polynomial interpolation

For simplicity, consider a 1-D case of the simulation, σ(x)

Polynomial interpolation and integration

Choose n-points to evaluate σ(x) and construct a n− 1 degree

polynomial (Lagrange interpolation): σn−1(x) =
∑n

i=1 σ(xi)Li(x)

Recall, Li(x) =
∏n
j=1,j 6=i(x− xj)/(xi − xj)

Compute expectation as

〈σ(x)〉 ≈
∑n

i=1 σ(xi)
∫
Li(x)ρ(x)dx =

∑n
i=1 σ(xi)αi

αi can be pre-computed, and 〈σ(x)〉 is accurate to order n− 1.

Can we do better?

Uday Khankhoje (EE, IITM) Simulating with uncertainty 5 / 36

Start with Stochastic Collocation: Polynomial interpolation

For simplicity, consider a 1-D case of the simulation, σ(x)

Polynomial interpolation and integration

Choose n-points to evaluate σ(x) and construct a n− 1 degree

polynomial (Lagrange interpolation): σn−1(x) =
∑n

i=1 σ(xi)Li(x)

Recall, Li(x) =
∏n
j=1,j 6=i(x− xj)/(xi − xj)

Compute expectation as

〈σ(x)〉 ≈
∑n

i=1 σ(xi)
∫
Li(x)ρ(x)dx =

∑n
i=1 σ(xi)αi

αi can be pre-computed, and 〈σ(x)〉 is accurate to order n− 1.

Can we do better?

Uday Khankhoje (EE, IITM) Simulating with uncertainty 5 / 36

Start with Stochastic Collocation: Polynomial interpolation

For simplicity, consider a 1-D case of the simulation, σ(x)

Polynomial interpolation and integration

Choose n-points to evaluate σ(x) and construct a n− 1 degree

polynomial (Lagrange interpolation): σn−1(x) =
∑n

i=1 σ(xi)Li(x)

Recall, Li(x) =
∏n
j=1,j 6=i(x− xj)/(xi − xj)

Compute expectation as

〈σ(x)〉 ≈
∑n

i=1 σ(xi)
∫
Li(x)ρ(x)dx =

∑n
i=1 σ(xi)αi

αi can be pre-computed, and 〈σ(x)〉 is accurate to order n− 1.

Can we do better?

Uday Khankhoje (EE, IITM) Simulating with uncertainty 5 / 36

Stochastic Collocation: Gaussian quadrature

Yes! Gaussian quadrature

Use the theory of orthogonal polynomials, i.e. find polynomials

s.t.
∫
pm(x)pn(x)ρ(x)dx = δm,n

Pick the n points, {xi} to be roots of nth degree polynomial, pn(x)

This also gives 〈σ(x)〉 ≈
∑n

i=1 σ(xi)αi, but now integral is accurate

to order 2n− 1

Common orthogonal polynomials

Legendre, x ∈ [−1, 1], ρ(x) = 1.

Jacobi, x ∈ (−1, 1), ρ(x) = (1− x)α(1 + x)β, α, β > −1.

Hermite, x ∈ (−∞,∞), ρ(x) = e−x
2
.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 6 / 36

Stochastic Collocation: Gaussian quadrature

Yes! Gaussian quadrature

Use the theory of orthogonal polynomials, i.e. find polynomials

s.t.
∫
pm(x)pn(x)ρ(x)dx = δm,n

Pick the n points, {xi} to be roots of nth degree polynomial, pn(x)

This also gives 〈σ(x)〉 ≈
∑n

i=1 σ(xi)αi, but now integral is accurate

to order 2n− 1

Common orthogonal polynomials

Legendre, x ∈ [−1, 1], ρ(x) = 1.

Jacobi, x ∈ (−1, 1), ρ(x) = (1− x)α(1 + x)β, α, β > −1.

Hermite, x ∈ (−∞,∞), ρ(x) = e−x
2
.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 6 / 36

Stochastic Collocation: Gaussian quadrature

Yes! Gaussian quadrature

Use the theory of orthogonal polynomials, i.e. find polynomials

s.t.
∫
pm(x)pn(x)ρ(x)dx = δm,n

Pick the n points, {xi} to be roots of nth degree polynomial, pn(x)

This also gives 〈σ(x)〉 ≈
∑n

i=1 σ(xi)αi, but now integral is accurate

to order 2n− 1

Common orthogonal polynomials

Legendre, x ∈ [−1, 1], ρ(x) = 1.

Jacobi, x ∈ (−1, 1), ρ(x) = (1− x)α(1 + x)β, α, β > −1.

Hermite, x ∈ (−∞,∞), ρ(x) = e−x
2
.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 6 / 36

But our problem is d-dimensional!

Solution: Extend one-dimensional Gaussian quadrature to d dimensions

With x = [xi, x2, . . . , xd], express σ(x) =
∏d
i=1 σi(xi) (implicitly)

The integral splits up:
∫
σ(x)ρ(x)dx =

∏
i

∫
σi(xi)ρi(xi)dxi

Apply n-point Gaussian quadrature (GQ) in each dimension:

〈σ(x)〉 =
∏d
i=1

∑n
j=1 σi(xi,j)αj . Combine the σi’s to get σ(xk).

An example in 2D (x, y) and a 2-point GQ in each dimension:

〈σ(x, y)〉 = [σx(x1)α1 + σx(x2)α2][σy(y1)α1 + σy(y2)α2] =

σ(x1, y1)α1,1 + σ(x1, y2)α1,2 + σ(x2, y1)α2,1 + σ(x2, y2)α2,2

All dimensions are multiplied: called the tensor product rule

Uday Khankhoje (EE, IITM) Simulating with uncertainty 7 / 36

But our problem is d-dimensional!

Solution: Extend one-dimensional Gaussian quadrature to d dimensions

With x = [xi, x2, . . . , xd], express σ(x) =
∏d
i=1 σi(xi) (implicitly)

The integral splits up:
∫
σ(x)ρ(x)dx =

∏
i

∫
σi(xi)ρi(xi)dxi

Apply n-point Gaussian quadrature (GQ) in each dimension:

〈σ(x)〉 =
∏d
i=1

∑n
j=1 σi(xi,j)αj . Combine the σi’s to get σ(xk).

An example in 2D (x, y) and a 2-point GQ in each dimension:

〈σ(x, y)〉 = [σx(x1)α1 + σx(x2)α2][σy(y1)α1 + σy(y2)α2] =

σ(x1, y1)α1,1 + σ(x1, y2)α1,2 + σ(x2, y1)α2,1 + σ(x2, y2)α2,2

All dimensions are multiplied: called the tensor product rule

Uday Khankhoje (EE, IITM) Simulating with uncertainty 7 / 36

But our problem is d-dimensional!

Solution: Extend one-dimensional Gaussian quadrature to d dimensions

With x = [xi, x2, . . . , xd], express σ(x) =
∏d
i=1 σi(xi) (implicitly)

The integral splits up:
∫
σ(x)ρ(x)dx =

∏
i

∫
σi(xi)ρi(xi)dxi

Apply n-point Gaussian quadrature (GQ) in each dimension:

〈σ(x)〉 =
∏d
i=1

∑n
j=1 σi(xi,j)αj . Combine the σi’s to get σ(xk).

An example in 2D (x, y) and a 2-point GQ in each dimension:

〈σ(x, y)〉 = [σx(x1)α1 + σx(x2)α2][σy(y1)α1 + σy(y2)α2] =

σ(x1, y1)α1,1 + σ(x1, y2)α1,2 + σ(x2, y1)α2,1 + σ(x2, y2)α2,2

All dimensions are multiplied: called the tensor product rule

Uday Khankhoje (EE, IITM) Simulating with uncertainty 7 / 36

Visualizing the tensor product rule

E.g. function evaluation points in a 2D

5-point GQ (25 evals) : Denote as 〈σ〉5,5
Curse of dimensionality is clear: number of

function evaluations = nd

Can we do better?

x

y

Theorem: (Mysovskikh 1968, Möller 1976)

To attain a polynomial exactness equal to m, the (optimal) required

number of grid-points has lower and upper bounds given by

Nmin =

(
d+ bmc/2
bmc/2

)
≤ Nopt ≤

(
d+m

m

)
= Nmax

Uday Khankhoje (EE, IITM) Simulating with uncertainty 8 / 36

Visualizing the tensor product rule

E.g. function evaluation points in a 2D

5-point GQ (25 evals) : Denote as 〈σ〉5,5
Curse of dimensionality is clear: number of

function evaluations = nd

Can we do better?

x

y

Theorem: (Mysovskikh 1968, Möller 1976)

To attain a polynomial exactness equal to m, the (optimal) required

number of grid-points has lower and upper bounds given by

Nmin =

(
d+ bmc/2
bmc/2

)
≤ Nopt ≤

(
d+m

m

)
= Nmax

Uday Khankhoje (EE, IITM) Simulating with uncertainty 8 / 36

Visualizing the tensor product rule

E.g. function evaluation points in a 2D

5-point GQ (25 evals) : Denote as 〈σ〉5,5
Curse of dimensionality is clear: number of

function evaluations = nd

Can we do better?

x

y

Theorem: (Mysovskikh 1968, Möller 1976)

To attain a polynomial exactness equal to m, the (optimal) required

number of grid-points has lower and upper bounds given by

Nmin =

(
d+ bmc/2
bmc/2

)
≤ Nopt ≤

(
d+m

m

)
= Nmax

Uday Khankhoje (EE, IITM) Simulating with uncertainty 8 / 36

Sparse Grids: Smolyak (1963)

1 Every 〈σ〉i,j is an approximation to the actual integral, 〈σ〉
2 Introduce a “level” parameter k = (i+ j) and let the max level be

denoted by l = max{k}

Telescope a series of different levels to approximate 〈σ〉

e.g. (Max) level l = 4:
〈σ〉 ≈ [〈σ〉3,1 + 〈σ〉1,3 + 〈σ〉2,2]k=4 − [〈σ〉2,1 + 〈σ〉1,2]k=3

e.g. (Max) level l = 5:
〈σ〉 ≈ [〈σ〉3,2 + 〈σ〉2,3 + 〈σ〉1,4 + 〈σ〉4,1]− [〈σ〉3,1 + 〈σ〉1,3 + 〈σ〉2,2]

As the max level increases, approximation becomes better

Uday Khankhoje (EE, IITM) Simulating with uncertainty 9 / 36

Sparse Grids: Smolyak (1963)

1 Every 〈σ〉i,j is an approximation to the actual integral, 〈σ〉
2 Introduce a “level” parameter k = (i+ j) and let the max level be

denoted by l = max{k}

Telescope a series of different levels to approximate 〈σ〉

e.g. (Max) level l = 4:
〈σ〉 ≈ [〈σ〉3,1 + 〈σ〉1,3 + 〈σ〉2,2]k=4 − [〈σ〉2,1 + 〈σ〉1,2]k=3

e.g. (Max) level l = 5:
〈σ〉 ≈ [〈σ〉3,2 + 〈σ〉2,3 + 〈σ〉1,4 + 〈σ〉4,1]− [〈σ〉3,1 + 〈σ〉1,3 + 〈σ〉2,2]

As the max level increases, approximation becomes better

Uday Khankhoje (EE, IITM) Simulating with uncertainty 9 / 36

Sparse Grids: Smolyak (1963)

1 Every 〈σ〉i,j is an approximation to the actual integral, 〈σ〉
2 Introduce a “level” parameter k = (i+ j) and let the max level be

denoted by l = max{k}

Telescope a series of different levels to approximate 〈σ〉

e.g. (Max) level l = 4:
〈σ〉 ≈ [〈σ〉3,1 + 〈σ〉1,3 + 〈σ〉2,2]k=4 − [〈σ〉2,1 + 〈σ〉1,2]k=3

e.g. (Max) level l = 5:
〈σ〉 ≈ [〈σ〉3,2 + 〈σ〉2,3 + 〈σ〉1,4 + 〈σ〉4,1]− [〈σ〉3,1 + 〈σ〉1,3 + 〈σ〉2,2]

As the max level increases, approximation becomes better

Uday Khankhoje (EE, IITM) Simulating with uncertainty 9 / 36

Sparse Grids: Smolyak (1963)

1 Every 〈σ〉i,j is an approximation to the actual integral, 〈σ〉
2 Introduce a “level” parameter k = (i+ j) and let the max level be

denoted by l = max{k}

Telescope a series of different levels to approximate 〈σ〉

e.g. (Max) level l = 4:
〈σ〉 ≈ [〈σ〉3,1 + 〈σ〉1,3 + 〈σ〉2,2]k=4 − [〈σ〉2,1 + 〈σ〉1,2]k=3

e.g. (Max) level l = 5:
〈σ〉 ≈ [〈σ〉3,2 + 〈σ〉2,3 + 〈σ〉1,4 + 〈σ〉4,1]− [〈σ〉3,1 + 〈σ〉1,3 + 〈σ〉2,2]

As the max level increases, approximation becomes better

Uday Khankhoje (EE, IITM) Simulating with uncertainty 9 / 36

Visualizing the sparse grid rule

〈σ〉 ≈ [〈σ〉3,1 + 〈σ〉1,3 + 〈σ〉2,2]k=4 − [〈σ〉2,1 + 〈σ〉1,2]k=3

Sparse Grid Points

+ + -

+ =

13 Points (SG) v/s 25 points (TP)!

Tensor Grid Points

Substantial
savings in
higher dims

Uday Khankhoje (EE, IITM) Simulating with uncertainty 10 / 36

Visualizing the sparse grid rule

〈σ〉 ≈ [〈σ〉3,1 + 〈σ〉1,3 + 〈σ〉2,2]k=4 − [〈σ〉2,1 + 〈σ〉1,2]k=3

Sparse Grid Points

+ + -

+ =

13 Points (SG) v/s 25 points (TP)!

Tensor Grid Points

Substantial
savings in
higher dims

Uday Khankhoje (EE, IITM) Simulating with uncertainty 10 / 36

Visualizing the sparse grid rule

〈σ〉 ≈ [〈σ〉3,1 + 〈σ〉1,3 + 〈σ〉2,2]k=4 − [〈σ〉2,1 + 〈σ〉1,2]k=3

Sparse Grid Points

+ + -

+ =

13 Points (SG) v/s 25 points (TP)!

Tensor Grid Points

Substantial
savings in
higher dims

Uday Khankhoje (EE, IITM) Simulating with uncertainty 10 / 36

Sparse Grid rule: finer points

TP rule: 〈σ〉 =
∑n1

i1=1 . . .
∑nd

id=1 σ(xi1 , . . . , xid)αi1 . . . αid
= (Qn1 ×Qn2 × . . .×Qnd)[σ]
ni point quadrature in the ith dim;

∏
ni ≈ nd points

SG rule: With max level l, and k = k1 + k2 + . . .+ kd:
〈σ〉 =

∑
l−d+1≤k≤l

(−1)l−k
(
d−1
l−k
)
(Qk1 ×Qk2 × . . .×Qkd)[σ]

ki point quadrature in the ith dim; ≈ 2ldl/l! points

Nested quadrature rules (e.g. Clenshaw-Curtis, Gauss-Konrad)
re-use fn evaluation points between levels.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 11 / 36

Sparse Grid rule: finer points

TP rule: 〈σ〉 =
∑n1

i1=1 . . .
∑nd

id=1 σ(xi1 , . . . , xid)αi1 . . . αid
= (Qn1 ×Qn2 × . . .×Qnd)[σ]
ni point quadrature in the ith dim;

∏
ni ≈ nd points

SG rule: With max level l, and k = k1 + k2 + . . .+ kd:
〈σ〉 =

∑
l−d+1≤k≤l

(−1)l−k
(
d−1
l−k
)
(Qk1 ×Qk2 × . . .×Qkd)[σ]

ki point quadrature in the ith dim; ≈ 2ldl/l! points

Nested quadrature rules (e.g. Clenshaw-Curtis, Gauss-Konrad)
re-use fn evaluation points between levels.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 11 / 36

Sparse Grid rule: finer points

TP rule: 〈σ〉 =
∑n1

i1=1 . . .
∑nd

id=1 σ(xi1 , . . . , xid)αi1 . . . αid
= (Qn1 ×Qn2 × . . .×Qnd)[σ]
ni point quadrature in the ith dim;

∏
ni ≈ nd points

SG rule: With max level l, and k = k1 + k2 + . . .+ kd:
〈σ〉 =

∑
l−d+1≤k≤l

(−1)l−k
(
d−1
l−k
)
(Qk1 ×Qk2 × . . .×Qkd)[σ]

ki point quadrature in the ith dim; ≈ 2ldl/l! points

Nested quadrature rules (e.g. Clenshaw-Curtis, Gauss-Konrad)
re-use fn evaluation points between levels.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 11 / 36

Switching gears: from sampling to projection

The two methods (Monte Carlo, Stochastic Collocation) considered so far
were of a “sampling” kind: 〈σ〉 estimated using samples of σ(x).

Projection based approach: Overview of Galerkin method

Governing equation: Θf(x) = g(x), where Θ is an operator, g is a

known function, and f is to be determined.

Project f in a known basis, {φj}: f(x) =
∑

j ujφj(x)

Take an inner product with the same basis functions on both sides to

get:
∑

j〈φi(x),Θφj(x)〉uj = 〈φi(x), g(x)〉. BC used to simplify.

This is a system of equations; solve for u and get f .

Straightforward when x is spatio-temporal. But when stochastic?

Uday Khankhoje (EE, IITM) Simulating with uncertainty 12 / 36

Switching gears: from sampling to projection

The two methods (Monte Carlo, Stochastic Collocation) considered so far
were of a “sampling” kind: 〈σ〉 estimated using samples of σ(x).

Projection based approach: Overview of Galerkin method

Governing equation: Θf(x) = g(x), where Θ is an operator, g is a

known function, and f is to be determined.

Project f in a known basis, {φj}: f(x) =
∑

j ujφj(x)

Take an inner product with the same basis functions on both sides to

get:
∑

j〈φi(x),Θφj(x)〉uj = 〈φi(x), g(x)〉. BC used to simplify.

This is a system of equations; solve for u and get f .

Straightforward when x is spatio-temporal. But when stochastic?

Uday Khankhoje (EE, IITM) Simulating with uncertainty 12 / 36

Switching gears: from sampling to projection

The two methods (Monte Carlo, Stochastic Collocation) considered so far
were of a “sampling” kind: 〈σ〉 estimated using samples of σ(x).

Projection based approach: Overview of Galerkin method

Governing equation: Θf(x) = g(x), where Θ is an operator, g is a

known function, and f is to be determined.

Project f in a known basis, {φj}: f(x) =
∑

j ujφj(x)

Take an inner product with the same basis functions on both sides to

get:
∑

j〈φi(x),Θφj(x)〉uj = 〈φi(x), g(x)〉. BC used to simplify.

This is a system of equations; solve for u and get f .

Straightforward when x is spatio-temporal. But when stochastic?

Uday Khankhoje (EE, IITM) Simulating with uncertainty 12 / 36

Switching gears: from sampling to projection

The two methods (Monte Carlo, Stochastic Collocation) considered so far
were of a “sampling” kind: 〈σ〉 estimated using samples of σ(x).

Projection based approach: Overview of Galerkin method

Governing equation: Θf(x) = g(x), where Θ is an operator, g is a

known function, and f is to be determined.

Project f in a known basis, {φj}: f(x) =
∑

j ujφj(x)

Take an inner product with the same basis functions on both sides to

get:
∑

j〈φi(x),Θφj(x)〉uj = 〈φi(x), g(x)〉. BC used to simplify.

This is a system of equations; solve for u and get f .

Straightforward when x is spatio-temporal. But when stochastic?

Uday Khankhoje (EE, IITM) Simulating with uncertainty 12 / 36

generalized Polynomial Chaos (gPC): a very brief history

Polynomial Chaos (PC): coined by Norbert Wiener studying Gaussian

stochastic processes (1938). Used Hermite polynomials as basis.

Ghanem (1998) used theory of Wiener-Hermite PC to represent

random processes in an orthogonal basis of Hermite polynomials.

Xiu, Karniadakis (2002) generalize to non-Gaussian using other

orthogonal polynomials, wavelets, etc: generalized PC (gPC)

Finally, solve the gPC system of equations using galerkin projection:
stochastic galerkin (SG) method.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 13 / 36

generalized Polynomial Chaos (gPC): a very brief history

Polynomial Chaos (PC): coined by Norbert Wiener studying Gaussian

stochastic processes (1938). Used Hermite polynomials as basis.

Ghanem (1998) used theory of Wiener-Hermite PC to represent

random processes in an orthogonal basis of Hermite polynomials.

Xiu, Karniadakis (2002) generalize to non-Gaussian using other

orthogonal polynomials, wavelets, etc: generalized PC (gPC)

Finally, solve the gPC system of equations using galerkin projection:
stochastic galerkin (SG) method.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 13 / 36

generalized Polynomial Chaos (gPC): a very brief history

Polynomial Chaos (PC): coined by Norbert Wiener studying Gaussian

stochastic processes (1938). Used Hermite polynomials as basis.

Ghanem (1998) used theory of Wiener-Hermite PC to represent

random processes in an orthogonal basis of Hermite polynomials.

Xiu, Karniadakis (2002) generalize to non-Gaussian using other

orthogonal polynomials, wavelets, etc: generalized PC (gPC)

Finally, solve the gPC system of equations using galerkin projection:
stochastic galerkin (SG) method.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 13 / 36

The basis functions in gPC

Start with a RV, call it z as before. Let it have a distribution

function, Fz(θ) = P (z ≤ θ) and a pdf ρ(θ) s.t. dFz(θ) = ρ(θ)dθ

The generalized Polynomial Chaos basis functions are orthogonal

basis functions, ψi(z), satisfying :

〈ψi(z)ψj(z)〉 =
∫
ψi(θ)ψj(θ)ρ(θ)dθ = γiδij

Construct linear space of polynomials of degree at most n: Pn(z)

Various kinds depending on ρ(θ)

Legendre, θ ∈ [−1, 1], ρ(θ) = 1/2.

Jacobi, θ ∈ (−1, 1), ρ(θ) = (1− θ)α(1 + θ)β , α, β > −1.

Hermite, θ ∈ (−∞,∞), ρ(θ) = e−θ
2

.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 14 / 36

The basis functions in gPC

Start with a RV, call it z as before. Let it have a distribution

function, Fz(θ) = P (z ≤ θ) and a pdf ρ(θ) s.t. dFz(θ) = ρ(θ)dθ

The generalized Polynomial Chaos basis functions are orthogonal

basis functions, ψi(z), satisfying :

〈ψi(z)ψj(z)〉 =
∫
ψi(θ)ψj(θ)ρ(θ)dθ = γiδij

Construct linear space of polynomials of degree at most n: Pn(z)

Various kinds depending on ρ(θ)

Legendre, θ ∈ [−1, 1], ρ(θ) = 1/2.

Jacobi, θ ∈ (−1, 1), ρ(θ) = (1− θ)α(1 + θ)β , α, β > −1.

Hermite, θ ∈ (−∞,∞), ρ(θ) = e−θ
2

.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 14 / 36

The basis functions in gPC

Start with a RV, call it z as before. Let it have a distribution

function, Fz(θ) = P (z ≤ θ) and a pdf ρ(θ) s.t. dFz(θ) = ρ(θ)dθ

The generalized Polynomial Chaos basis functions are orthogonal

basis functions, ψi(z), satisfying :

〈ψi(z)ψj(z)〉 =
∫
ψi(θ)ψj(θ)ρ(θ)dθ = γiδij

Construct linear space of polynomials of degree at most n: Pn(z)

Various kinds depending on ρ(θ)

Legendre, θ ∈ [−1, 1], ρ(θ) = 1/2.

Jacobi, θ ∈ (−1, 1), ρ(θ) = (1− θ)α(1 + θ)β , α, β > −1.

Hermite, θ ∈ (−∞,∞), ρ(θ) = e−θ
2

.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 14 / 36

A scalar example of gPC-SG

Consider: a simple equation in one unknown, u: a u = b

Now: Let the system parameters a, b have some uncertainty,

e.g. a(θ) = a0 + αθ, where θ is a uniform RV in [−0.5, 0.5].

In this case what is 〈u〉 or 〈u2〉?

Expand: solution in the ψ basis – u(θ) =
∑n

j=1 ujψj(θ)

Do: Galerkin testing with the same basis functions:

Get a system of equations, where we solve for u: Au = b, where

Aij = 〈ψi(θ)a0ψj(θ) + ψi(θ)αθψj(θ)〉 = a0γiδij + α〈ψi(θ)θψj(θ)〉
and bj = 〈ψi(θ)b(θ)〉

So: 〈u〉 =
∫
u(θ)ρ(θ)dθ =

∑
i ui〈ψi(θ)〉 and 〈u2〉 =

∑
i u

2
i γi.

=⇒ std. dev. in u can be computed :
√
〈u2〉 − 〈u〉2

=⇒ uncertainty quantified!

Uday Khankhoje (EE, IITM) Simulating with uncertainty 15 / 36

A scalar example of gPC-SG

Consider: a simple equation in one unknown, u: a u = b

Now: Let the system parameters a, b have some uncertainty,

e.g. a(θ) = a0 + αθ, where θ is a uniform RV in [−0.5, 0.5].

In this case what is 〈u〉 or 〈u2〉?

Expand: solution in the ψ basis – u(θ) =
∑n

j=1 ujψj(θ)

Do: Galerkin testing with the same basis functions:

Get a system of equations, where we solve for u: Au = b, where

Aij = 〈ψi(θ)a0ψj(θ) + ψi(θ)αθψj(θ)〉 = a0γiδij + α〈ψi(θ)θψj(θ)〉
and bj = 〈ψi(θ)b(θ)〉

So: 〈u〉 =
∫
u(θ)ρ(θ)dθ =

∑
i ui〈ψi(θ)〉 and 〈u2〉 =

∑
i u

2
i γi.

=⇒ std. dev. in u can be computed :
√
〈u2〉 − 〈u〉2

=⇒ uncertainty quantified!

Uday Khankhoje (EE, IITM) Simulating with uncertainty 15 / 36

A scalar example of gPC-SG

Consider: a simple equation in one unknown, u: a u = b

Now: Let the system parameters a, b have some uncertainty,

e.g. a(θ) = a0 + αθ, where θ is a uniform RV in [−0.5, 0.5].

In this case what is 〈u〉 or 〈u2〉?

Expand: solution in the ψ basis – u(θ) =
∑n

j=1 ujψj(θ)

Do: Galerkin testing with the same basis functions:

Get a system of equations, where we solve for u: Au = b, where

Aij = 〈ψi(θ)a0ψj(θ) + ψi(θ)αθψj(θ)〉 = a0γiδij + α〈ψi(θ)θψj(θ)〉
and bj = 〈ψi(θ)b(θ)〉

So: 〈u〉 =
∫
u(θ)ρ(θ)dθ =

∑
i ui〈ψi(θ)〉 and 〈u2〉 =

∑
i u

2
i γi.

=⇒ std. dev. in u can be computed :
√
〈u2〉 − 〈u〉2

=⇒ uncertainty quantified!

Uday Khankhoje (EE, IITM) Simulating with uncertainty 15 / 36

Random inputs? (More than just a collection of RVs!)

Example: A random surface – adjacent points are not independent of each
other, there is some correlation:

x

y

The

Kosambi-Karhunen-Loeve (KL) expansion is widely used to represent

random processes: s(x, θ) = s0(x) +
∑∞

k=1

√
ηkfk(x)zk(θ)

s0(x) is the mean of the random process

η, f solve this eigenvalue problem:
∫
C(i, j)fk(j)dj = ηkfk(i) where

C(i, j) = cov(zi, zj) is the correlation between two RVs, zi, zj

z(θ) represents mutually uncorrelated normal RVs (〈zk〉 = 0)

Expansion truncated to d terms in practice

Uday Khankhoje (EE, IITM) Simulating with uncertainty 16 / 36

Random inputs? (More than just a collection of RVs!)

Example: A random surface – adjacent points are not independent of each
other, there is some correlation:

x

y

The

Kosambi-Karhunen-Loeve (KL) expansion is widely used to represent

random processes: s(x, θ) = s0(x) +
∑∞

k=1

√
ηkfk(x)zk(θ)

s0(x) is the mean of the random process

η, f solve this eigenvalue problem:
∫
C(i, j)fk(j)dj = ηkfk(i) where

C(i, j) = cov(zi, zj) is the correlation between two RVs, zi, zj

z(θ) represents mutually uncorrelated normal RVs (〈zk〉 = 0)

Expansion truncated to d terms in practice

Uday Khankhoje (EE, IITM) Simulating with uncertainty 16 / 36

Random inputs? (More than just a collection of RVs!)

Example: A random surface – adjacent points are not independent of each
other, there is some correlation:

x

y

The

Kosambi-Karhunen-Loeve (KL) expansion is widely used to represent

random processes: s(x, θ) = s0(x) +
∑∞

k=1

√
ηkfk(x)zk(θ)

s0(x) is the mean of the random process

η, f solve this eigenvalue problem:
∫
C(i, j)fk(j)dj = ηkfk(i) where

C(i, j) = cov(zi, zj) is the correlation between two RVs, zi, zj

z(θ) represents mutually uncorrelated normal RVs (〈zk〉 = 0)

Expansion truncated to d terms in practice

Uday Khankhoje (EE, IITM) Simulating with uncertainty 16 / 36

Random inputs? (More than just a collection of RVs!)

Example: A random surface – adjacent points are not independent of each
other, there is some correlation:

x

y

The

Kosambi-Karhunen-Loeve (KL) expansion is widely used to represent

random processes: s(x, θ) = s0(x) +
∑∞

k=1

√
ηkfk(x)zk(θ)

s0(x) is the mean of the random process

η, f solve this eigenvalue problem:
∫
C(i, j)fk(j)dj = ηkfk(i) where

C(i, j) = cov(zi, zj) is the correlation between two RVs, zi, zj

z(θ) represents mutually uncorrelated normal RVs (〈zk〉 = 0)

Expansion truncated to d terms in practice

Uday Khankhoje (EE, IITM) Simulating with uncertainty 16 / 36

KL expansion for exponential correlation

s(x, θ) = s0(x) +
∑∞

k=1

√
ηkfk(x)zk(θ)

KL expansion eigenvalues and
functions can be analytically
calculated in some cases, e.g.
exponential correlation function
C(i, j) = exp(−|i− j|/l),
(correlation length l).

Decay rate of eigenvalues
depends inversely on the
correlation length =⇒
more RVs for smaller l.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 17 / 36

KL expansion for exponential correlation

s(x, θ) = s0(x) +
∑∞

k=1

√
ηkfk(x)zk(θ)

KL expansion eigenvalues and
functions can be analytically
calculated in some cases, e.g.
exponential correlation function
C(i, j) = exp(−|i− j|/l),
(correlation length l).

Decay rate of eigenvalues
depends inversely on the
correlation length =⇒
more RVs for smaller l.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 17 / 36

KL expansion for exponential correlation

s(x, θ) = s0(x) +
∑∞

k=1

√
ηkfk(x)zk(θ)

KL expansion eigenvalues and
functions can be analytically
calculated in some cases, e.g.
exponential correlation function
C(i, j) = exp(−|i− j|/l),
(correlation length l).

Decay rate of eigenvalues
depends inversely on the
correlation length =⇒
more RVs for smaller l.

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Eigenvalue number

E
ig

en
va

lu
es

l = 2

l = 1

l = 0.5

Uday Khankhoje (EE, IITM) Simulating with uncertainty 17 / 36

The case of multiple random variables with correlation

Consider again the random rough surface ...

x

y

given by the KL expansion: s(x, θ) = s0(x) +
∑d

k=1

√
ηkfk(x)zk(θ)

consists of multiple random variables, zi.

Multivariate gPC (i.e. tensor product of univariate gPC)

Ψi(~z) = ψi1(z1) . . . ψid(zd), 0 ≤
∑d

j=1 ij ≤ n (max degree)

where i = (i1, . . . , d): indices, ~z = (z1, . . . , zd) RVs

Belong to the space Pdn of dimension w =
(
n+d
n

)
As in univariate case, proceed by Galerkin method and

compute mean, variance, etc

Uday Khankhoje (EE, IITM) Simulating with uncertainty 18 / 36

The case of multiple random variables with correlation

Consider again the random rough surface ...

x

y

given by the KL expansion: s(x, θ) = s0(x) +
∑d

k=1

√
ηkfk(x)zk(θ)

consists of multiple random variables, zi.

Multivariate gPC (i.e. tensor product of univariate gPC)

Ψi(~z) = ψi1(z1) . . . ψid(zd), 0 ≤
∑d

j=1 ij ≤ n (max degree)

where i = (i1, . . . , d): indices, ~z = (z1, . . . , zd) RVs

Belong to the space Pdn of dimension w =
(
n+d
n

)
As in univariate case, proceed by Galerkin method and

compute mean, variance, etc

Uday Khankhoje (EE, IITM) Simulating with uncertainty 18 / 36

The case of multiple random variables with correlation

Consider again the random rough surface ...

x

y

given by the KL expansion: s(x, θ) = s0(x) +
∑d

k=1

√
ηkfk(x)zk(θ)

consists of multiple random variables, zi.

Multivariate gPC (i.e. tensor product of univariate gPC)

Ψi(~z) = ψi1(z1) . . . ψid(zd), 0 ≤
∑d

j=1 ij ≤ n (max degree)

where i = (i1, . . . , d): indices, ~z = (z1, . . . , zd) RVs

Belong to the space Pdn of dimension w =
(
n+d
n

)
As in univariate case, proceed by Galerkin method and

compute mean, variance, etc

Uday Khankhoje (EE, IITM) Simulating with uncertainty 18 / 36

Changing gears ...

So far ...

This completes an overview of stochastic computation:

1 Monte Carlo (MC)

2 Stochastic Collocation (SC)

3 Stochastic Galerkin (SG) using generalized Polynomial Chaos

Moving on ...

To make matters more concrete, consider the problem of computing the
electromagnetic scattering from a random rough surface:
e.g. seen in microwave remote sensing, [MC]a, [SC,SG]b

aKhankhoje et al. ”Computation of radar scattering from heterogeneous
rough soil using the finite element method”, 2013 IEEE TGRS

bKhankhoje et al. ”Stochastic Solutions to Rough Surface Scattering using
the finite element method”, 2017 IEEE TAP

Uday Khankhoje (EE, IITM) Simulating with uncertainty 19 / 36

Changing gears ...

So far ...

This completes an overview of stochastic computation:

1 Monte Carlo (MC)

2 Stochastic Collocation (SC)

3 Stochastic Galerkin (SG) using generalized Polynomial Chaos

Moving on ...

To make matters more concrete, consider the problem of computing the
electromagnetic scattering from a random rough surface:
e.g. seen in microwave remote sensing, [MC]a, [SC,SG]b

aKhankhoje et al. ”Computation of radar scattering from heterogeneous
rough soil using the finite element method”, 2013 IEEE TGRS

bKhankhoje et al. ”Stochastic Solutions to Rough Surface Scattering using
the finite element method”, 2017 IEEE TAP

Uday Khankhoje (EE, IITM) Simulating with uncertainty 19 / 36

Traditional FEM setup for rough surface scattering

Random rough surface instance generated, and the domain meshed

Based on incident field, Radar cross-section (RCS) computed

Above steps repeated for several (≈ 100) instances

Quite inefficient!

Uday Khankhoje (EE, IITM) Simulating with uncertainty 20 / 36

Traditional FEM setup for rough surface scattering

Random rough surface instance generated, and the domain meshed

Based on incident field, Radar cross-section (RCS) computed

Above steps repeated for several (≈ 100) instances

Quite inefficient!

Uday Khankhoje (EE, IITM) Simulating with uncertainty 20 / 36

Traditional FEM setup for rough surface scattering

Random rough surface instance generated, and the domain meshed

Based on incident field, Radar cross-section (RCS) computed

Above steps repeated for several (≈ 100) instances

Quite inefficient!

Uday Khankhoje (EE, IITM) Simulating with uncertainty 20 / 36

Handle the rough surface intelligently

Note that the mesh need only change near the surface ...

C D

A B

E F

ℎ𝑡

ℎ𝑏

Γ P Q
𝐸𝑖

Partition the domain into parts
that can move, and those that
need not

Let s(x) define rough surface
(e.g. KL expansion)

Move each node smoothly within
‘sandwich’ region: y → y + ∆y

∆y =

{
s(x)(ht−yht

), 0 < y < ht

s(x)(y+hbhb
),−hb < y < 0

CD will deform to rough surface

Zero deformation by the time
y = ht or y = −hb

Uday Khankhoje (EE, IITM) Simulating with uncertainty 21 / 36

Handle the rough surface intelligently

Note that the mesh need only change near the surface ...

C D

A B

E F

ℎ𝑡

ℎ𝑏

Γ P Q
𝐸𝑖

Partition the domain into parts
that can move, and those that
need not

Let s(x) define rough surface
(e.g. KL expansion)

Move each node smoothly within
‘sandwich’ region: y → y + ∆y

∆y =

{
s(x)(ht−yht

), 0 < y < ht

s(x)(y+hbhb
),−hb < y < 0

CD will deform to rough surface

Zero deformation by the time
y = ht or y = −hb

Uday Khankhoje (EE, IITM) Simulating with uncertainty 21 / 36

Handle the rough surface intelligently

Note that the mesh need only change near the surface ...

C D

A B

E F

ℎ𝑡

ℎ𝑏

Γ P Q
𝐸𝑖

Partition the domain into parts
that can move, and those that
need not

Let s(x) define rough surface
(e.g. KL expansion)

Move each node smoothly within
‘sandwich’ region: y → y + ∆y

∆y =

{
s(x)(ht−yht

), 0 < y < ht

s(x)(y+hbhb
),−hb < y < 0

CD will deform to rough surface

Zero deformation by the time
y = ht or y = −hb

Uday Khankhoje (EE, IITM) Simulating with uncertainty 21 / 36

Handle the rough surface intelligently

Note that the mesh need only change near the surface ...

C D

A B

E F

ℎ𝑡

ℎ𝑏

Γ P Q
𝐸𝑖

Partition the domain into parts
that can move, and those that
need not

Let s(x) define rough surface
(e.g. KL expansion)

Move each node smoothly within
‘sandwich’ region: y → y + ∆y

∆y =

{
s(x)(ht−yht

), 0 < y < ht

s(x)(y+hbhb
),−hb < y < 0

CD will deform to rough surface

Zero deformation by the time
y = ht or y = −hb

Uday Khankhoje (EE, IITM) Simulating with uncertainty 21 / 36

The standard FEM recipe: deterministic solver

2D vector FE basis functions ~W

C D

A B

E F

ℎ𝑡

ℎ𝑏

Γ P Q
𝐸𝑖

Maxwell’s equations in weak form:∫
~W · [∇× (1

εr
∇× ~H)− k20µr ~H] dS = 0

First order absorbing boundary

conditions on A−B − F − E −A
Performing Galerkin testing

Au = b, A ∈ Cm×m,u,b ∈ Cm,
Apq = Σ

e
αe,pq(~re) + δpq νp(~rp),

bp = τp(~rp), where

~re = (xi, xj , xk, yi, yj , yk), e
thele

~rp = (xi, xj , yi, yj), p
thedge

Uday Khankhoje (EE, IITM) Simulating with uncertainty 22 / 36

The standard FEM recipe: deterministic solver

2D vector FE basis functions ~W

C D

A B

E F

ℎ𝑡

ℎ𝑏

Γ P Q
𝐸𝑖

Maxwell’s equations in weak form:∫
~W · [∇× (1

εr
∇× ~H)− k20µr ~H] dS = 0

First order absorbing boundary

conditions on A−B − F − E −A
Performing Galerkin testing

Au = b, A ∈ Cm×m,u,b ∈ Cm,
Apq = Σ

e
αe,pq(~re) + δpq νp(~rp),

bp = τp(~rp), where

~re = (xi, xj , xk, yi, yj , yk), e
thele

~rp = (xi, xj , yi, yj), p
thedge

Uday Khankhoje (EE, IITM) Simulating with uncertainty 22 / 36

The standard FEM recipe: deterministic solver

2D vector FE basis functions ~W

C D

A B

E F

ℎ𝑡

ℎ𝑏

Γ P Q
𝐸𝑖

Maxwell’s equations in weak form:∫
~W · [∇× (1

εr
∇× ~H)− k20µr ~H] dS = 0

First order absorbing boundary

conditions on A−B − F − E −A
Performing Galerkin testing

Au = b, A ∈ Cm×m,u,b ∈ Cm,
Apq = Σ

e
αe,pq(~re) + δpq νp(~rp),

bp = τp(~rp), where

~re = (xi, xj , xk, yi, yj , yk), e
thele

~rp = (xi, xj , yi, yj), p
thedge

Uday Khankhoje (EE, IITM) Simulating with uncertainty 22 / 36

The standard FEM recipe: deterministic solver

Quantity of interest: radar cross-section σ2D = lim
r→∞

2πr
∣∣∣EfzEiz ∣∣∣2

Efz (~r) =
√

k0
8π

e−i(k0r−π/4)√
r

×
∮
ẑ · (r̂× ~M(~r′) +Z0µrr̂× r̂× ~J(~r′))eik0r̂·

~r′dl′

1 Start with a “blank” mesh:
rough surface is flat

2 Deform mesh “virtually” using
KL expansion for rough surface

3 Compute σ2D for this mesh

4 Reset the mesh and go to (2)
till convergence (≈ 100 times)

Uday Khankhoje (EE, IITM) Simulating with uncertainty 23 / 36

The standard FEM recipe: deterministic solver

Quantity of interest: radar cross-section σ2D = lim
r→∞

2πr
∣∣∣EfzEiz ∣∣∣2

Efz (~r) =
√

k0
8π

e−i(k0r−π/4)√
r

×
∮
ẑ · (r̂× ~M(~r′) +Z0µrr̂× r̂× ~J(~r′))eik0r̂·

~r′dl′

1 Start with a “blank” mesh:
rough surface is flat

2 Deform mesh “virtually” using
KL expansion for rough surface

3 Compute σ2D for this mesh

4 Reset the mesh and go to (2)
till convergence (≈ 100 times)

Uday Khankhoje (EE, IITM) Simulating with uncertainty 23 / 36

The standard FEM recipe: deterministic solver

Quantity of interest: radar cross-section σ2D = lim
r→∞

2πr
∣∣∣EfzEiz ∣∣∣2

Efz (~r) =
√

k0
8π

e−i(k0r−π/4)√
r

×
∮
ẑ · (r̂× ~M(~r′) +Z0µrr̂× r̂× ~J(~r′))eik0r̂·

~r′dl′

−60 −40 −20 0 20 40 60
−40

−30

−20

−10

0

10

20

Scattering Angle (θ)

R
C

S
 (

dB
)

SPM

FEM

1 Start with a “blank” mesh:
rough surface is flat

2 Deform mesh “virtually” using
KL expansion for rough surface

3 Compute σ2D for this mesh

4 Reset the mesh and go to (2)
till convergence (≈ 100 times)

Uday Khankhoje (EE, IITM) Simulating with uncertainty 23 / 36

What is deterministic here?

Input to the FEM solver:

1 Incidence angle, ε(r) for object

2 Set of d normal RVs, {zk}, to use in the KL expansion:

s(x, θ) = s0(x) +
∑d

k=1

√
ηkfk(x)zk(θ)

The FEM is run for a specified surface, hence “deterministic” solver

Monte Carlo process converges as O(1/
√
nmc), independent of d.

(Recall: d depends on the correlation length of the surface)

i.e. 〈σ〉 =
∑nmc

i=1 σ(~r, ~zi)/nmc

Can we keep the same solver, but have faster convergence?

Possibly: Let’s try stochastic collocation

Uday Khankhoje (EE, IITM) Simulating with uncertainty 24 / 36

What is deterministic here?

Input to the FEM solver:

1 Incidence angle, ε(r) for object

2 Set of d normal RVs, {zk}, to use in the KL expansion:

s(x, θ) = s0(x) +
∑d

k=1

√
ηkfk(x)zk(θ)

The FEM is run for a specified surface, hence “deterministic” solver

Monte Carlo process converges as O(1/
√
nmc), independent of d.

(Recall: d depends on the correlation length of the surface)

i.e. 〈σ〉 =
∑nmc

i=1 σ(~r, ~zi)/nmc

Can we keep the same solver, but have faster convergence?

Possibly: Let’s try stochastic collocation

Uday Khankhoje (EE, IITM) Simulating with uncertainty 24 / 36

What is deterministic here?

Input to the FEM solver:

1 Incidence angle, ε(r) for object

2 Set of d normal RVs, {zk}, to use in the KL expansion:

s(x, θ) = s0(x) +
∑d

k=1

√
ηkfk(x)zk(θ)

The FEM is run for a specified surface, hence “deterministic” solver

Monte Carlo process converges as O(1/
√
nmc), independent of d.

(Recall: d depends on the correlation length of the surface)

i.e. 〈σ〉 =
∑nmc

i=1 σ(~r, ~zi)/nmc

Can we keep the same solver, but have faster convergence?

Possibly: Let’s try stochastic collocation

Uday Khankhoje (EE, IITM) Simulating with uncertainty 24 / 36

From Monte Carlo to Stochastic Collocation

1 Construct multivariate pdf of the d random normal variables:

ρ(~z) =
∏d
j=1 ρj(zj) over domain Dd, D = (−∞,∞)

2 Express expected value as 〈σ〉 =
∫
Dd σ(~r, ~z)ρ(~z)d~z

3 Consider nsc evals of the above integral at predecided quadrature

points, ~zi.

4 Express σ(~r, ~z) in terms of interpolating multivariate polynomials

(e.g. Langrage) {P (i)(~z)}di=1 giving σ(~r, ~z) =
∑nsc

i=1 σ(~r, ~zi)P
(i)(~z)

5 Finally, 〈σ〉 =
∑nsc

i=1 σ(~r, ~zi)αi where αi =
∫
Dd ρ(~z)P (i)(~z)d~z

Uday Khankhoje (EE, IITM) Simulating with uncertainty 25 / 36

From Monte Carlo to Stochastic Collocation

1 Construct multivariate pdf of the d random normal variables:

ρ(~z) =
∏d
j=1 ρj(zj) over domain Dd, D = (−∞,∞)

2 Express expected value as 〈σ〉 =
∫
Dd σ(~r, ~z)ρ(~z)d~z

3 Consider nsc evals of the above integral at predecided quadrature

points, ~zi.

4 Express σ(~r, ~z) in terms of interpolating multivariate polynomials

(e.g. Langrage) {P (i)(~z)}di=1 giving σ(~r, ~z) =
∑nsc

i=1 σ(~r, ~zi)P
(i)(~z)

5 Finally, 〈σ〉 =
∑nsc

i=1 σ(~r, ~zi)αi where αi =
∫
Dd ρ(~z)P (i)(~z)d~z

Uday Khankhoje (EE, IITM) Simulating with uncertainty 25 / 36

From Monte Carlo to Stochastic Collocation

1 Construct multivariate pdf of the d random normal variables:

ρ(~z) =
∏d
j=1 ρj(zj) over domain Dd, D = (−∞,∞)

2 Express expected value as 〈σ〉 =
∫
Dd σ(~r, ~z)ρ(~z)d~z

3 Consider nsc evals of the above integral at predecided quadrature

points, ~zi.

4 Express σ(~r, ~z) in terms of interpolating multivariate polynomials

(e.g. Langrage) {P (i)(~z)}di=1 giving σ(~r, ~z) =
∑nsc

i=1 σ(~r, ~zi)P
(i)(~z)

5 Finally, 〈σ〉 =
∑nsc

i=1 σ(~r, ~zi)αi where αi =
∫
Dd ρ(~z)P (i)(~z)d~z

Uday Khankhoje (EE, IITM) Simulating with uncertainty 25 / 36

Stochastic Collocation for rough surface scattering

SC recipe: 〈σ〉 =
∑nsc

i=1 σ(~r, ~zi)αi

This just looks like the old MC formula! 〈σ〉 =
∑nmc

i=1 σ(~r, ~zi)/nmc
So, we can use the same solver for σ(~r, ~zi)

Results
How many function
evals using sparse
grid? ≈ 2ldl/l
← Compare MC and
SC for d = 50, l = 1
Evals:
MC=100, SC=101

Uday Khankhoje (EE, IITM) Simulating with uncertainty 26 / 36

Stochastic Collocation for rough surface scattering

SC recipe: 〈σ〉 =
∑nsc

i=1 σ(~r, ~zi)αi

This just looks like the old MC formula! 〈σ〉 =
∑nmc

i=1 σ(~r, ~zi)/nmc
So, we can use the same solver for σ(~r, ~zi)

-60 -40 -20 0 20 40 60

Scattering Angle (3)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

R
C

S
 (

dB
)

Sparse Grid
Stroud 3
Monte Carlo

Results
How many function
evals using sparse
grid? ≈ 2ldl/l
← Compare MC and
SC for d = 50, l = 1
Evals:
MC=100, SC=101

Uday Khankhoje (EE, IITM) Simulating with uncertainty 26 / 36

The devil is in the details

For the same surface as before, what happens if you reduce d?

← Compare MC and
SC for d = 20, l = 1
Evals:
MC=100, SC=41

Uday Khankhoje (EE, IITM) Simulating with uncertainty 27 / 36

The devil is in the details

For the same surface as before, what happens if you reduce d?

-60 -40 -20 0 20 40 60

Scattering Angle (3)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

R
C

S
 (

dB
)

Sparse Grid
Stroud 3
Monte Carlo

← Compare MC and
SC for d = 20, l = 1
Evals:
MC=100, SC=41

Uday Khankhoje (EE, IITM) Simulating with uncertainty 27 / 36

Conclusions about Stochastic Collocation

Given surface needs to be accurately represented by the finite KL

expansion, i.e. there is an optimal d.

For MC, found that ≈ 100 iterations give convergence to within 1dB.

The cheapest SC would have level l = 1, giving nsc ≈ 2d

=⇒ if the surface requires d > 50, MC is better

This critical number may decrease if we employ anisotropic sparse

grids. Why? KL eigen values decay and not all dims are as important.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 28 / 36

Conclusions about Stochastic Collocation

Given surface needs to be accurately represented by the finite KL

expansion, i.e. there is an optimal d.

For MC, found that ≈ 100 iterations give convergence to within 1dB.

The cheapest SC would have level l = 1, giving nsc ≈ 2d

=⇒ if the surface requires d > 50, MC is better

This critical number may decrease if we employ anisotropic sparse

grids. Why? KL eigen values decay and not all dims are as important.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 28 / 36

Conclusions about Stochastic Collocation

Given surface needs to be accurately represented by the finite KL

expansion, i.e. there is an optimal d.

For MC, found that ≈ 100 iterations give convergence to within 1dB.

The cheapest SC would have level l = 1, giving nsc ≈ 2d

=⇒ if the surface requires d > 50, MC is better

This critical number may decrease if we employ anisotropic sparse

grids. Why? KL eigen values decay and not all dims are as important.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 28 / 36

Moving over to Stochastic Galerkin

Recall the earlier (scalar) example of a u = b, where we replaced

a→ a0 + αθ, where θ was a uniform RV.

In the case of the FEM, we have a sparse matrix equation Au = b to

solve. Now, Apq must be transformed as per the KL expansion for the

surface. Recall:

Apq = Σ
e
αe,pq(~re) + δpq νp(~rp),

bp = τp(~rp), where

~re = (xi, xj , xk, yi, yj , yk), e
thele

~rp = (xi, xj , yi, yj), p
thedge

Use our mesh deformation scheme, which transformed y → y + ∆y.
This leads to Apq → Ãpq, bp → b̃p

Uday Khankhoje (EE, IITM) Simulating with uncertainty 29 / 36

Moving over to Stochastic Galerkin

Recall the earlier (scalar) example of a u = b, where we replaced

a→ a0 + αθ, where θ was a uniform RV.

In the case of the FEM, we have a sparse matrix equation Au = b to

solve. Now, Apq must be transformed as per the KL expansion for the

surface. Recall:

Apq = Σ
e
αe,pq(~re) + δpq νp(~rp),

bp = τp(~rp), where

~re = (xi, xj , xk, yi, yj , yk), e
thele

~rp = (xi, xj , yi, yj), p
thedge

Use our mesh deformation scheme, which transformed y → y + ∆y.
This leads to Apq → Ãpq, bp → b̃p

Uday Khankhoje (EE, IITM) Simulating with uncertainty 29 / 36

Moving over to Stochastic Galerkin

Recall the earlier (scalar) example of a u = b, where we replaced

a→ a0 + αθ, where θ was a uniform RV.

In the case of the FEM, we have a sparse matrix equation Au = b to

solve. Now, Apq must be transformed as per the KL expansion for the

surface. Recall:

Apq = Σ
e
αe,pq(~re) + δpq νp(~rp),

bp = τp(~rp), where

~re = (xi, xj , xk, yi, yj , yk), e
thele

~rp = (xi, xj , yi, yj), p
thedge

Use our mesh deformation scheme, which transformed y → y + ∆y.
This leads to Apq → Ãpq, bp → b̃p

Uday Khankhoje (EE, IITM) Simulating with uncertainty 29 / 36

Steps in Stochastic Galerkin

1 Accomplish the perturbations by Taylor expanding to second order:

(1st, 2nd derivatives are computed by finite differences)

Ãpq = βpq+
∑d

i=1 β
(i)
pq zi+

∑d
i,j=1 β

(i,j)
pq zizj , ← matrices m×m

b̃p = ζp +
∑d

i=1 ζ
(i)
p zi, ← vectors m× 1

2 Now do Galerkin testing in the basis of orthogonal polynomials
corresponding to the PDF of the RVs:

Expand each u→
∑w
i=1 uiΨi(~z)

Take inner products with Ψi(~z) on both sides of Au = b

3 Resulted in another bigger system of equations:

F v = g, F ∈ Cmw×mw, v,g ∈ Cmw

Uday Khankhoje (EE, IITM) Simulating with uncertainty 30 / 36

Steps in Stochastic Galerkin

1 Accomplish the perturbations by Taylor expanding to second order:

(1st, 2nd derivatives are computed by finite differences)

Ãpq = βpq+
∑d

i=1 β
(i)
pq zi+

∑d
i,j=1 β

(i,j)
pq zizj , ← matrices m×m

b̃p = ζp +
∑d

i=1 ζ
(i)
p zi, ← vectors m× 1

2 Now do Galerkin testing in the basis of orthogonal polynomials
corresponding to the PDF of the RVs:

Expand each u→
∑w
i=1 uiΨi(~z)

Take inner products with Ψi(~z) on both sides of Au = b

3 Resulted in another bigger system of equations:

F v = g, F ∈ Cmw×mw, v,g ∈ Cmw

Uday Khankhoje (EE, IITM) Simulating with uncertainty 30 / 36

Steps in Stochastic Galerkin

1 Accomplish the perturbations by Taylor expanding to second order:

(1st, 2nd derivatives are computed by finite differences)

Ãpq = βpq+
∑d

i=1 β
(i)
pq zi+

∑d
i,j=1 β

(i,j)
pq zizj , ← matrices m×m

b̃p = ζp +
∑d

i=1 ζ
(i)
p zi, ← vectors m× 1

2 Now do Galerkin testing in the basis of orthogonal polynomials
corresponding to the PDF of the RVs:

Expand each u→
∑w
i=1 uiΨi(~z)

Take inner products with Ψi(~z) on both sides of Au = b

3 Resulted in another bigger system of equations:

F v = g, F ∈ Cmw×mw, v,g ∈ Cmw

Uday Khankhoje (EE, IITM) Simulating with uncertainty 30 / 36

Details of Stochastic Galerkin

What is a the structure of: F v = g, F ∈ Cmw×mw, v,g ∈ Cmw

m

mw

Each block is sparse, multiplied

by stochastic inner products

like: Eab = 〈Ψa(~z)Ψb(~z)〉,
E

(i)
ab = 〈Ψa(~z)ziΨb(~z)〉,

E
(i,j)
ab = 〈Ψa(~z) zi zj Ψb(~z)〉,

Needs to be solved only once

Once we solve this equation, we get an expression for the far field,
and from that we get the RCS as 〈|Ef (~r)|2〉.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 31 / 36

Details of Stochastic Galerkin

What is a the structure of: F v = g, F ∈ Cmw×mw, v,g ∈ Cmw

m

mw

Each block is sparse, multiplied

by stochastic inner products

like: Eab = 〈Ψa(~z)Ψb(~z)〉,
E

(i)
ab = 〈Ψa(~z)ziΨb(~z)〉,

E
(i,j)
ab = 〈Ψa(~z) zi zj Ψb(~z)〉,

Needs to be solved only once

Once we solve this equation, we get an expression for the far field,
and from that we get the RCS as 〈|Ef (~r)|2〉.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 31 / 36

Details of Stochastic Galerkin

What is a the structure of: F v = g, F ∈ Cmw×mw, v,g ∈ Cmw

m

mw

Each block is sparse, multiplied

by stochastic inner products

like: Eab = 〈Ψa(~z)Ψb(~z)〉,
E

(i)
ab = 〈Ψa(~z)ziΨb(~z)〉,

E
(i,j)
ab = 〈Ψa(~z) zi zj Ψb(~z)〉,

Needs to be solved only once

Once we solve this equation, we get an expression for the far field,
and from that we get the RCS as 〈|Ef (~r)|2〉.

Uday Khankhoje (EE, IITM) Simulating with uncertainty 31 / 36

Computational details of Stochastic Galerkin

In solving F v = g, F ∈ Cmw×mw, v,g ∈ Cmw

Not a “cheap” computation: direct matrix solvers, use an iterative

method: BiCgStab + block-diagonal, mean-based pre-conditioner

The matrix F is never stored explicitly, instead we only need to be

able to compute the product of F with another vector for the

iterative method to work

Compute times and memory demands are still much higher than

MC/SC. Scope for lot of research in sparse data structures for F,g

SG-gPC MC

1200s (10 iters), 10 GB RAM 950s (100 surfaces), 150 MB RAM

Uday Khankhoje (EE, IITM) Simulating with uncertainty 32 / 36

Computational details of Stochastic Galerkin

In solving F v = g, F ∈ Cmw×mw, v,g ∈ Cmw

Not a “cheap” computation: direct matrix solvers, use an iterative

method: BiCgStab + block-diagonal, mean-based pre-conditioner

The matrix F is never stored explicitly, instead we only need to be

able to compute the product of F with another vector for the

iterative method to work

Compute times and memory demands are still much higher than

MC/SC. Scope for lot of research in sparse data structures for F,g

SG-gPC MC

1200s (10 iters), 10 GB RAM 950s (100 surfaces), 150 MB RAM

Uday Khankhoje (EE, IITM) Simulating with uncertainty 32 / 36

Computational details of Stochastic Galerkin

In solving F v = g, F ∈ Cmw×mw, v,g ∈ Cmw

Not a “cheap” computation: direct matrix solvers, use an iterative

method: BiCgStab + block-diagonal, mean-based pre-conditioner

The matrix F is never stored explicitly, instead we only need to be

able to compute the product of F with another vector for the

iterative method to work

Compute times and memory demands are still much higher than

MC/SC. Scope for lot of research in sparse data structures for F,g

SG-gPC MC

1200s (10 iters), 10 GB RAM 950s (100 surfaces), 150 MB RAM

Uday Khankhoje (EE, IITM) Simulating with uncertainty 32 / 36

Computational details of Stochastic Galerkin

In solving F v = g, F ∈ Cmw×mw, v,g ∈ Cmw

How do we choose the number of edges in the FEM formulation, m?

Horizontally : Long enough to capture several correlation lengths

Vertically : Sufficient for boundary conditions to be accurate

How many basis functions to keep, w? Recall:

Ψi(~z) = ψi1(z1) . . . ψid(zd), 0 ≤ i =
∑d

j=1 ij ≤ n (max degree)

belong to the space Pdn of dimension w =
(
n+d
n

)
Choose d: no of KL terms till eigenvalue falls by 1/10

Choose n: depends on available computer resources

Values of d v/s surface length (a)
and correlation length (l)

↓ l \ a→ 15 30

1 15 29

0.5 29 58

Uday Khankhoje (EE, IITM) Simulating with uncertainty 33 / 36

Computational details of Stochastic Galerkin

In solving F v = g, F ∈ Cmw×mw, v,g ∈ Cmw

How do we choose the number of edges in the FEM formulation, m?

Horizontally : Long enough to capture several correlation lengths

Vertically : Sufficient for boundary conditions to be accurate

How many basis functions to keep, w? Recall:

Ψi(~z) = ψi1(z1) . . . ψid(zd), 0 ≤ i =
∑d

j=1 ij ≤ n (max degree)

belong to the space Pdn of dimension w =
(
n+d
n

)
Choose d: no of KL terms till eigenvalue falls by 1/10

Choose n: depends on available computer resources

Values of d v/s surface length (a)
and correlation length (l)

↓ l \ a→ 15 30

1 15 29

0.5 29 58

Uday Khankhoje (EE, IITM) Simulating with uncertainty 33 / 36

Computational details of Stochastic Galerkin

In solving F v = g, F ∈ Cmw×mw, v,g ∈ Cmw

How do we choose the number of edges in the FEM formulation, m?

Horizontally : Long enough to capture several correlation lengths

Vertically : Sufficient for boundary conditions to be accurate

How many basis functions to keep, w? Recall:

Ψi(~z) = ψi1(z1) . . . ψid(zd), 0 ≤ i =
∑d

j=1 ij ≤ n (max degree)

belong to the space Pdn of dimension w =
(
n+d
n

)
Choose d: no of KL terms till eigenvalue falls by 1/10

Choose n: depends on available computer resources

Values of d v/s surface length (a)
and correlation length (l)

↓ l \ a→ 15 30

1 15 29

0.5 29 58

Uday Khankhoje (EE, IITM) Simulating with uncertainty 33 / 36

Compare Stochastic Galerkin with Monte Carlo

h = 0.05/(2π)

-60 -40 -20 0 20 40 60

Scattering Angle (3)

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

R
C

S
 (

dB
)

Stochastic-gPC
Monte Carlo

h = 0.20/(2π)

-60 -40 -20 0 20 40 60

Scattering Angle (3)

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

R
C

S
 (

dB
)

Stochastic-gPC
Monte Carlo

θi = 40◦, εr = 4− j, a = 20, l = 1, λ = 1 d = 15, n = 1

Uday Khankhoje (EE, IITM) Simulating with uncertainty 34 / 36

Reflections

SG-gPC is a deal breaker for even small values of d

→ Computational innovation required

For small-moderate values of d, (e.g. d < 50) SC methods are a

powerful alternative to MC

→ Can be improved by anisotropic sparse grids.

For higher values of d, MC is the still optimal

→ Can be improved by Markov chain monte carlo

Uday Khankhoje (EE, IITM) Simulating with uncertainty 35 / 36

Reflections

SG-gPC is a deal breaker for even small values of d

→ Computational innovation required

For small-moderate values of d, (e.g. d < 50) SC methods are a

powerful alternative to MC

→ Can be improved by anisotropic sparse grids.

For higher values of d, MC is the still optimal

→ Can be improved by Markov chain monte carlo

Uday Khankhoje (EE, IITM) Simulating with uncertainty 35 / 36

Reflections

SG-gPC is a deal breaker for even small values of d

→ Computational innovation required

For small-moderate values of d, (e.g. d < 50) SC methods are a

powerful alternative to MC

→ Can be improved by anisotropic sparse grids.

For higher values of d, MC is the still optimal

→ Can be improved by Markov chain monte carlo

Uday Khankhoje (EE, IITM) Simulating with uncertainty 35 / 36

Thanks!

Most of this talk was based on:

“Stochastic Solutions to Rough Surface Scattering using the finite

element method”, Uday K Khankhoje and Shreyas Padhy;

IEEE Transactions on Antennas and Propagation, 65(08) 2017.

Refer to http://www.ee.iitm.ac.in/uday for full-text of relevant

papers. Or just Google my name.

E-mail: uday@ee.iitm.ac.in

Uday Khankhoje (EE, IITM) Simulating with uncertainty 36 / 36

http://www.ee.iitm.ac.in/uday

Aside: Why is Guass quadrature so effective?

To approximate
∫
f(x)w(x)dx by an n-point rule, express f(x) in

terms of: nth order polynomial pn(x), a quotient q(x) (degree < n),

& a remainder r(x) (degree < n):

f(x) = q(x) ∗ pn(x) + r(x) (1)

Integrate w.r.t. w(x), and use orthogonality property of pn(x): we get∫
f(x)w(x)dx =

∫
r(x)w(x)dx. Next, construct a n− 1 degree

polynomial from n points (Lagrange interpolation) and get:∫
f(x)w(x)dx =

∑n
i=1 r(xi)

∫
w(x)Li(x)dx =

∑n
i=1 r(xi)αi (2)

Here’s where the choice of points xi is crucial: If xi is a root of

pn(x), then from (1) it follows that f(xi) = r(xi) and from (2) that:∫
f(x)w(x)dx =

∑n
i=1 f(xi)αi (3)

Thus we say that Gauss quadrature is accurate to order 2n− 1

Uday Khankhoje (EE, IITM) Simulating with uncertainty 37 / 36

Aside: Why is Guass quadrature so effective?

To approximate
∫
f(x)w(x)dx by an n-point rule, express f(x) in

terms of: nth order polynomial pn(x), a quotient q(x) (degree < n),

& a remainder r(x) (degree < n):

f(x) = q(x) ∗ pn(x) + r(x) (1)

Integrate w.r.t. w(x), and use orthogonality property of pn(x): we get∫
f(x)w(x)dx =

∫
r(x)w(x)dx. Next, construct a n− 1 degree

polynomial from n points (Lagrange interpolation) and get:∫
f(x)w(x)dx =

∑n
i=1 r(xi)

∫
w(x)Li(x)dx =

∑n
i=1 r(xi)αi (2)

Here’s where the choice of points xi is crucial: If xi is a root of

pn(x), then from (1) it follows that f(xi) = r(xi) and from (2) that:∫
f(x)w(x)dx =

∑n
i=1 f(xi)αi (3)

Thus we say that Gauss quadrature is accurate to order 2n− 1

Uday Khankhoje (EE, IITM) Simulating with uncertainty 37 / 36

Aside: Why is Guass quadrature so effective?

To approximate
∫
f(x)w(x)dx by an n-point rule, express f(x) in

terms of: nth order polynomial pn(x), a quotient q(x) (degree < n),

& a remainder r(x) (degree < n):

f(x) = q(x) ∗ pn(x) + r(x) (1)

Integrate w.r.t. w(x), and use orthogonality property of pn(x): we get∫
f(x)w(x)dx =

∫
r(x)w(x)dx. Next, construct a n− 1 degree

polynomial from n points (Lagrange interpolation) and get:∫
f(x)w(x)dx =

∑n
i=1 r(xi)

∫
w(x)Li(x)dx =

∑n
i=1 r(xi)αi (2)

Here’s where the choice of points xi is crucial: If xi is a root of

pn(x), then from (1) it follows that f(xi) = r(xi) and from (2) that:∫
f(x)w(x)dx =

∑n
i=1 f(xi)αi (3)

Thus we say that Gauss quadrature is accurate to order 2n− 1

Uday Khankhoje (EE, IITM) Simulating with uncertainty 37 / 36

Aside: Why is Guass quadrature so effective?

To approximate
∫
f(x)w(x)dx by an n-point rule, express f(x) in

terms of: nth order polynomial pn(x), a quotient q(x) (degree < n),

& a remainder r(x) (degree < n):

f(x) = q(x) ∗ pn(x) + r(x) (1)

Integrate w.r.t. w(x), and use orthogonality property of pn(x): we get∫
f(x)w(x)dx =

∫
r(x)w(x)dx. Next, construct a n− 1 degree

polynomial from n points (Lagrange interpolation) and get:∫
f(x)w(x)dx =

∑n
i=1 r(xi)

∫
w(x)Li(x)dx =

∑n
i=1 r(xi)αi (2)

Here’s where the choice of points xi is crucial: If xi is a root of

pn(x), then from (1) it follows that f(xi) = r(xi) and from (2) that:∫
f(x)w(x)dx =

∑n
i=1 f(xi)αi (3)

Thus we say that Gauss quadrature is accurate to order 2n− 1

Uday Khankhoje (EE, IITM) Simulating with uncertainty 37 / 36

	Appendix

