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Theorem1: The Schur decomposition of a square matrix A expresses it in the following form:

A = BRB−1 = BRBH ,

where B is an orthogonal matrix (i.e. its columns are orthonormal vectors) and R is upper triangular.

Preliminaries:
(P1) The fundamental theorem of algebra states that every non-constant single-variable polynomial with
complex coefficients has at least one complex root. When applied to the characteristic polynomial coming
from a matrix eigenvalue problem, this tell us that any square matrix (or a linear transformation in general)
must have at least one complex root, and thus at least one nontrivial eigenvector.

(P2) Matrix corresponding to a linear transformation (LT): Let T : V → V be a LT. If we choose a the set
of vectors {b}ni=1 as the basis for V , then the matrix A corresponding to this LT is generated by giving
each of the basis vectors as input to T and expressing the output as a linear combination of the basis
vectors

T ([b1 . . . bn]) = [b1 . . . bn]A. (1)

Here, each column of A can be interpreted as the coefficients of a linear combination. Two observations
can be made:
(a) changing the basis leads to a different matrix for the same linear transformation, and
(b) the length of the basis vectors does not enter into the matrix size. For e.g. if we had a k-dimensional
subspace of V , say Vk, spanned by the basis vectors {ci}ki=1, then even though ci is defined by n entries,
a linear transformation of the type Tk : Vk → Vk requires a matrix Ak of size k × k.

Proof:
(1) Consider a n × n matrix, A. By (P1), it can be said that there is atleast one eigenvalue (call it λ1)
and one nontrivial eigenvector corresponding to it. Let’s generalize this and say that λ1 has geometric
multiplicity k, giving us k linear independent eigenvectors for this eigenvalue. Let’s take matters further
and apply Gram-Schmidt to these vectors to produce an orthonormal set and denote this set: {bi}ki=1.
Thus,

A[b1 . . . bk] = [b1 . . . bk]

λ1 . . . 0
... . . . ...
0 . . . λ1

 (2)

(2) The above set {bi}ki=1 spanned a k dimensional subspace of Cn, call it Vb. We can now construct a
n − k dimensional subspace of Cn, call it Vc that is orthogonal to Vb, such that Vb + Vc spans Cn. As
before, Gram-Schmidt can be used to generate this new basis; let’s denote it by {ci}n−ki=1 . We can further
add this set to both sides of Eq. (2) to get:

A[b1 . . . bk c1 . . . cn−k] = [b1 . . . bk c1 . . . cn−k]


λ1 . . . 0

... . . . ...
0 . . . λ1


k×k

(Ar)k×n−k

0n−k×k (A2)n−k×n−k

 (3)
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(3) From the above, let’s consider the action of A on ci: the result is a linear combination of the basis
sets {bi}ki=1 and {ci}n−ki=1 , explicitly as

Aci = [b1 . . . bk c1 . . . cn−k]

[
(Ar)i
(A2)i

]
(4)

If we were to change the basis from the set {ci} to some new set {di} (allowed since there are infinite
possible bases for a vector space), the only thing that would change would the form of the matrix A2,
while Ar would remain unchanged. In other words, A2 seems to be controlling/depicting what is happening
within this n− k dimensional subspace, Vc. In fact, we can think of A2 as the matrix representation of a
linear transformation of the kind: T2 : Vc → Vc. In the spirit of Eq. (1), we can say:
T2([c1 . . . cn−k]) = ([c1 . . . cn−k])A2.

(4) By invoking (P1), there must be atleast one eigenvalue (call it λ2) and nontrivial eigenvector (call
it d) for this LT. Using Gram Schmidt, we can take the set {ci} and create a new basis set for Vc as
[d c′1 . . . c

′
n−k−1], where the c′is are all orthonormal, and along with d, span Vc. How will the matrix

corresponding to this LT look now?

T2([d1 c
′
1 . . . c

′
n−k−1]) = [d1 c

′
1 . . . c

′
n−k−1]

λ2 A′1,1 . . . A′1,n−k−1
... . . .

. . . ...
0 A′n−k,1 . . . A′n−k,n−k−1

 (5)

where it is evident that original matrix A2 has been modified from before.

(5) Having understood this concept, we can generalize and say that the eigenvalue λ2 has geometric
multiplicity l, and therefore an orthonormal eigenbasis set can be created as {di}li=1. Supplementing this
set with an additional n− k − l vectors {c′i} in order to span Vc, we get a new matrix representation of
T2 similar to the above equation, except that the top-left block will be an l × l diagonal matrix with λ2
on its diagonals (much like the block diagonal form of the RHS of Eq. (2)).

(6) We can now put all previous observation together and examine the action of A on the updated basis
set: B′ = [b1 . . . bk d1 . . . dl c

′
1 . . . c

′
n−k−1]. We get (with p = n− k − l):

AB′ = [b1 . . . bk d1 . . . dl c
′
1 . . . c

′
p]



λ1 . . . 0
... . . . ...
0 . . . λ1


k×k

(Ar1)k×l (Ar2)k×p

0l×k

λ2 . . . 0
... . . . ...
0 . . . λ2


l×l

(Ar3)l×p

0p×k 0p×l (A3)p×p


(6)

(7) The above line of reasoning can now be applied to the linear transformation corresponding to A3 and
the basis set {c′i}

p
i=1. Each time the set of basis vectors used are orthonormal and the resulting operations

will ensure that the rightmost matrix in the above equation is upper triangular. In other words,

AB = BR =⇒ A = BRB−1 = BRBH (7)

where we have used the fact that for an orthogonal matrix , B−1 = BH .
QED


