
EE7500: Advanced Electromagnetics — Homework Assignment 1

Instructor: Prof. Uday Khankhoje, IIT Madras

Released: 12 Feb, due: 23 Feb 2026 Total: 100 points

Academic Integrity:

• This homework must be completed and submitted individually.

• If you discuss the general approach with classmates, acknowledge them by name in your submission

(no penalty for doing so).

• If you use AI tools (ChatGPT, Claude, etc.), clearly state which problems, how you used them, and

the specific prompts. If you use machine learning tools as a black box without building your own

understanding, it is only the machines that will learn—not you.

• Submit: PDF with all solutions/plots, and MATLAB .m files for computational problems as one

consolidated zip file. The matlab files should have comments and named like so: ‘questionXX.m’ and

the PDF file name must be your roll number.

• Your main PDF should start with a self-certification of academic integrity like so: “I hereby certify

that this document and associated code has been generated by me with the highest academic integrity

– your name”

1. Transmission Line Analysis

A lossless transmission line with Z0 = 50Ω at f = 1GHz is terminated with ZL = 75+ j50Ω. The line

has length ℓ = 0.15λ.

(a) (3 points) Calculate the load reflection coefficient ΓL in both rectangular and polar forms, and the

VSWR.

(b) (3 points) Find the input impedance Zin.

(c) (2 points) If Pinc = 10W, find the power delivered to the load and the power reflected.

(d) (2 points) Sketch the voltage magnitude |V (d)| along the line as a function of distance d from the

load, indicating the locations of the first maximum and first minimum.

2. Quarter-Wave Transformer Design

Design a quarter-wave matching network: ZL = 100Ω to Z0 = 50Ω at f0 = 2.4GHz on a substrate with

εr = 4.4 (FR-4).

(a) (2 points) Calculate the characteristic impedance ZQW of the quarter-wave section.

(b) (2 points) Calculate the physical length of the matching section in millimeters.

(c) (2 points) Estimate the fractional bandwidth over which |Γin| < 0.1.

(d) (2 points) Draw a labeled schematic showing the source line (Z0), the quarter-wave matching

section (indicating its impedance and physical length), and the load (ZL).

3. Skin Depth and Shielding Effectiveness

A two-layer planar shield is illuminated by a normally-incident plane wave at f = 200MHz. Layer 1

(outer): aluminum, t1 = 100µm, σAl = 3.5 × 107 S/m. Layer 2 (inner): copper, t2 = 50µm, σCu =

5.8× 107 S/m. Both have µr = 1; negligible air gap.

(a) (3 points) Calculate the skin depth δs = 1/
√
πfµ0σ for Al and Cu at 200 MHz. Express each

layer thickness in units of skin depth, then compute the absorption shielding effectiveness SE ≈
8.686 (t/δs) dB for each layer and the total SE.



(b) (3 points) Compare with a single 150 µm aluminum layer (same total thickness). Which configu-

ration provides better shielding? Explain physically why.

(c) (2 points) At f = 5GHz, a plane wave with surface magnetic field H0 = 1A/m is incident on a

thick copper slab. Using the impedance boundary condition Zs = (1 + j)/(σδs), compute E⃗tan at

the surface.

(d) (2 points) The absorption-only SE formula used above ignores re-reflections at layer boundaries.

Under what condition on t/δs is this approximation justified? Is it valid for the shield in this

problem?

Ignore reflection losses at boundaries for the SE calculations.

4. Polarization and Wave Superposition

A plane wave at f = 10GHz propagates in the +z direction in free space. Its phasor electric field is

E⃗ =
(
ax x̂+ ay e

jδ ŷ
)
e−jk0z V/m, with ejωt time convention.

(a) (3 points) For ax = 3, ay = 4, δ = 0: identify the polarization type. Find the tilt angle ψ of the

electric field vector relative to the x-axis and compute the time-averaged power density |S⃗av|.

(b) (3 points) For ax = 3, ay = 4, δ = −π/2: write the time-domain electric field E⃗(z = 0, t) and

evaluate it at t = 0, T/4, T/2, 3T/4. Sketch the locus of the E⃗-field tip in the x-y plane. Identify

the polarization type, the sense of rotation (right-hand or left-hand), and compute the axial ratio.

(c) (3 points) Two co-polarized plane waves of the same frequency arrive at a receiver:

E⃗1 = 2 x̂ e−jk0z V/m (direct path),

E⃗2 = 3 x̂ e−j(k0z+π/3) V/m (reflected path with additional phase π/3).

Compute the time-averaged Poynting vector magnitude for each wave individually (|S⃗1|, |S⃗2|) and
for the total field E⃗ = E⃗1 + E⃗2. Verify that |S⃗total| ̸= |S⃗1| + |S⃗2| and explain physically why

superposition does not apply to the Poynting vector.

(d) (3 points) The reflected wave now has a different polarization due to ground reflection:

E⃗1 = 2 x̂ e−jk0z V/m (horizontally polarized, direct path),

E⃗2 = 1.5 ŷ e−j(k0z+π/4) V/m (vertically polarized, reflected path).

What is the polarization of the total field E⃗1 + E⃗2? Is it linear, circular, or elliptical? Determine

the sense of rotation.

5. Vector Potential from a Current Distribution

A line current along the z-axis: J⃗(r⃗ ′) = I0 e
−|z′|/a δ(x′)δ(y′) ẑ, where I0 has units of A and a is a length.

(a) (3 points) Using the 3D free-space Green’s function G(r⃗, r⃗ ′) = e−jk|r⃗−r⃗ ′|

4π|r⃗−r⃗ ′| , write the integral for the

vector potential A⃗(r⃗) = µ
∫
V ′ J⃗(r⃗

′)G(r⃗, r⃗ ′) dV ′.

(b) (2 points) Simplify by performing the x′ and y′ integrations. State the remaining integral and its

limits.

(c) (3 points) Compute ∇′ · J⃗ and show it is not zero. Using the continuity equation ∇ · J⃗ = −jωρ,
what does this imply about the charge density and scalar potential ϕ?

(d) (2 points) Explain physically why A⃗ must point in the ẑ direction everywhere for this source.
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You do not need to evaluate the integral in (b).

6. Verification of 1D Green’s Function

The 1D Green’s function g(x, x′) = −j
2k0
e−jk0|x−x′| satisfies d2g

dx2 + k20g = −δ(x− x′).

(a) (3 points) For x > x′, write g without the absolute value. Compute dg/dx and d2g/dx2, then

substitute into d2g/dx2 + k20g and show it equals zero.

(b) (2 points) Repeat the above for x < x′.

(c) (2 points) Compute the jump in dg/dx at x = x′: dg
dx

∣∣∣
x′+

− dg
dx

∣∣∣
x′−

. Show it equals −1.

(d) (3 points) Integrate the defining equation over [x′− ϵ, x′+ ϵ] and take ϵ→ 0. Show that the result

is consistent with part (c).

7. 1D Green’s Function — MATLAB Symbolic Toolbox

Use MATLAB’s Symbolic Math Toolbox to verify properties of the 1D Green’s function.

Reference: https://www.mathworks.com/help/symbolic/

(a) (2 points) Symbolic definition. Define g1(x) for x > x′ and g2(x) for x < x′ as symbolic

expressions (with x, x′, k0 as symbolic variables).

(b) (3 points) Symbolic verification of Helmholtz equation. For each region: compute dg/dx,

d2g/dx2, then d2g/dx2 + k20g. Use simplify to verify the result is zero. Display expressions at

each step.

(c) (2 points) Derivative discontinuity. Symbolically evaluate dg1/dx at x = x′ (from right) and

dg2/dx at x = x′ (from left). Compute the jump and verify it equals −1.

(d) (3 points) Numerical plotting. Convert to numeric using matlabFunction. For k0 = 2π, x′ = 0,

plot Re{g} and Im{g} as two subplots over x ∈ [−3, 3]. Verify g(1, 0) = g(0, 1) numerically

(symmetry).

Deliverables: MATLAB .m file with comments, intermediate symbolic outputs printed to the command

window, plots with labeled axes, and a 2–3 sentence summary of what the symbolic verification confirms

about the Green’s function.

8. Sommerfeld Radiation Boundary Condition

The general homogeneous solution for the 2D Green’s function is g(r) = aH
(1)
0 (kr) + bH

(2)
0 (kr).

The Sommerfeld radiation boundary condition (for ejωt convention) is: lim
r→∞

√
r

(
∂g

∂r
+ jkg

)
= 0.

Asymptotic forms: H
(1)
0 (kr) ∼

√
2

πkr e
j(kr−π/4); H

(2)
0 (kr) ∼

√
2

πkr e
−j(kr−π/4).

(a) (2 points) For H
(2)
0 (kr): compute ∂

∂rH
(2)
0 (kr) using the asymptotic form (leading order), substitute

into the radiation condition, and verify it is satisfied.

(b) (2 points) Repeat for H
(1)
0 (kr) and show it does not satisfy the condition.

(c) (4 points) The DLMF (https://dlmf.nist.gov/10.17) gives higher-order asymptotic expansions

for the Hankel functions (which equations are relevant?). Write out the two-term expansion of

H
(2)
0 (kr) and show that it also satisfies the Sommerfeld radiation condition.

(d) (2 points) Why are Hankel functions preferred over Bessel functions J0, Y0 for radiation problems?

Hint for (a)–(b): Use the product rule; keep only the leading-order term in 1/r.
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9. Dimensional Comparison of Green’s Functions

The free-space Green’s functions are:

1D: g1D =
−j
2k
e−jk|x−x′|, 2D: g2D =

−j
4
H

(2)
0 (k|r⃗ − r⃗ ′|), 3D: g3D =

e−jk|r⃗−r⃗ ′|

4π|r⃗ − r⃗ ′|

In the far field, |g2D| ∼ 1/
√
2πkr for r ≫ λ.

(a) (2 points) Extract the amplitude decay factor |g| vs. distance for each case and state the decay law

(constant, 1/
√
r, 1/r).

(b) (3 points) Using energy conservation, derive the decay rates from first principles:

• 1D: power flows along one direction only.

• 2D: power spreads over a cylindrical surface of circumference 2πr.

• 3D: power spreads over a sphere of area 4πr2.

Since field amplitude ∝
√
intensity, verify consistency with part (a).

(c) (3 points) A finite line source of length L radiates in 3D space. In the near field (r ≪ L) it looks

like an infinite line source; in the far field (r ≫ L) it looks like a point source. Which Green’s

function describes each regime? Estimate the transition distance.

(d) (2 points) Explain in 2–3 sentences:

• Why the 1D Green’s function has no amplitude decay.

• Why all real (finite-extent) antennas eventually exhibit 3D 1/r decay in the far field.

10. 1D Green’s Function in a Layered Medium

Consider the 1D Helmholtz equation with a piecewise-constant wavenumber modeling an interface be-

tween two non-magnetic (µr = 1) dielectric half-spaces:

d2g

dx2
+ k2(x) g = −δ(x− x′), k(x) =

k1 = ω
√
µ0ε0εr1, x < 0

k2 = ω
√
µ0ε0εr2, x > 0

A point source is located at x = x′ > 0 (inside medium 2). Both g and dg/dx are continuous at the

interface x = 0 (TE polarization, same µ).

(a) (3 points) Write the general solution for g(x) in each of the three regions: x < 0, 0 < x < x′,

and x > x′. Apply the outgoing-wave (radiation) condition at x→ ±∞ to discard the appropriate

terms. How many unknown coefficients remain?

(b) (3 points) Write the four boundary conditions (two at x = 0, two at x = x′) and solve for the

coefficients. Express your answer in terms of k1, k2, x
′, and the reflection coefficient Γ = (k2 −

k1)/(k1 + k2).

(c) (2 points) Verify that when εr1 = εr2 (homogeneous medium, Γ = 0), your solution reduces to the

free-space Green’s function g = −j
2k e

−jk|x−x′|.

(d) (2 points) For εr1 = 1 and εr2 = 4: compute Γ and describe qualitatively how |g(x)| differs from

the homogeneous case. In which region does a partial standing wave appear, and why? What

happens to the amplitude transmitted into medium 1?
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