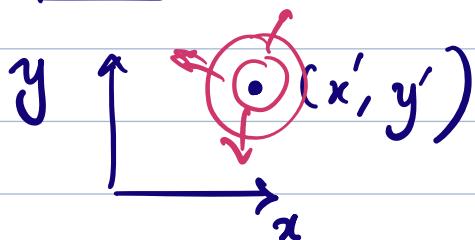


Moving now to the 2D Green's function.

Defn  $\nabla^2 g(\bar{r}, \bar{r}') + k_0^2 g(\bar{r}, \bar{r}') = -\delta(\bar{r} - \bar{r}')$

We can do  $(x, y)$  or  $(r, \theta)$  coords.

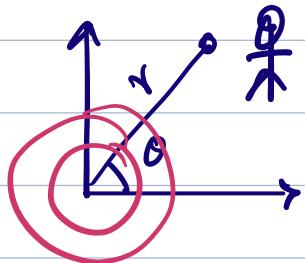
Think → which would simplify math.



or



In both cases we have a 2D propagation.  
But what if we place  $\bar{r}'$  at the origin?



Will this guy see any  $\theta$  depn of the field at different  $\theta$ s?  
No! Let's exploit this obsv.

$$\therefore \nabla^2 = \frac{1}{r} \frac{\partial}{\partial \theta} + \frac{\partial^2}{\partial \theta^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \quad \text{simplifies to:}$$

$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial r^2}$$



$$\therefore \text{Green's fn defn} \rightarrow r^2 \frac{d^2}{dr^2} g + r \frac{d}{dr} g + k_0^2 r^2 g = -r^2 \delta(r)$$

(mult by  $r^2$ )

(1)

where  $g(r, r'=0) \rightarrow g(r)$ .  
(short hand)

similar to

↳ Turns out this is a very well known diff eqn:

Bessel's diff eq. In standard form:

$$x^2 y'' + x y' + (x^2 - \alpha^2) y = 0. \quad \text{--- (2)}$$

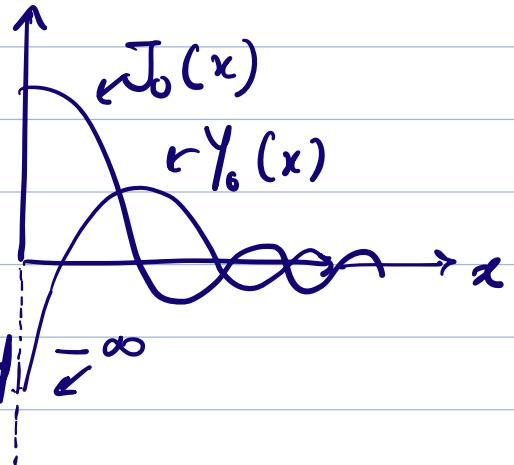
const.

2<sup>nd</sup> order D.E  $\Rightarrow$  2 indep. n. solns

(a) either  $J_\alpha(x)$ ,  $Y_\alpha(x)$   $\curvearrowright$  second kind.  
 $\curvearrowleft$  first kind.

or a linear combination  
(b) of then  $H_\alpha^{(1)}(x)$ ,  $H_\alpha^{(2)}(x)$

Hankel fn: first & second kind



we can choose our soln set as either (a) or (b).  
keep RHS in mind... Y looks "better" than J.  
 $\Rightarrow$  Set (b) might be more appropriate.

↳ How do we pour (1) into (2)? Ignore RHS for now.  
key is the  $k_0^2 \sigma^2 g \leftrightarrow x^2 y$  term.

$$\Rightarrow \text{subs } k_0 \sigma = x \Rightarrow k_0 \sigma' = x' \\ k_0 \sigma'' = x''$$

$$\therefore r^2 \frac{d^2}{d\sigma^2} g(r) + r \frac{d}{d\sigma} g(r) + k_0^2 r^2 g(r)$$

$$\left( \begin{aligned} \frac{d}{d\sigma} g(x/k_0) &= \frac{dg(x/k_0)}{dx} \frac{dx}{d\sigma} = k_0 \frac{dg(x/k_0)}{dx} \\ \frac{d^2}{d\sigma^2} g(x/k_0) &= k_0^2 \frac{d^2 g}{dx^2} \end{aligned} \right)$$

$$\Rightarrow x^2 \frac{d^2 g(x/k_0)}{dx^2} + x \frac{dg(x/k_0)}{dx} + x^2 g(x/k_0) = 0 \quad (x=0)$$

is the homo D.E.

$$\Rightarrow g(x/k_0) = a H_0^{(1)}(x) + b H_0^{(2)}(x)$$

$$\text{or } g(r) = a H_0^{(1)}(k_0 r) + b H_0^{(2)}(k_0 r)$$

↳ Great. Now how to go further?

Now we invoke boundary conditions.

The 2D (Sommerfeld) Radiation Boundary Condition is:

$$\lim_{r \rightarrow \infty} \sqrt{r} \left( \frac{\partial g}{\partial r} + j k g \right) = 0$$

(for  $e^{j\omega t}$  time convention).

$$\text{As } r \rightarrow \infty \quad H_0^{(1)}(k r) \rightarrow \sqrt{\frac{2}{\pi k r}} e^{j(k r - \pi/4)}$$

$$\text{and } H_0^{(2)}(k r) \rightarrow \sqrt{\frac{2}{\pi k r}} e^{-j(k r - \pi/4)}$$

$$\text{Also } \frac{\partial}{\partial r} H_0^{(1)}(k r) \sim j k H_0^{(1)}(k r)$$

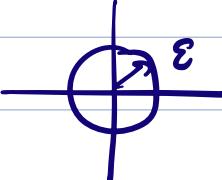
$$\text{and } \frac{\partial}{\partial r} H_0^{(2)}(k r) \sim -j k H_0^{(2)}(k r)$$

$\Rightarrow H_0^{(2)}(k r)$  satisfies the RBC.  $\Rightarrow a=0$

Intuitively, we see that  $e^{j(\omega t - k r)}$  is the physical soln for a source at origin.

$$\therefore g(r) = b H_0^{(2)}(kr) \text{ where } b \text{ is a const to be det.}$$

Now take the full D.F & integrate on a small circle around the origin:



$$\iint_{S_\epsilon} [\nabla^2 g + k_0^2 g] = -\delta(r) \, ds$$

Skipping the detailed steps now, we will get

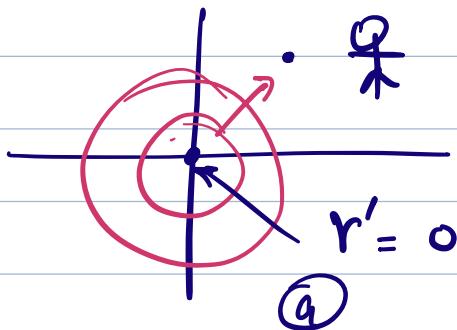
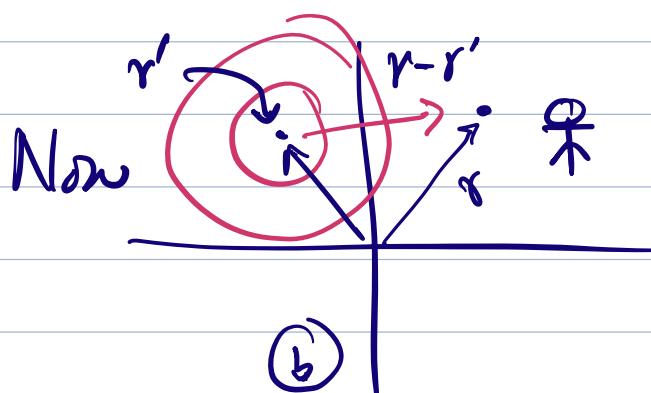
$$\iint_{S_\epsilon} \nabla^2 g \, ds = -4\pi j b$$

see extra pdf for this

$$\iint_{S_\epsilon} k_0^2 g \, ds = 0 \quad \& \quad \text{RHS} = -1$$

$$\Rightarrow b = -j/4.$$

$$\Rightarrow g(r) = -\frac{j}{4} H_0^{(2)}(kr). \text{ Let's get back to } (r, \sigma')$$



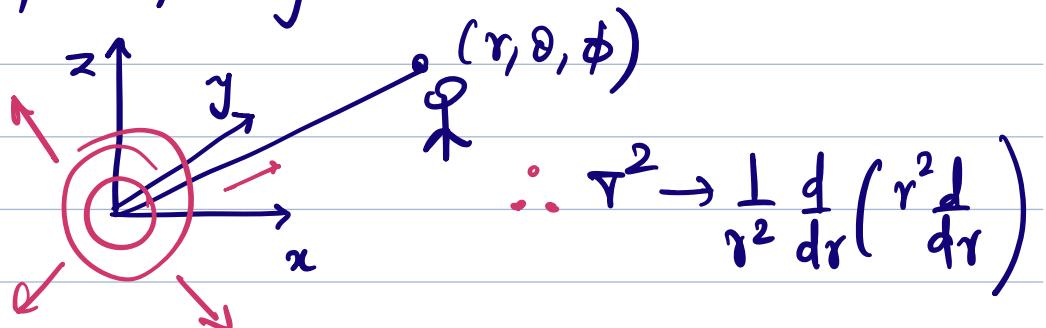
for (b), it's as though  $r'$  is the origin of the wave.

$$\therefore g(r, r') = -\frac{j}{4} H_0^{(2)}(k|r-r'|). \quad \checkmark$$

Now the 3D wave eqn Green's fn.

Follow a similar strategy of placing  $r'$  at 0 to start with.

$\Rightarrow$  No  $\theta, \phi$  depn of the soln:



$$\therefore r^2 \rightarrow \frac{1}{r^2} \frac{d}{dr} \left( r^2 \frac{d}{dr} \right)$$

$$\therefore \text{Green's fn defn: } \frac{1}{r^2} \frac{d}{dr} \left( r^2 \frac{d}{dr} g(r) \right) + k_0^2 g = -\delta(r)$$

$$\text{Open it } \frac{1}{r^2} \left[ r^2 g'' + 2r g' \right] + k_0^2 g = -\delta(r)$$

$$\text{Homogeneous soln: } \underbrace{\frac{1}{r} \left[ r g'' + 2 g' \right]}_{\text{looks like } \frac{d^2}{dr^2} (rg)} + k_0^2 g = 0$$

$$\therefore \frac{d^2}{dr^2} (rg) + k_0^2 rg = 0 \quad \text{looks like the wave eqn.}$$

$$\Rightarrow rg(r) = a e^{jkr} + b e^{-jkr.}$$

Now the Sommerfeld radiation B.C. states

$$\lim_{r \rightarrow \infty} r \left( \frac{1}{r} g + j k g \right) = 0$$

This gives  $a = 0$ , also expected intuitively.

$$\Rightarrow g(r) = b \frac{e^{-jk_r}}{r} \rightarrow \text{spherical plane wave.}$$

↳ Again, how to determine 'b'? Integrate over a small ball around the origin.

$$\text{we get } b = \frac{1}{4\pi}.$$

↳ Like before we shift from  $r=0$  to an arbitrary  $r'$

$$\text{Finally. } g(r, r') = \frac{1}{4\pi} \frac{e^{-jk|r-r'|}}{|r-r'|}.$$

This is the form of Green's fn seen a lot in antenna problems in free space.

Unlike 1D (needed a  $\infty$  sheet of current) or 2D (needed a  $\infty$  line of current) here in 3D we need a tiny point of current  $\rightarrow$  more physically realizable and intuitive.

Summary:

| 1D                                   | 2D                                | 3D                                            |
|--------------------------------------|-----------------------------------|-----------------------------------------------|
| $\frac{-jk r-r' }{2k} e^{-jk r-r' }$ | $\frac{-j}{4} H_0^{(2)}(k r-r' )$ | $\frac{1}{4\pi} \frac{e^{-jk r-r' }}{ r-r' }$ |