Theorem The Schur decomposition of a square matrix A expresses it in the following form:

$$
A=B R B^{-1}=B R B^{H},
$$

where B is an orthogonal matrix (i.e. its columns are orthonormal vectors) and R is upper triangular.

Preliminaries:

(P1) The fundamental theorem of algebra states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. When applied to the characteristic polynomial coming from a matrix eigenvalue problem, this tell us that any square matrix (or a linear transformation in general) must have at least one complex root, and thus at least one nontrivial eigenvector.
(P2) Matrix corresponding to a linear transformation (LT): Let $T: V \rightarrow V$ be a LT. If we choose a the set of vectors $\{b\}_{i=1}^{n}$ as the basis for V, then the matrix A corresponding to this LT is generated by giving each of the basis vectors as input to T and expressing the output as a linear combination of the basis vectors

$$
\begin{equation*}
T\left(\left[b_{1} \ldots b_{n}\right]\right)=\left[b_{1} \ldots b_{n}\right] A \tag{1}
\end{equation*}
$$

Here, each column of A can be interpreted as the coefficients of a linear combination. Two observations can be made:
(a) changing the basis leads to a different matrix for the same linear transformation, and
(b) the length of the basis vectors does not enter into the matrix size. For e.g. if we had a k-dimensional subspace of V, say V_{k}, spanned by the basis vectors $\left\{c_{i}\right\}_{i=1}^{k}$, then even though c_{i} is defined by n entries, a linear transformation of the type $T_{k}: V_{k} \rightarrow V_{k}$ requires a matrix A_{k} of size $k \times k$.

Proof:

(1) Consider a $n \times n$ matrix, A. By (P1), it can be said that there is atleast one eigenvalue (call it λ_{1}) and one nontrivial eigenvector corresponding to it. Let's generalize this and say that λ_{1} has geometric multiplicity k, giving us k linear independent eigenvectors for this eigenvalue. Let's take matters further and apply Gram-Schmidt to these vectors to produce an orthonormal set and denote this set: $\left\{b_{i}\right\}_{i=1}^{k}$. Thus,

$$
A\left[b_{1} \ldots b_{k}\right]=\left[b_{1} \ldots b_{k}\right]\left[\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \tag{2}\\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{1}
\end{array}\right]
$$

(2) The above set $\left\{b_{i}\right\}_{i=1}^{k}$ spanned a k dimensional subspace of \mathbb{C}^{n}, call it V_{b}. We can now construct a $n-k$ dimensional subspace of \mathbb{C}^{n}, call it V_{c} that is orthogonal to V_{b}, such that $V_{b}+V_{c}$ spans \mathbb{C}^{n}. As before, Gram-Schmidt can be used to generate this new basis; let's denote it by $\left\{c_{i}\right\}_{i=1}^{n-k}$. We can further add this set to both sides of Eq. (2) to get:

$$
A\left[b_{1} \ldots b_{k} c_{1} \ldots c_{n-k}\right]=\left[\begin{array}{llll|l}
b_{1} \ldots b_{k} & c_{1} \ldots c_{n-k}
\end{array}\right]\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{1}
\end{array}\right]_{k \times k}} & \tag{3}\\
\hline 00_{n-k \times k} & \left(A_{2}\right)_{n \times n-k \times n-k}
\end{array}\right]
$$

${ }^{1}$ Uday Khankhoje, Linear Algebra EE5120, July-Nov 2018, Electrical Engineering IIT Madras http://www.ee.iitm.ac.in/uday/ 2018b-EE5120/
(3) From the above, let's consider the action of A on c_{i} : the result is a linear combination of the basis sets $\left\{b_{i}\right\}_{i=1}^{k}$ and $\left\{c_{i}\right\}_{i=1}^{n-k}$, explicitly as

$$
A c_{i}=\left[\begin{array}{llll}
b_{1} \ldots b_{k} & c_{1} \ldots c_{n-k}
\end{array}\right]\left[\begin{array}{l}
\left(A_{r}\right)_{i} \tag{4}\\
\left(A_{2}\right)_{i}
\end{array}\right]
$$

If we were to change the basis from the set $\left\{c_{i}\right\}$ to some new set $\left\{d_{i}\right\}$ (allowed since there are infinite possible bases for a vector space), the only thing that would change would the form of the matrix A_{2}, while A_{r} would remain unchanged. In other words, A_{2} seems to be controlling/depicting what is happening within this $n-k$ dimensional subspace, V_{c}. In fact, we can think of A_{2} as the matrix representation of a linear transformation of the kind: $T_{2}: V_{c} \rightarrow V_{c}$. In the spirit of Eq. (11), we can say:
$T_{2}\left(\left[c_{1} \ldots c_{n-k}\right]\right)=\left(\left[c_{1} \ldots c_{n-k}\right]\right) A_{2}$.
(4) By invoking (P1), there must be atleast one eigenvalue (call it λ_{2}) and nontrivial eigenvector (call it d) for this LT. Using Gram Schmidt, we can take the set $\left\{c_{i}\right\}$ and create a new basis set for V_{c} as [$d c_{1}^{\prime} \ldots c_{n-k-1}^{\prime}$], where the c_{i}^{\prime} s are all orthonormal, and along with d, span V_{c}. How will the matrix corresponding to this LT look now?

$$
T_{2}\left(\left[\begin{array}{lll}
d_{1} & c_{1}^{\prime} & \ldots c_{n-k-1}^{\prime}
\end{array}\right]\right)=\left[\begin{array}{lll}
d_{1} & c_{1}^{\prime} \ldots c_{n-k-1}^{\prime}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{2} & A_{1,1}^{\prime} & \ldots & A_{1, n-k-1}^{\prime} \tag{5}\\
\vdots & \ldots & \ddots & \vdots \\
0 & A_{n-k, 1}^{\prime} & \ldots & A_{n-k, n-k-1}^{\prime}
\end{array}\right]
$$

where it is evident that original matrix A_{2} has been modified from before.
(5) Having understood this concept, we can generalize and say that the eigenvalue λ_{2} has geometric multiplicity l, and therefore an orthonormal eigenbasis set can be created as $\left\{d_{i}\right\}_{i=1}^{l}$. Supplementing this set with an additional $n-k-l$ vectors $\left\{c_{i}^{\prime}\right\}$ in order to span V_{c}, we get a new matrix representation of T_{2} similar to the above equation, except that the top-left block will be an $l \times l$ diagonal matrix with λ_{2} on its diagonals (much like the block diagonal form of the RHS of Eq. (2)).
(6) We can now put all previous observation together and examine the action of A on the updated basis set: $B^{\prime}=\left[b_{1} \ldots b_{k} d_{1} \ldots d_{l} c_{1}^{\prime} \ldots c_{n-k-1}^{\prime}\right]$. We get (with $p=n-k-l$):
(7) The above line of reasoning can now be applied to the linear transformation corresponding to A_{3} and the basis set $\left\{c_{i}^{\prime}\right\}_{i=1}^{p}$. Each time the set of basis vectors used are orthonormal and the resulting operations will ensure that the rightmost matrix in the above equation is upper triangular. In other words,

$$
\begin{equation*}
A B=B R \quad \Longrightarrow \quad A=B R B^{-1}=B R B^{H} \tag{7}
\end{equation*}
$$

where we have used the fact that for an orthogonal matrix , $B^{-1}=B^{H}$. QED

