
Chapter 4

Unconstrained

optimization

An unconstrained optimization problem takes the form

min
x∈Rn

f(x) (4.1)

for a target functional (also called objective function) f : Rn → R. In this
chapter and throughout most of our discussion on optimization, we will assume that
f is sufficiently smooth, that is, at least continuously differentiable.

In most applications of optimization problem, one is usually interested in a global
minimizer x∗, which satisfies f(x∗) ≤ f(x) for all x in R

n (or at least for all x in
the domain of interest). Unless f is particularly nice, optimization algorithms are
often not guaranteed to yield global minima but only yield local minima. A point
x∗ is called a local minimizer if there is a neighborhood N such that f(x∗) ≤ f(x)
for all x ∈ N . Similarly, x∗ is called a strict local minimizer f(x∗) < f(x) for
all x ∈ N with x 6= x∗.

4.1 Fundamentals

Sufficient and necessary conditions for local minimizers can be developed from the
Taylor expansion of f . Let us recall Example 2.3: If f is two times continuously
differentiable then

f(x+ h) = f(x) +∇f(x)Th+
1

2
hTH(x)h+O(‖h‖3), (4.2)

where ∇f is the gradient and H =
Ä

∂2f
∂xi∂xj

äm

i,j=1
is the Hessian [matrice Hessienne]

of f .

Theorem 4.1 (First-order necessary condition) If x∗ is a local mini-
mizer and f is continuously differentiable in an open neighborhood of x∗ then
∇f(x∗) = 0.
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Proof. By local optimality [f(x∗ + td) − f(x∗)]/t is nonnegative for sufficiently
small t > 0 and for arbitrary d. It follows that

lim
t→0+

1

t
[f(x∗ + td)− f(x∗)] = ∇f(x∗)Td ≥ 0.

Choosing d = −∇f(x∗) implies ∇f(x∗) = 0.

A x∗ satisfying ∇f(x∗) = 0 is called stationary point. A saddle point is a
stationary point that is neither a local minimizer nor a local maximizer. More can
be said if the Hessian of f is available.

Theorem 4.2 (Second-order necessary condition) If x∗ is a local minimizer
and f is two times continuously differentiable in an open neighborhood of x∗ then
∇f(x∗) = 0 and the Hessian H(x∗) is positive semidefinite.

Proof. Theorem 4.1 already yields ∇f(x∗) = 0, so it remains to prove the positive
semidefiniteness of H(x∗). For sufficiently small t and arbitrary d, we have

0 ≤ f(x∗ + td)− f(x∗) = t∇f(x∗)Td+
t2

2
dTH(x∗)d+O(t3)

=
t2

2
dTH(x∗)d+O(t3),

where we used the Taylor expansion (4.2). Hence, dTH(x∗)d ≥ O(t) and the result
follows by taking the limit t→ 0.

Theorem 4.3 (Second-order sufficient condition) Suppose that f is two
times continuously differentiable in an open neighborhood of x∗ and that
∇f(x∗) = 0. Moreover, suppose that the Hessian H(x∗) is positive definite.
Then x∗ is a strict local minimizer.

Proof. Since H(x∗) is positive definite, there is a constant µ such that

dTH(x∗)d ≥ µ‖d‖22

for all d ∈ R
n. Using the Taylor expansion and ∇f(x∗) = 0, we have

f(x∗ + d)− f(x∗) =
1

2
dTH(x∗)d+O(‖d‖3) ≥

µ

2
‖d‖22 +O(‖d‖3) ≥

µ

4
‖d‖22 > 0

for all d 6= 0 of sufficiently small norm. Hence, x∗ is a strict local minimizer.
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4.2 Line search methods

General line search methods for solving the optimization problem (4.1) take the
form

xk+1 = xk + αkpk, (4.3)

where αk > 0 is called the step length and pk is called the search direction.
As we will see, there are many choices for α and p. A natural requirement is that

p should be chosen such that the slope of f in the direction p is negative. Because
of

lim
t→0+

f(x+ tp)− f(x)

‖tp‖2
= ∇f(x)Tp,

this motivates the following definition.

Definition 4.4 A vector p 6= 0 is called descent direction of a continuously
differentiable function f at a point x if ∇f(x)Tp < 0.

4.2.1 Method of steepest descent

It makes sense to choose p such that the slope of f in the direction p is as small as
possible. This leads to the minimization problem

min
‖p‖2=1

∇f(x)Tp, (4.4)

which can be easily solved.

Lemma 4.5 If ∇f(x) 6= 0 then (4.4) has the unique solution

p = −
∇f(x)

‖∇f(x)‖2
.

Proof. By the Cauchy-Schwarz inequality we have

∇f(x)Tp ≥ −‖∇f(x)‖2‖p‖2 = −‖∇f(x)‖2,

with equality if and only if p takes the form (4.4).

Any vector of the form

p = −α
∇f(x)

‖∇f(x)‖2
, α > 0,

is called direction of steepest descent. It remains to choose the step length αk.
The Armijo rule applies to a general line search method (4.3) and proceeds as

follows: Let β ∈]0, 1[ (typically β = 1/2) and c1 ∈]0, 1[ (for example c1 = 10−4) be
fixed parameters.
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Armijo rule:
Determine the largest number αk ∈ {1, β, β

2, β3, . . .} such that

f(xk + αkpk)− f(xk) ≤ c1αk∇f(xk)
Tpk (4.5)

holds.

In words, the condition (4.5) ensures that the reduction in f is proportional to
the step length and the directional derivative. The following lemma guarantees
that (4.5) can always be satisfied provided that pk is a descent direction.

Lemma 4.6 Let c1 ∈]0, 1[ and let f : U → R be continuously differentiable in an
open set U ⊂ R

n. If x ∈ U and if p is a descent direction of f at x then there is
α > 0 such that

f(x+ αp)− f(x) ≤ c1α∇f(x)
Tp ∀α ∈ [0, α].

Proof. The inequality trivially holds for α = 0. Now, let α > 0. Then

f(x+ αp)− f(x)

α
−c1∇f(x)

Tp
α→0

+

−→ ∇f(x)Tp−c1∇f(x)
Tp = (1−c1)∇f(x)

Tp < 0.

Hence, by choosing α sufficiently small, we have

f(x+ αp)− f(x)

α
− c1∇f(x)

Tp ≤ 0 ∀α ∈ [0, α].

This shows the result.

In summary, we obtain Algorithm 4.7.

Algorithm 4.7 Steepest descent with Armijo line search
Input: Function f , starting vector x0 and parameters β > 0, c1 > 0. Tolerance tol.
Output: Vector xk approximating stationary point.

1: for k = 0, 1, 2, . . . do
2: Set pk = −∇f(xk).
3: Stop if ‖pk‖ ≤ tol.
4: Determine step length αk according to the Armijo rule (4.5).
5: Set xk+1 = xk + αkpk.
6: end for

4.2.2 Convergence of general line search methods

In the following, we will analyse the convergence of general line search method (4.3).
Of course, we cannot choose arbitrary αk,pk and still expect convergence. First of
all, we would like to maintain the Armijo condition of Lemma 4.6:

f(xk + αkpk)− f(xk) ≤ c1αk∇f(xk)
Tpk (4.6)
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for some c1 ∈]0, 1[. This ensures a sufficient decrease in the objective function.
The condition (4.6) is not enough by itself to guarantee reasonable progress of

the linear search method. Lemma 4.6 shows that it is always satisfied for sufficiently
small αk, provided that pk is a descent direction, but we have to make sure that αk

does not become unacceptably small. This is the purpose of the so called curvature
condition

∇f(xk + αkpk)
Tpk ≥ c2∇f(xk)

Tpk, (4.7)

which should hold for some c2 ∈]c1, 1[. Typical values for c2 are 0.9 (when pk is
chosen by a Newton or quasi-Newton method) or 0.1 (when pk is chosen by the
nonlinear conjugate gradient method).

The two conditions (4.6)–(4.7) taken together are called Wolfe conditions. The
following lemma shows that there always exist step lengths satisfying the Wolfe
conditions under reasonable assumptions on f .

Lemma 4.8 Let f be continuously differentiable and assume that is bounded from
below along the ray {xk + αpk | α > 0} for some descent direction pk. Then there
exist intervals of step lengths satisfying the Wolfe conditions (4.6)–(4.7), provided
that 0 < c1 < c2 < 1.

Proof. Let us consider the function

ψ(α) = f(xk + αpk)− f(xk)− c1α∇f(xk)
Tpk.

Since pk is a descent direction and c1 < 1, it follows that ψ′(0) = (1−c1)∇f(xk)
Tpk <

0. Because ψ′ is continuous and f(xk + αpk) is bounded from below there exists
a smallest α∗ > 0 such that ψ(α∗) = 0. It follows that ψ(α) ≤ 0 and hence (4.6)
holds for all α ∈]0, α∗].

By the mean value theorem, there is α∗∗ ∈]0, α∗[ such that

f(xk + α∗pk)− f(xk) = α∗∇f(xk + α∗∗pk)
Tpk.

Combined with ψ(α∗) = 0, this implies

∇f(xk + α∗∗pk)
Tpk = c1∇f(xk)

Tpk > c2∇f(xk)
Tpk.

Therefore, there is α∗∗ satisfying the Wolfe conditions (4.6)–(4.7). By the contin-
uous differentiability of f , they also hold for a (sufficiently small) interval around
α∗∗.

One of the great advantages of the Wolfe conditions is that they allow to prove
convergence of the line search method (4.3) under fairly general assumptions.

Theorem 4.9 Consider a line search method (4.3), where pk is a descent di-
rection and αk satisfies the the Wolfe conditions (4.6)–(4.7) in each iteration
k. Suppose that f is bounded from below in R

n and continuously differentiable
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in an open set U ⊂ R
n with {x | f(x) ≤ f(x0)} ⊂ U . Moreover, ∇f is assumed

to be Lipschitz continuous on U . Then

∞∑

k=0

cos2 θk · ‖∇f(xk)‖
2
2 <∞, where cos θk :=

−∇f(xk)
Tpk

‖∇f(xk)‖2‖pk‖2
. (4.8)

Proof. The curvature condition (4.7) implies

(
∇f(xk+1)−∇f(xk)

)T
pk ≥ (c2 − 1)∇f(xk)

Tpk,

On the other hand, the Lipschitz condition implies ‖∇f(xk+1) − ∇f(xk)‖2 ≤
L‖xk+1 − xk‖2 and hence

(
∇f(xk+1)−∇f(xk)

)T
pk ≤ αkL‖pk‖

2
2.

By combining both inequalities, we obtain

αk ≥
c2 − 1

L

∇f(xk)
Tpk

‖pk‖22
.

Using the Armijo condition (4.6) then yields

f(xk+1) ≤ f(xk) + c1αk∇f(xk)
Tpk

≤ f(xk)− c1
1− c2
L

(
∇f(xk)

Tpk

)2

‖pk‖22
= f(xk)− c cos

2 θk · ‖∇f(xk)‖
2
2,

with c = c1
1−c2
L

. Recursively inserting this relation gives

f(xk+1) ≤ f(x0)− c
k∑

j=0

cos2 θk · ‖∇f(xk)‖
2
2.

Since f(x0)− f(xk+1) is bounded, the statement of the theorem follows by taking
k →∞.

Let us discuss the implications of Theorem 4.9. First of all, (4.8) implies

cos2 θk · ‖∇f(xk)‖
2
2

k→∞
−→ 0. (4.9)

(In fact, one can say a little more, e.g., the sequence must converge faster than 1/k
to zero.) It is quite natural to assume that θk is bounded away from 90 degrees,
that is, there is δ > 0 such that

cos θk ≥ δ > 0, ∀k.



4.2. Line search methods Version April 22, 2015 53

For example, this is clearly the case for steepest descent, with δ = 1. Under this
condition, it immediately follows from (4.9) that

‖∇f(xk)‖
2
2

k→∞
−→ 0.

In other words, the line search method converges (globally) to a stationary point.
Note that we cannot conclude that the method converges to a local minimizer. Mak-
ing such a statement requires to inject additional information about the Hessian;
this will lead to the Newton methods discussed in Section 4.2.4.

4.2.3 Rate of convergence for steepest descent

In the following, we aim at quantifying the (local) convergence speed for the steepest
descent method. Let us first perform this analysis for a quadratic objective function:

f(x) =
1

2
xTAx− bTx, (4.10)

where A ∈ R
n×n is symmetric positive definite and b ∈ R

n. This is about the best
objective function one can dream up; it is strictly convex and x∗ = A−1b is the
global minimizer. Note that ∇f(x) = Ax− b.

We consider an exact line search strategy, that is, αk is chosen to minimize
f(xk − α∇f(xk)). This can be easily implemented for (4.10) as

∂

∂α
f(xk − α∇f(xk)) = −∇f(xk)

TAxk + α∇f(xk)
TA∇f(xk)−∇f(xk)

Tb

= −∇f(xk)
TAxk + α∇f(xk)

TA∇f(xk)−∇f(xk)
Tb

= −∇f(xk)
T∇f(xk) + α∇f(xk)

TA∇f(xk)

is zero for

αk =
∇f(xk)

T∇f(xk)

∇f(xk)TA∇f(xk)
. (4.11)

Hence, the steepest descent method for (4.10) with exact linear search takes the
form

xk+1 = xk −
∇f(xk)

T∇f(xk)

∇f(xk)TA∇f(xk)
∇f(xk). (4.12)

To quantify the convergence of (4.12), it will be convenient to measure the error
in the norm induced by A: ‖y‖2A := yTAy.

Theorem 4.10 The steepest descent method with exact line search applied to (4.10)
satisfies

‖xk+1 − x∗‖A ≤
κ(A)− 1

κ(A) + 1
· ‖xk − x∗‖A (4.13)

where κ(A) = ‖A‖2‖A‖
−1
2 = λmax(A)/λmin(A) denotes the condition number of A.
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Proof. Subtracting x∗ on both sides of (4.11) gives

xk+1 − x∗ = xk − x∗ −
∇f(xk)

T∇f(xk)

∇f(xk)TA∇f(xk)
∇f(xk)

Letting v := ∇f(xk) = A(xk − x∗), we obtain

ρ :=
‖xk+1 − x∗‖2A
‖xk − x∗‖2A

=

Å

1−
‖v‖42

‖v‖2A‖xk − x∗‖2A

ã2

=

Ç

1−
‖v‖42

‖v‖2A‖v‖
2
A−1

å2

(4.14)

To proceed further, we need the so called Kantorovich inequality,

‖v‖42
‖v‖2A‖v‖

2
A−1

≥
4λmin(A)λmax(A)

(
λmin(A) + λmax(A)

)2
=

4κ(A)

(1 + κ(A))2
, (4.15)

which can be shown by noting that can restrict ourselves to vectors of the form v =
αvmin + βvmax, where vmin,vmax are eigenvectors belonging to λmin(A), λmax(A).
Combining (4.14) and (4.15) yields

ρ ≤

Å

κ(A)− 1

κ(A) + 1

ã2

,

which concludes the proof.

Let us now consider the case of general smooth f . By Taylor expansion of f
around a strict local minimizer x∗, we have

f(xk) = f(x∗) +
1

2
(xk − x∗)TA(xk − x∗) +O(‖xk − x∗‖3),

where A = H(x∗) is the Hessian at x∗. Hence,

f(xk)− f(x
∗) ≈

1

2
‖xk − x∗‖2A.

Moreover, one step of the steepest descent method will – in first order – produce
nearly the same next iterate if we replace f by the quadratic model

f(x) ≈ f(xk) +∇f(xk)
T (x− xk) +

1

2
(xk − x∗)TA(xk − x∗), (4.16)

provided that ‖xk − x∗‖ is sufficiently small. These considerations allow us to
generalize Theorem 4.10.

Theorem 4.11 Suppose that the steepest descent method with exact line search
applied to a twice continuously differentiable function f : Rn → R converges to
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a stationary point x∗ with symmetric positive definite Hessian H(x∗). Then –
for sufficiently large k – we have

f(xk+1) ≤ ρ
2
(
f(xk)

)
,

for any

ρ =
κ(H(x∗))− 1

κ(H(x∗)) + 1
+ ǫ < 1

with ǫ > 0.

4.2.4 The Newton method

From the discussion in Section 4.2.2, one may be tempted to conclude that choosing
cos θk large is advisable and hence steepest descent will produce fastest convergence.
Nothing could be more misleading! In this section, we discuss the (locally) much
faster Newton method for minimizing f(x), which amounts to choosing the search
direction

pk = −H(xk)
−1∇f(xk). (4.17)

There are many different ways of motivating this choice for αk = 1. On the one
hand, this amounts to the standard Newton method for solving the nonlinear equa-
tion ∇f(x) = 0. On the other hand, this minimizes the quadratic model (4.16) ex-
actly. Both motivations indicate that the Newton method converges locally quadrat-
ically.

Theorem 4.12 Consider a twice continuously differentiable function f : Rn →
R for which the Hessian is symmetric positive definite at a stationary point x∗

and Lipschitz continuous in a neighborhood of x∗. Then the following state-
ments hold for the iteration xk+1 = xk + pk with the Newton direction (4.17):

1. xk
k→∞
−→ x∗, provided that x0 is sufficiently close to x∗;

2. the sequence {xk} converges locally quadratically;

3. the sequence {‖∇f(xk)‖} converges locally quadratically to zero.

Proof. By the definition of the Newton method, we have

xk+1 − x∗ = xk − x∗ + pk = xk − x∗ −H(xk)
−1∇f(xk)

= H(xk)
−1 [H(xk)(xk − x∗)− (∇f(xk)−∇f(x

∗))] . (4.18)
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From the Taylor expansion and the Lipschitz continuity of H, we obtain a constant
L > 0 such that

‖H(xk)(xk − x∗)− (∇f(xk)−∇f(x
∗))‖

2
≤ L‖xk − x∗‖22

holds for all xk sufficiently close to x∗. Combined with (4.18), this gives

‖xk+1 − x∗‖ ≤ L‖H(xk)
−1‖2‖xk − x∗‖22 ≤ 2L‖H(x∗)−1‖2

︸ ︷︷ ︸

=:L̃

‖xk − x∗‖22, (4.19)

where used the fact that ‖H(xk)
−1‖2 ≤ 2‖H(x∗)−1‖2 for xk sufficiently close to x∗.

The inequality (4.19) shows the local quadratic convergence of xk.
It remains to prove the local quadratic convergence of {‖∇f(xk)‖}. This is shown

by the same arguments as above:

‖∇f(xk+1)‖2 = ‖∇f(xk+1)−∇f(xk)−H(xk)pk‖2

≤ L‖pk‖
2 ≤ L‖H(xk)

−1‖22‖∇f(xk)‖
2
2

≤ 2L‖H(x∗)−1‖22‖∇f(xk)‖
2
2

where we used ∇f(xk) +H(xk)pk = 0.

As shown by Theorem 4.12, choosing the step length αk = 1 yields local quadratic
convergence. In general, αk = 1 is not a good choice in the beginning of the it-
eration. In practice, the Newton method should therefore be combined with the
Armijo or the Wolfe conditions. The expectation is that, initially, αk is less than 1.
Once the region of local quadratic convergence for the Newton method is reached,
the conditions allow for choosing αk = 1. This indicates that local quadratic con-
vergence will also be attained in such a setting, see [UU] for the precise statement.

4.2.5 Quasi-Newton methods

The computation of the Newton direction pk = −H(xk)
−1∇f(xk) is often too

expensive, due to the need for determining the Hessian and solving a linear sys-
tem. The general idea of quasi-Newton methods is to approximate H(xk) by a
symmetric positive matrix Bk, leading to a search direction of the form

pk = −B−1

k ∇f(xk). (4.20)

It is important to quantify the extent to whichBk shall approximateH(xk) to obtain
good convergence, that is, faster convergence than the steepest descent method. As
we will see below, it is sufficient to require that Bk provides an increasingly accurate
approximation of H(xk) along the search direction pk:

lim
k→∞

‖(Bk −H(xk))pk‖2
‖pk‖2

= 0. (4.21)
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Theorem 4.13 Consider a twice continuously differentiable function f : Rn →
R for which the Hessian is symmetric positive definite at a stationary point x∗

and Lipschitz continuous in a neighborhood of x∗. Suppose that the iteration
xk+1 = xk + pk with the quasi-Newton direction (4.20) converges to x∗. Then
{xk} converges superlinearly if and only if (4.21) holds.

Proof. The key idea of the proof is to relate the quasi-Newton direction to the
Newton direction pN

k := −H(xk)
−1∇f(xk). Assuming that (4.21) holds, we have

‖pk − pN
k ‖2 =

∥
∥H(xk)

−1
(
H(xk)pk +∇f(xk)

)∥
∥
2

≤ ‖H(xk)
−1‖2‖(H(xk)−Bk)pk‖2 = o(‖pk‖2).

On the other hand, ‖pk − pN
k ‖2 = o(‖pk‖2) immediately implies (4.21). Hence,

both conditions are equivalent.
By using the result of Theorem 4.12, we thus obtain

‖xk+1 − x∗‖2 = ‖xk + pk − x∗‖2 ≤ ‖xk + pN
k − x∗‖2 + ‖pk − pN

k ‖2

≤ O(‖xk − x∗‖2) + o(‖pk‖2).

This proves superlinear convergence if (4.21) holds. The other direction of the
statement is an immediate consequence of the fact that superlinear convergence is
only possible if ‖pk − pN

k ‖2 = o(‖pk‖2).

There is a lot of freedom in choosing Bk. Quasi-Newton methods choose a
sequence B0, B1, B2, . . . satisfying the condition

Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk) (4.22)

starting from an inital symmetric positive definite matrix B0 (which preferably is an
approximation of H(x0)). Note that (4.22) mimicks the approximation of a tangent
vector by the secant vector.

Even when imposing (4.22), there remains a lot of freedom. One usually restricts
the freedom further by requiring the update Bk+1 − Bk to be a low-rank matrix,
which allows for the efficient inversion of Bk+1 using the inverse of Bk. When
requiring the update to be symmetric and of rank 1, the choice of Bk+1 becomes
unique:

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

(yk −Bksk)T sk
, (4.23)

where
sk = xk+1 − xk = αkpk, yk = ∇f(xk+1)−∇f(xk).

The quasi-Newton method resulting from (4.23) is called SR1 (symmetric rank-1).
Some care needs to be applied when using SR1; the denominator (yk − Bksk)

T sk
may become negative (or even zero!), potentially destroying positive definitness.
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By far, the most popular quasi-Newton method is BFGS (Broyden-Fletcher-
Goldfarb-Shanno):

Bk+1 = Bk +
yky

T
k

yT
k sk

−
(Bksk)(Bksk)

T

sTkBksk
. (4.24)

It can be easily seen that this update satisfies (4.22). Much can (and should) be
said about the properties of BFGS. However, the analysis of BFGS is significantly
more complicated than the analysis of the Newton method, due to the evolution
of Bk. Under suitable conditions, it can be shown that BFGS satisfies (4.21) and
hence converges superlinearly.

4.3 The nonlinear conjugate gradient method

4.3.1 The linear conjugate gradient method

Let us recall the (linear) conjugate gradient method for the objective function

f(x) =
1

2
xTAx− bTx,

with a symmetric positive definite matrix A. Recall that the gradient of f at xk is
given by

rk = Axk − bk.

In Section 4.2.3 we have already seen and analysed the method of steepest descent
for this problem. We also seen that it exhibits a ‘zigzag’ behavior for ill-conditioned
matrices, resulting in slow convergence. This ‘zigzag’ behavior can be avoided by
choosing the search directions {p0,p1, . . .} orthogonal to each other, in the inner
product induced by A:

pT
i Apj = 0 ∀i 6= j. (4.25)

Then we generate a sequence {xk} by setting

xk+1 = xk + αkpk,

with parameter αk obtained from exact line search:

αk = −
rTk pk

pT
kApk

.

Because of (4.25), this is sometimes called conjugate directions method.
In the conjugate gradient method, the directions are chosen such that

span{p0,p1, . . . ,pk} = span{r0, r1, . . . , rk} (4.26)

holds, that is, the search directions span the same space as the gradients. To
generate such directions, let us suppose we can do this via a recursion of the form

pk = −rk + βkpk−1.
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The condition pT
k−1

Apk = 0 implies

βk =
rTkApk−1

pT
k−1

Apk−1

It then follows that (4.25) and (4.26) hold (which is by no means trivial to show).
Moreover, it can be shown that

αk =
rTk rk

pT
kApk

, βk+1 =
rTk+1

rk+1

rTk rk
,

which avoids unnecessary multiplications with A in the computation of these scalars.
Putting everything together yields Algorithm 4.14.

Algorithm 4.14 CG method
Input: Symmetric positive definite matrix A ∈ R

n×n, b ∈ R
n. Starting

vector x0 ∈ R
n. kmax ∈ N.

Output: Approximate solution xk to Ax = b.

r0 ← b−Ax0, p0 ← −r0
for k = 0, 1, . . . , kmax do

αk ←
r
T
k rk

p
T
k
Apk

xk+1 ← xk + αkpk

rk+1 ← rk + αkApk

βk+1 ←
r
T
k+1rk+1

r
T
k
rk

pk+1 ← −rk+1 + βk+1pk

end for

It is informative to compare the following convergence result with Theorem 4.13.

Theorem 4.15 Let xk denote the approximate solution obtained after applying k
steps of CG with starting vector x0. Then

‖x− xk‖A
‖x− x0‖A

≤ 2

Ç√

κ(A)− 1
√

κ(A) + 1

åk

.

4.3.2 The Fletcher-Reeves method

Algorithm 4.14 can be applied to a general nonlinear optimization problem by sim-
ply replacing rk with a gradient. Only one additional change is necessary, as it is
in general not possible to obtain the step length αk by exact line search. This can
be replaced by, e.g., the Armijo rule. As a result, we obtain Algorithm 4.16.
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Algorithm 4.16 Fletcher-Reeves method
Input: Objective function f . Starting vector x0 ∈ R

n. kmax ∈ N.
Output: Approximate minimizer xk of f .

Evaluate ∇0 = ∇f(x0) and set p0 ← −∇0

for k = 0, 1, . . . , kmax do
Compute αk by line search and set xk+1 ← xk + αkpk

Evaluate ∇k+1 = ∇f(xk+1)

βFR
k+1
←

∇T
k+1∇k+1

∇T
k
∇k

pk+1 ← −∇k+1 + βFR
k+1

pk

end for

It would be comforting to know that the directions produced by Algorithm 4.16
are indeed descent directions. To check this, we compute

∇f(xk)
Tpk = −‖∇f(xk)‖

2 + βFR
k ∇f(xk)

Tpk−1. (4.27)

If the line search is exact, we have ∇f(xk)
Tpk−1 = 0 and hence (4.27) is always

negative. For inexact line search this is not clear at all. Fortunately, it will turn
out to be the case if we impose the strong Wolfe conditions:

f(xk + αkpk)− f(xk) ≤ c1αk∇f(xk)
Tpk, (4.28)

|∇f(xk + αkpk)
Tpk| ≤ −c2∇f(xk)

Tpk.. (4.29)

While (4.6) and (4.28) are identical, the absolute value in (4.29) is not present
in (4.7). Moreover, we impose 0 < c1 < c2 <

1

2
(instead of 0 < c1 < c2 < 1).

Theorem 4.17 Suppose that Algorithm 4.16 makes use of a step length αk sat-
isfying (4.29) with c2 < 1/2. Then the method generates descent directions that
satisfy

−
1

1− c2
≤
∇f(xk)

Tpk

‖∇f(xk)‖22
≤

2c2 − 1

1− c2
. (4.30)

Proof. By elementary considerations,

−1 <
2c2 − 1

1− c2
< 0, (4.31)

and we therefore obtain the descent property once (4.30) is established.
The proof of (4.30) is by induction in k. The case k = 0 follows from (4.31).

Assume now that (4.30) holds for some k. Then, by Algorithm 4.16,

∇f(xk+1)
Tpk+1

‖∇f(xk+1)‖22
= −1 + βFR

k+1

∇f(xk+1)
Tpk

‖∇f(xk+1)‖22
= −1 + βFR

k+1

∇f(xk+1)
Tpk

‖∇f(xk)‖22
.

Combining this with the curvature condition (4.29),

|∇f(xk+1)
Tpk| ≤ −c2∇f(xk)

Tpk,
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we obtain

−1 + c2
∇f(xk)

Tpk

‖∇f(xk)‖22
≤
∇f(xk+1)

Tpk+1

‖∇f(xk+1)‖22
≤ −1− c2

∇f(xk)
Tpk

‖∇f(xk)‖22
.

Using the induction hypothesis yields

−1−
c2

1− c2
≤
∇f(xk+1)

Tpk+1

‖∇f(xk+1)‖22
≤ −1 +

c2
1− c2

,

which completes the proof.

Note that Theorem 4.17 does not make use of the Armijo condition (4.28). This
condition is still needed, to ensure global convergence. However, in contrast to 4.15,
the global convergence statements for nonlinear CG methods are much weaker; see
Chapter 5 in [NW].

4.3.3 The Polak-Ribière method

If it happens that pk is a very poor search direction, that is, it is nearly orthogonal to
pk then Algorithm 4.16 makes very little progress in one step and hence xk+1 ≈ xk,
∇k+1 ≈ ∇k. So, we have

βFR
k+1 =

∇T
k+1
∇k+1

∇T
k∇k

≈ 1.

Moreover, it can be shown that, in such a situation, ‖∇k‖ (and therefore also
‖∇k+1‖) needs to be tiny for (4.29) to be satisfied. Consequently,

pk+1 ≈ pk

and Algorithm 4.16 will also make very little progress in the next step. In other
words, it gets stuck.

The Polak-Ribière method aims to avoid the described situation by replacing
βFR
k+1

with

βPR
k+1 =

∇T
k+1

(∇k+1 −∇k)

∇T
k∇k

.

The Fletcher-Reeves and Polak-Ribière methods with exact line search are identical
for strongly convex functions. In all other situations, they can differ, sometimes to
a large extent. Often, the Polak-Ribière method yields more robust and faster
convergence.

There are several other strategies for choosing βk+1, see [NW].


