

Original eqn? $L \phi(r) = f(r)$. Compare with above eqn to get

$$\phi(r) = \int_{\mathbb{R}^3} f(r') g(r, r') dr'$$

Compare with LTI response $y(t) = \int_{-\infty}^t x(z) h(t-z) dz$.

This g : Green's fn or impulse response.

—*—

Now we will derive Green's functions for M.F. in 3 cases \rightarrow 1D, 2D & 3D. To cover all possible dimensions. Assumption: free space. A different $\epsilon(r)$ will give a different fn.

① One dimensional Green's function. —

[where might we see this? line currents, leaky wave antennas, 1D antenna array, beamforming, etc.]

Defn of 1D Green's fn: $\frac{d^2 g(x, x')}{dx^2} + k_0^2 g = -\delta(x-x')$. (①)

We can use FT tricks. Recall:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(k) e^{jkx} dk \Rightarrow \frac{d^2 f}{dx^2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} -k^2 F(k) e^{jkx} dk$$

$$\therefore f(x) \longleftrightarrow F(k) \quad f'' \longleftrightarrow -k^2 F$$

Thus taking FT of ① gives :

$$(-k^2 + k_0^2) G = -e^{-j k x'}$$

$$\Rightarrow g(x, x') = \left(\frac{1}{2\pi}\right) \int_{-\infty}^{\infty} e^{\frac{jk(x-x')}{k^2 - k_0^2}} dk \quad -②$$

Note: trouble at $k = \pm k_0$. Called the 'poles'
Can we take it to a closed form expr?

2 routes \rightarrow usual way contour integration
in the complex plane (prereq)
 \rightarrow Or, via a limiting case of a low loss medium
+ Some FT. pairs. (no prereq) ✓

Ⓐ Key insight: IFT of $\frac{e^{jk(x-x')}}{k^2 - k_0^2}$ doesn't
exist in standard form, but if we do
partial fractions we can do it.

$$\therefore \frac{1}{k^2 - k_0^2} = \frac{1}{2k_0} \left[\frac{1}{k - k_0} - \frac{1}{k + k_0} \right]$$

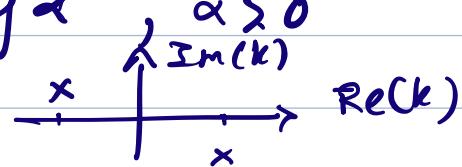
$$\Rightarrow g(x, x') = \frac{1}{4\pi k_0} \int_{-\infty}^{\infty} e^{\frac{jk(x-x')}{k - k_0}} dk - \frac{1}{4\pi k_0} \int_{-\infty}^{\infty} e^{\frac{jk(x-x')}{k + k_0}} dk$$

Ⓑ If the medium has some loss then replace.
 $k_0 = k_0 - j\alpha$, where later we will
set $\alpha \rightarrow 0$.

So poles are at $\pm(k_0 - j\alpha)$. $\alpha > 0$

[Note: for $e^{-j\omega t}$ we would do $k_0 + j\alpha$]

Poles are: $k_0 - j\alpha$, $-k_0 + j\alpha$



(c) Now we use standard FT relations.

$$u(t)e^{-at} \leftrightarrow \frac{1}{a+j\omega} \quad (\text{when } \text{Re}(a) > 0)$$

$$\Rightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{j\omega t}}{j\omega + a} d\omega = \begin{cases} e^{-at} & t > 0, \text{Re}(a) > 0 \\ 0 & t < 0 \end{cases}$$

(a)

But this is also correct:

$$\text{FT}[u(-t)e^{-at}] \quad \text{when } \text{Re}(a) < 0$$

$$\begin{cases} 0 & t > 0, \text{Re}(a) < 0 \\ -e^{-at} & t < 0 \end{cases}$$

(b)

(d)

Look at denominator: $j\omega + a = j(\omega - j\alpha)$

What do we have?

partial fracs $\rightarrow \frac{1}{k - \tilde{k}_0}$ and $\frac{1}{k + \tilde{k}_0}$

$$\therefore e^{-j\alpha} = \frac{1}{\tilde{k}_0}$$

$$\Rightarrow a = -j\tilde{k}_0 \\ = -j(k_0 - j\alpha)$$

$$= -\alpha - jk_0$$

$$\text{Re}(a) < 0$$

$$\therefore j\alpha = -\tilde{k}_0$$

$$a = j\tilde{k}_0$$

$$= j(k_0 - j\alpha)$$

$$= \alpha + jk_0$$

$$\text{Re}(a) > 0$$

Now we know which of eqns (a) & (b) to pick!

$$\therefore \frac{1}{2\pi j} \int_{-\infty}^{\infty} \frac{e^{j\omega t}}{\omega - k_0} d\omega = \begin{cases} 0 & t > 0 \\ -e^{+jk_0 t} & t < 0 \end{cases}$$

$$\frac{1}{2\pi j} \int_{-\infty}^{\infty} \frac{e^{j\omega t}}{\omega + k_0} d\omega = \begin{cases} e^{-jk_0 t} & t > 0 \\ 0 & t < 0 \end{cases}$$

(e) Putting in our language: $\omega \rightarrow k$, $x - x' \rightarrow t$

$$\frac{1}{2\pi j} \int_{-\infty}^{\infty} \frac{e^{jk(x-x')}}{\omega - (k_0 - j\alpha)} dk = \begin{cases} 0 & x > x' \\ -\exp(j(k_0 - j\alpha)(x - x')) & \text{when } x < x' \end{cases}$$

and

$$\frac{1}{2\pi j} \int_{-\infty}^{\infty} \frac{e^{jk(x-x')}}{\omega + (k_0 - j\alpha)} dk = \begin{cases} \exp(-j(k_0 - j\alpha)(x - x')), & x > x' \\ 0 & x < x' \end{cases}$$

Back to:

$$g(x, x') = \frac{1}{4\pi k_0} \int_{-\infty}^{\infty} \frac{e^{jk(x-x')}}{k - k_0} dk - \frac{1}{4\pi k_0} \int_{-\infty}^{\infty} \frac{e^{jk(x-x')}}{k + k_0} dk$$

$$\Rightarrow g(x, x') = \begin{cases} \frac{j}{2k_0} (-\exp(-jk_0(x - x'))) & x > x' \\ \frac{j}{2k_0} (\exp(jk_0(x - x'))) & x < x' \end{cases}$$

Can be combined into a single expression:

$$g(x, x') = \frac{-j}{2k_0} \exp(-j k_0 |x - x'|)$$

Makes sense when we take in $e^{j\omega t}$ time dep.
 we get a fwd travelling wave away
 from the source at $x = x'$
 physical interpretation check.
 — x —.

Note the following properties of Green's fns which hold in general. (Key signatures of g).

- 1) It satisfies the homogeneous diff eqn.
- 2) It is symmetric w.r.t x, x'
- 3) It is continuous at $x = x'$
- 4) Its derivative is discontinuous at $x = x'$

$$\downarrow \quad \frac{d^2 g}{dx^2} + k_0^2 g = -\delta(x - x')$$

$$\frac{dg}{dx} \Big|_{x=x'_-}^{x=x'_+} + k_0^2 \int_{x'_-}^{x'_+} g dx = -1$$

Integrate over $x = x'_- \text{ to } x'_+$

i.e. $x = x'_- - \varepsilon$ to $x'_+ + \varepsilon$. Due to ③,
 second term $\rightarrow 0$ as $\varepsilon \rightarrow 0$

$$\Rightarrow \frac{dg}{dx} \Big|_{x'_-}^{x'_+} = -1.$$