
EE5120 Linear Algebra: Tutorial 6, July-Dec 2018, Dr. Uday Khankhoje, EE IIT Madras
Covers 5.3, 5.5,5.6 of GS

1. Theory of Eigenvalues and eigenvectors can be used to solve differential equations of mul-
tiple variables of the form: du

dt = Pu for u(t), given its initial value u(0). If u(t) = ceλtx,
then du

dt = cλeλtx. We can see that x is the eigenvector with eigenvalue λ for the matrix P.
Also, u(0) = cx⇒ u(t) = ceλtx
So, Any given arbitrary initial value can be expanded in terms of the eigenvectors of P
matrix, i.e, u(0) = ∑n

i=1 civi. Then, u(t) = ∑n
i=1 cieλitvi.

Solve the below differential equation for u(t)

du
dt

=

[
0.5 0.5
0.5 0.5

]
u, with u(0) =

[
5
3

]
.

Is the output bounded? If not, for what values of u(0) will u(t) be bounded?

Hint:u(t)shouldbeboundedforboundedu(0).

Solution: To find eigenvalues: det(P− λI) = 0

⇒ (0.5− λ)2 − 0.52 = 0⇒ λ2 − λ = 0⇒ λ = 0, 1.

To find eigenvectors: (P− λI)x = 0, Px = 0

⇒ (P− I)x = 0⇒
[
−0.5 0.5
0.5 −0.5

] [
x1
x2

]
=

[
0
0

]
⇒
[

x1
x2

]
=

[
1
1

]

⇒ Px = 0⇒
[

0.5 0.5
0.5 0.5

] [
x1
x2

]
=

[
0
0

]
⇒
[

x1
x2

]
=

[
1
−1

]
Solving for c1, c2 and then writing u(0) in terms of eigenvectors:

⇒ u(0) =
[

5
3

]
=

[
1
−1

]
+ 4

[
1
1

]
Writing for u(t):

u(t) = e0t
[

1
−1

]
+ 4e1t

[
1
1

]
The above expression is not bounded due to the et term. On the other hand, if this term
has zero coefficient, the output will be bounded. This will happen when:

If u(0) = α

[
1
−1

]
, then u(t) will be bounded.

2. The matrices A and B are said to be similar if there exists an invertible matrix M such that
A = MBM−1.

(a) The identity transformation takes every vector to itself: Tx = x. Find the corresponding
matrix, if both the input and output bases are v1 =

[
1 1

]T and v2 =
[
1 −1

]T. How
is this matrix related to identity matrix? Are they similar?

(b) If the transformation T is reflection across the 45 degree line in the plane, find its
matrix with respect to the standard basis e1 =

[
1 0

]T and e2 =
[
0 1

]T. Find the
corresponding matrix when both the input and output bases are v1 and v2 as men-
tioned in (a). Show that these two matrices are similar by finding the matrix M. Give
a geometrical interpretation of M.



Solution:

(a) Since both the input and output bases are same, the matrix corresponding to new
bases will still be identity matrix. Note that if the input and output bases were
different, the corresponding matrix would not be identity. Since both the matrices
are identity, any invertible matrix M will satisfy I = MIM−1. Hence they are
similar.

(b) Consider the projection matrix, that projects the input onto the 45 degree line. This
matrix projects onto the line spanned by a =

[
1 1

]T. Hence P = aaT

aTa .

P = 1
2

[
1 1
1 1

]
. Recall that the reflection matrix about this 45 degree line can be

expressed as R1 = 2P− I. R1 =

[
0 1
1 0

]
. R1 is the reflection matrix in canonical

basis. To find the same matrix in new basis, find where do v1 and v2 land on
applying the transformation, and express them in new basis. T(v1) =

[
1 0

]T,

T(v2) =
[
0 −1

]T (Output is in new basis). These two vectors form the columns

of new matrix. Reflection matrix in new basis R2 =

[
1 0
0 −1

]
. Consider the matrix

M whose columns are v1 and v2. It can be verified that R1 = MR2M−1, hence R1
and R2 are similar.

Interpretation of R1 = MR2M−1:The matrix M−1 can be interpreted as the matrix which
takes a vector in R2 represented in canonical basis as input and outputs the same vector
in R2 but represented in new basis. R2 takes the vector represented in new basis and
does the transformation then outputs the resultant vector in new basis. The matrix
M then takes this vector and represents it in canonical basis. On the whole, MR2M−1

takes a vector represented in canonical basis, and does the transformation then outputs
the resultant in canonical basis. This is exactly same as the operation done by R1.

3. Suppose A is a 3× 3 symmetric matrix with eigenvalues 0,1,2.

(a) What properties can be guaranteed for the corresponding unit eigenvectors u, v, w?

(b) In terms of u, v, w describe the nullspace, left nullspace, rowspace, and columnspace
of A.

(c) Find a vector x that satisfies Ax = v + w. Is x unique?

(d) Under what conditions on b does Ax = b have a solution?

(e) If u, v, w are the columns of S, what are S−1 and S−1AS?

Solution:

(a) Since A is symmetric, it’s unit eigen vectors are orthonormal.

(b) Rank(A)=number of non-zero eigen values = 2. Since A = AT, the nullspace and
leftnullspace of A are same, the rowspace and columnspace of A are same. As we
know Au = 0, N = {αu, α ∈ R} is the 1-dimensional nullspace and leftnullspace
of A. v and w will span the rowspace and columnspace.
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(c) Consider x = v + 1
2 w. Ax = v + w. Since A has non trivial nullspace, x is not

unique. v + 1
2 w + n will also give v + w for any n ∈ N .

(d) b should be in coulumnspace of A, i.e b should be equal to αv + βw for some
α, β ∈ R.

(e) Recall the diagonalisation of a symmetric matrix A = SΛS−1 =⇒ S−1AS = Λ,
where the columns of S are unit orthogonal eigenvectors of A and the digaonal
entries of the diagonal matrix Λ are the eigen values of A. Here, the diagonal
entries of Λ are 0,1 and 2.

4. Let A be an n × n complex matrix. Assume A = [a1 a2 ... an], where ai refers to the ith

column of matrix A. Define a parameter µA, for matrix A, as,

µA = max
k 6=l

|aH
k al |

||ak||2||al ||2
.

In the literature of compressive sensing, µA is called the mutual coherence parameter of

matrix A. Recall ||ai||2 =
√

aH
i ai, where aH

i denotes hermitian (i.e., complex conjugate

transpose) of ai, and define B = AH A.

(a) Show that 0 ≤ µA ≤ 1.
(b) Denote [B]i,j as the (i, j)th entry in matrix B. Prove that for every λ being an eigenvalue

of B, there exists at least one row, say some mth row, of B such that,∣∣∣λ− [B]m,m

∣∣∣ ≤ n

∑
p=1,p 6=m

∣∣∣[B]m,p

∣∣∣.
Refer to the technique used to solve Q9) in tutorial 5 and follow a similar procedure
here too. Also, the above result is independent of the information assumed that B =
AH A. It is true for any complex square matrix.

(c) Suppose x is some arbitrary n-length non-zero complex column vector such that ||x||2 =
1, then prove that,

λmin ≤ xHBx ≤ λmax,

where λmin and λmax are the minimum and maximum eigenvalues of the matrix B.
From this part onwards, the information that B = AH A is needed.

(d) Suppose all the columns of A have unit norm, then prove that λmin and λmax, as de-
fined in (c), are bounded as,

λmax ≤ 1 + (n− 1)µA, and
λmin ≥ 1− (n− 1)µA.

Make use of the result derived in (b) to obtain the above equations.
(e) Finally, deduce that for a general vector x 6= 0 and matrix A, the generalized result

combining (c) and (d) will look like,

amin − amax(n− 1)µA ≤
xHBx
||x||2 ≤ amax

(
1 + (n− 1)µA

)
,

where amin = min
1≤k≤n

||ak||2 and amax = max
1≤k≤n

||ak||2.
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Solution: Throughout this solution assume mth entry in a vector y as ym.

(a) Here, we have,

LHS =
|aH

k al |
||ak||2||al ||2

=

∣∣∣ n
∑

m=1
a∗kmalm

∣∣∣
||ak||2||al ||2

≤
n

∑
m=1

|akm||alm|
||ak||2||al ||2

=
n

∑
m=1

|akm|
||ak||2

|alm|
||al ||2

≤
n

∑
m=1

1
2

( |akm|2
||ak||2

+
|alm|2
||al ||2

) [
Using (a− b)2 ≥ 0⇒ ab ≤ 0.5(a2 + b2), ∀a, b ≥ 0

]

=

n
∑

m=1
|akm|2

2||ak||2
+

n
∑

m=1
|alm|2

2||al ||2
=
||ak||2

2||ak||2
+
||al ||2

2||al ||2
= 1.

This is independent of k and l, hence, max
k 6=l

|aH
k al |

||ak ||2||al ||2
= µA ≤ 1. Further, |aH

k al | ≥

0, ∀k, l. This implies, |aH
k al |

||ak ||2||al ||2
≥ 0, ∀k, l. Thus, max

k 6=l

|aH
k al |

||ak ||2||al ||2
≥ 0⇒ µA ≥ 0.

(b) The result proved in this part is popularly called as Gershgorin’s circle theorem.
B is an n× n matrix. Suppose λ is some eigenvalue of B and v be its eigenvector.
Define u = v

vs
, where s = arg max

1≤q≤n
|vq|. Clearly, u is also an eigenvector of B

corresponding to λ and there exists some entry in u equal to 1. Let it be some mth

element, i.e., um = 1. Then, note that |uq| ≤ 1, ∀q 6= m. Now, we have, Bu = λu.
Concentrating on the mth element on the LHS and RHS vectors, we get,

n

∑
p=1

[B]m,pup = λum = λ

⇒
n

∑
p=1,p 6=m

[B]m,pup + [B]m,m = λ

⇒
∣∣∣ n

∑
p=1,p 6=m

[B]m,pup

∣∣∣ = |λ− [B]m,m|

⇒|λ− [B]m,m| ≤
n

∑
p=1,p 6=m

|[B]m,p||up| ≤
n

∑
p=1,p 6=m

|[B]m,p|(1)

⇒|λ− [B]m,m| ≤
n

∑
p=1,p 6=m

|[B]m,p|.

Hence, proved.

(c) Since, B = AH A, B is an hermitian matrix. Let its eigenvalue decomposition be
B = UΛUH. Now,

xHBx = xHUΛUHx = yHΛy.
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Let ith diagonal element in the diagonal matrix Λ be λi. Hence, we have,

yHΛy =
n

∑
i=1

λi|yi|2.

Now,
n
∑

i=1
λi|yi|2 ≤

n
∑

i=1
λmax|yi|2 = λmax

n
∑

i=1
|yi|2 = λmax||y||2. Here, λmax is as

defined in the question. But, y = UHx ⇒ ||y||2 = yHy = xHUUHx = xHx =
||x||2. Hence, we get,

xHBx ≤ λmax||x||2. (1)

Similarly,
n
∑

i=1
λi|yi|2 ≤

n
∑

i=1
λmin|yi|2 = λmin||y||2 = λmin||x||2. Also, λmin is as

defined in the question. This implies,

xHBx ≥ λmin||x||2. (2)

Combining equations (1) and (2), we get,

λmin||x||2 ≤ xHBx ≤ λmax||x||2. (3)

We will be using the above result in proving (e) part. But to arrive at the result for
(c), just use the given fact that x is unit norm, i.e., ||x||2 = 1, in the above equation.
Further, the result stated in equation (3) is called Rayleigh-Ritz theorem.

(d) Here it is given that A has unit norm columns. So, ||ai||2 = 1, ∀i = 1, ..., n, where
ai refers to the ith column of matrix A. So, µA reduces to, µA = max

k 6=l
|aH

k al |. Also,

recall that B = AH A. As a result, (p, q)th entry of B is given by,

[B]p,q = aH
p aq.

Hence, if p = q, we get [B]p,p = aH
p ap = ||ap||2 = 1, ∀1 ≤ p ≤ n. And, if p 6= q,

then, ∣∣∣[B]p,q

∣∣∣ = |aH
p aq| ≤ µA, (4)

where we used the definition of µA. From (c), we get,∣∣∣λ− [B]m,m

∣∣∣ ≤ n

∑
p=1,p 6=m

|[B]m,p|

⇒|λ− 1| ≤
n

∑
p=1,p 6=m

|[B]m,p| ≤
n

∑
p=1,p 6=m

µA = (n− 1)µA

⇒|λ− 1| ≤ (n− 1)µA.

In the above, we made use of equation (4). Clearly, the last equation stated above
is independent of the row index of B. Thus, it holds true for all eigen values of B.
Now, we get,

|λ− 1| ≤ (n− 1)µA

⇒− (n− 1)µA ≤ λ− 1 ≤ (n− 1)µA

⇒1− (n− 1)µA ≤ λ ≤ 1 + (n− 1)µA.

Since, the above holds true for all eigenvalues we get,

λmax ≤ 1 + (n− 1)µA; λmin ≥ 1− (n− 1)µA.
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(e) Now for a general matrix A without unit norm columns, let amax = max
1≤k≤n

||ai||2

and amin = min
1≤k≤n

||ai||2. Then, for all p 6= q, the (p, q)th entry in B will be,

∣∣∣[B]p,q

∣∣∣ ≤ |aH
p aq| ≤ amax

|aH
p aq|

max
1≤i≤n

||ai||2
≤ amax

|aH
p aq|

||ap||2||aq||2
≤ amaxµA.

Recall the step in (d),∣∣∣λ− [B]m,m

∣∣∣ ≤ n

∑
p=1,p 6=m

|[B]m,p| ≤
n

∑
p=1,p 6=m

amaxµA = amax(n− 1)µA.

Finally, we get,

[B]m,m − amax(n− 1)µA ≤ λ ≤ [B]m,m + amax(n− 1)µA. (5)

Note that [B]m,m = aH
m am = ||am||2. So, we have, amin ≤ [B]m,m ≤ amax. Thus,

equation (5) can be re-written as,

amin − amax(n− 1)µA ≤ λ ≤ amax + amax(n− 1)µA.

The above is true for any eigenvalue of B. Therefore, we get,

λmax ≤ amax

(
1 + (n− 1)µA

)
; λmin ≥ amin − amax(n− 1)µA.

Inserting above result in equation (3) derived in (c), we get the desired result.

5. Define matrix D as, D = [A1 A2 ... AK B1 B2 ... BM], where all the sub-matrices Ai’s and
Bj’s are of size m× n with m > n and has unit norm columns. Let µD denote the mutual
coherence of matrix D (refer to Q 4. for definition of mutual coherence). Suppose,

y =
K

∑
k=1

Akxk,

where xk’s are n× 1 vectors such that ||x1||2 = ||x2||2 = ... = ||xK||2.

(a) Show that,

||AH
k y||2 ≥

[
1− (Kn− 1)µD

]
||xk||2.

First, try to lower bound the LHS term as ||Pxk||2 − a, where P is an hermitian matrix
and a is an appropriate scalar. For this, you might have to use the following fact:
For any two column vectors u, v, the statement ||u + v||2 ≥ ||u||2 − ||v||2 holds true.
After which, incorporate the results stated as questions in Q 4 to arrive at the desired
inequality equation.

(b) Now, prove that the term ||BH
m y||2 can be upper bounded as,

||BH
m y||2 ≤ KnµD||xk||2,

for some k = 1, ..., K.
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(c) As a last step, prove that max
1≤l≤K

||AH
l y||2 > max

1≤m≤M
||BH

m y||2 can hold true if,

K <
1

2n

(
1 +

1
µD

)
.

The above is an important result obtained in Greedy Algorithm theory. The scenario has
been simplified in this question to make the entire derivation straight-forward. How-
ever, the final result provides a sufficient condition under which a particular greedy
algorithm will be able to solve a special type of compressive sensing problem.

Solution: In this solution, suppose Q is a square matrix, we denote λmin(Q) as mini-
mum eigen value of matrix Q and λmax(Q) as it’s maximum eigenvalue.

(a) We have,

||AH
k y||2 = ||AH

k

( K

∑
l=1

Alxl

)
||2

= ||AH
k Akxk +

K

∑
l=1,l 6=k

AH
k Alxl ||2

≥ ||AH
k Akxk||2 − ||

K

∑
l=1,l 6=k

AH
k Alxl ||2.

Now, we will concentrate on each term in the RHS.

||AH
k Akxk||2 =

√
xH

k CH
k Ckxk [Ck = AH

k Ak]

≥
√

λmin(CH
k Ck)||xk||2 [CH

k Ck - is hermitian matrix.]

=
√

λmin(C2
k )||xk||2 [Ck - is hermitian matrix]

=

√(
λmin(Ck)

)2
||xk||2

= λmin(Ck)||xk||2 = λmin(AH
k Ak)||xk||2.

Using the result from Q4(d), we get,

λmin(AH
k Ak) ≥ 1− (n− 1)µD,

where n is the row (and column) size of the hermitian matrix AH
k Ak. Thus, we

obtain,

||AH
k Akxk||2 ≥ λmin(AH

k Ak)||xk||2 ≥
[
1− (n− 1)µD

]
||xk||2. (6)

Now, we focus on the term ||
K
∑

l=1,l 6=k
AH

k Alxl ||2.

||
K

∑
l=1,l 6=k

AH
k Alxl ||2 ≤

K

∑
l=1,l 6=k

||AH
k Alxl ||2

=
K

∑
l=1,l 6=k

√
xH

l AH
l Ak AH

k Alxl

K

∑
l=1,l 6=k

√
λmax(E)||xl ||2,
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where E = AH
l Ak AH

k Al and clearly E is an hermitian matrix of size n × n. Let
Ẽ = AH

k Al . Note that we are considering the case l 6= k. So, the (i, j)th entry in Ẽ
is s.t., ∣∣∣[Ẽ]i,j∣∣∣ = |aH

ki
alj |,

where aki and alj refer to ith and jth columns of matrices Ak and Al respectively.

So,
∣∣∣[Ẽ]i,j∣∣∣ = |aH

ki
alj | ≤ µD. Further, (i, j)th entry of E is such that,∣∣∣[E]i,j∣∣∣ = ∣∣∣ẽH

i ẽj

∣∣∣
=
∣∣∣ n

∑
p=1

[Ẽ]∗n,i[Ẽ]n,j

∣∣∣
≤

n

∑
p=1

∣∣∣[Ẽ]n,i

∣∣∣∣∣∣[Ẽ]n,j

∣∣∣
≤

n

∑
p=1

µ2
D

= nµ2
D.

Now, using the procedure adopted in Q4(d), we get,

λmax(E) ≤ nµ2
D + (n− 1)nµ2

D = n2µ2
D.

Thus, we get,

||
K

∑
l=1,l 6=k

AH
k Alxl ||2 ≤

K

∑
l=1,l 6=k

√
n2µ2

D||xl ||2 = (K− 1)nµD||xk||2. (7)

Combining equations (6) and (7), we finally get a lower bound on ||AH
k y||2 as,

||AH
k y||2 ≥

[
1− (n− 1)µD − (K− 1)nµD

]
||xk||2

=
[
1− (Kn− 1)µD

]
||xk||2.

Hence, proved.

(b) In this case, we have,

||BH
m y||2 = ||BH

m

K

∑
k=1

Akxk||2

≤
K

∑
k=1
||BH

m AkxH ||2

≤
K

∑
k=1

√
λmax(AH

k BmBH
m Ak)||xk||2

≤
K

∑
k=1

nµD||xk||2 = KnµD||xk||2.

Here, the upper bound for λmax(AH
k BmBH

m Ak) is obtained in exactly the same way
as that obtained for λmax(AH

l Ak AH
k Al) when k 6= l.
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(c) We can see that max
1≤k≤K

||AH
k y||2 ≥

[
1− (Kn− 1)µD

]
||xk||2. Also, max

1≤m≤M
||BH

m y||2 ≤

KnµD||xk||2. The condition,

max
1≤k≤K

||AH
k y||2 > max

1≤m≤M
||BH

m y||2,

will be satisfied if the lower bound of the LHS term is greater than the upper
bound of the RHS term. Hence, we get,[

1− (Kn− 1)µD

]
||xk||2 > KnµD||xk||2.

On re-arranging the terms we can arrive at the desired result.

6. Consider two adjoining cells separated by a permeable membrane, and suppose that a
fluid flows from the first cell to the second one at a rate (in milliliters per minute) that is
numerically equal to three times the volume (in milliliters) of the fluid in the first cell. It
then flows out of the second cell at a rate (in milliliters per minute) that is numerically
equal to twice the volume in the second cell. Let x1(t) and x2(t) denote the volumes of the
fluid in the first and second cells at time t, respectively. Assume that, initially, the first cell
has 40 milliliters of fluid, while the second one has 5 milliliters of fluid. Find the volume
of fluid in each cell at time t.

Figure 1: Figure for Q.6

Solution: No fluid is flows into the first cell and fluid flows from the first cell to the
second cell is equal to three times the volume of the fluid in the first cell. So,

dx1(t)
dt

= −3x1(t)

The change in volume of the fluid in the second cell is given by

dx2(t)
dt

= 3x1(t)− 2x2(t)

This can be written in matrix form as[
x
′
1(t)

x
′
2(t)

]
=

[
−3 0
3 −2

] [
x1(t)
x2(t)

]
The eigenvalues of the matrix

A =

[
−3 0
3 −2

]
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are λ1 = −3, and λ2 = −2 and corresponding eigen vectors are[
1
−3

]
and

[
0
1

]
Hence the general solution is given by

x(t) =
[

x1(t)
x2(t)

]
= b1

[
1
−3

]
e−3t + b2

[
0
1

]
e−2t

Using the initial conditions,
b1 = 40, and b2 = 125
Thus the volume of fluid in each cell at time t is given by

x1(t) = 40e−3t

x2(t) = −120e−3t + 125e−2t

7. (a) Prove that C(A), N(A), C(AH) and N(AH) are the fundamental spaces in complex
case, i.e, give their properties and derive them. Verify for the matrix

A =

[
1 i 0
i 0 1

]
(b) Prove that determinant of a Hermitian matrix is real.

Solution:

(a) Let A is a matrix of size m× n.

• Proof that N(A) is orthogonal to C(AH).
i.e, We should show that vHw = 0, if w ∈ C(AH) and v ∈ N(A).

w ∈ C(AH)⇒ ∃ u ∈ Cn s.t w = AHu

⇒ vHw = vH AHu = (Av)Hu = (0)Hu

⇒ vHw = 0 ∀w ∈ C(AH)

So, N(A) is orthogonal to C(AH).

• Proof that N(AH) is orthogonal to C(A).
i.e, We should show that vHw = 0, if w ∈ C(A) and v ∈ N(AH).

w ∈ C(A)⇒ ∃ u ∈ Cn s.t w = Au

⇒ vHw = vH Au = (AHv)Hu = (0)Hu = 0

⇒ vHw = 0 ∀w ∈ C(A)

So, N(AH) is orthogonal to C(A).

• Proof that C(A), C(AH), N(A), N(AH) are subspaces.
Let w1, w2 ∈ C(A)⇒ ∃u1, u2 ∈ Cn s.t Au1 = w1, Au2 = w2
⇒ A(α1u1 + α2u2) = α1w1 + α2w2 ⇒ α1w1 + α2w2 ∈ C(A)
and A(0n×1) = 0m×1 ⇒ 0m×1 ∈ C(A), so C(A) is a subspace.
Similarly do it for C(AH), N(A), N(AH).
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• Let dim(N(A)) = r and u1, u2, .., ur be the basis of N(A).
Since u1, u2, ..., ur is a linearly independent set in Cn, we can extend it to
form a basis of Cn. Now there exists vectors ur+1, ur+2, ..., un such that the
set {u1, . . . , ur, ur+1, ..., un} is a basis of Cn.
Span of C(A) = span of {Au1, .., Aur, Aur+1, ..Aun} = span of {0, .., 0, Aur+1, ..Aun}
⇒ span of C(A) = span of {Aur+1, ..Aun}.
we now prove that {Aur+1, ..Aun} are linearly independent. Suppose the set
is linearly dependent, then there exist scalars
alphar+1, ..αn} not all zero such that αr+1Aur+1 + ... + αn Aun = 0.

⇒ A(αr+1ur+1 + ... + αnun) = 0

This implies αr+1ur+1 + ... + αnun belongs to null space of A.

⇒ αr+1ur+1 + ... + αnun = α1u1 + ... + αrur

But, as u1, ..., un are linearly independent only possibility is all α’s are zero.
So, {Aur+1, ..Aun} are linearly independent.
So, dim(C(A)) = n− r.
i.e, dim(C(A)) + dim(N(A)) = n
Similarly prove dim(C(AH)) + dim(N(AH)) = m

Row reduced echolon form of A =

[
1 i 0
i 0 1

]
is
[

1 0 −i
0 1 1

]
.

So, C(A) :
[

1
i

]
,
[

i
0

]
and N(A) :

 i
−1
1


Row reduced echolon form of AH =

 1 −i
−i 0
0 1

 is

1 0
0 1
0 0

.

So, C(AH) :

 1
−i
0

 ,

−i
0
1

 and N(AH) :
[

0
0

]

(b) We can see this for 1× 1 matrix directly. i.e, det(cH) = cH = conj(c) = conj(det(c)),
where c is a scalar.
We know that, det(A) = det(AT)⇒ det(AH) = det(AH T

)

i.e, AH T is each element of A replaced by its complex conjugate.
If you see the expansion of det(AH T

), each term is same as det(A) except elements
replaced by their complex conjugates. Taking the conjugate out.

⇒ det(AH T
) = det(conj(A)) = conj(det(A))

Now, If A is Hermitian:

AH = A⇒ det(AH) = det(A)

But, we have seen that det(AH) = conj(det(A))

⇒ det(AH) = conj(det(A)) = det(A)⇒ det(A) = conj(det(A))

So, det(A) is real.
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8. The Harmonic Oscillator is shown in figure 2, where a particle is constrained by some kind
of forces like in the case of atoms in solids. Find the energy values that can be taken by

Figure 2: Classical picture of an harmonic oscillator

particle by solving the following eigen equation:

Hψ = Eψ

where ψ is the eigen function which gives the probability of finding the particle at (x,y,z),
E is the corresponding eigen energy value and H is the Hamiltonian given as below,

H = − h̄2

2m
(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 ) +
c
2
(x2 + y2 + z2)

Hint:Takeψ(x,y,z)=ψx(x)ψy(y)ψz(z).Eigenfunctionsarecontinuousequivalentofeigenvectors.
Hint:Takeψl=exp(−αl2)forfirsteigenfunction.Asprobabilityoffindingtheparticleat∞is0.

Hint:Forothereigenfunctionstakeψl=exp(αl2)f(l).f(l)willbeHermitepolynomials.

Solution: Using Variable separable method, write ψ(x, y, z) = ψx(x)ψy(y)ψz(z) and
substitute in eigen equation.

Hψx(x)ψy(y)ψz(z) = Eψx(x)ψy(y)ψz(z)

[− h̄2

2m
(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 ) +
c
2
(x2 + y2 + z2)]ψx(x)ψy(y)ψz(z) = Eψx(x)ψy(y)ψz(z)

On doing partial derivatives and then dividing by ψ:

[− h̄2

2m
(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 ) +
c
2
(x2 + y2 + z2)]ψx(x)ψy(y)ψz(z) = Eψx(x)ψy(y)ψz(z)

⇒ − h̄2

2mψx(x)
∂2ψx(x)

∂x2 +
cx2

2
+− h̄2

2mψy(y)
∂2ψy(y)

∂y2 +
cy2

2
+− h̄2

2mψz(z)
∂2ψz(z)

∂z2 +
cz2

2
= E

writing the constant E = Ex + Ey + Ez, We can solve the following equation:

− h̄2

2mψl(l)
∂2ψl(l)

∂l2 +
cl2

2
= El ∀l = x, y, z
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One of the solutions will be of the form ae−bl2
, where a is a normalization constant used

to see that total probability of finding the particle anywhere from (−∞, ∞) is 1.

⇒ − h̄2

2mae−bl2 a[−2be−bl2
+ 4b2l2e−bl2

] +
cl2

2
= El

⇒ − h̄2

2m
[−2b + 4b2l2] +

cl2

2
= El

⇒ [2b
h̄2

2m
− El ] + l2[

c
2
− 4b2 h̄2

2m
] = 0

This has to satisfy for all l,

⇒ b = ±( cm
4h̄2 )

1/2
, El = ±(

cm
4h̄2 )

1/2 h̄2

m

We take only El0 = h̄
2 (

c
m )

1/2
, as in the other case there will be finite probability for

particle to stay at ∞, which is not physical as the force is trying to restrict to some
space. And corresponding eigen function as ψl0 = a0 exp[−( cm

4h̄2 )
1/2l2]. Similar to the

above expression, we expect other eigen functions also to have zero at ±∞. So, We
take ψl = f (l)e−kl2

and substitute in eigen equation to get,

∂2 f (l)
∂l2 − 2k

∂ f (l)
∂l

+ (k2 − 1)− 2m
h̄2 (

c
2
− El) = 0

When we write f (l) = ∑∞
i=0 pilp, and solve it will be observed that pi has a recursive

relation. As we need ψl to be finite everywhere, importantly when l → ±∞. Only
eigenvalues possible are :

Eln = (nl +
1
2
)

h̄
2
(

c
m
)

1/2

⇒ E = Ex + Ey + Ez = (nx + ny + nz +
3
2
)

h̄
2
(

c
m
)

1/2

That is energy levels that are allowed are quantized.

Refer to : https://quantummechanics.ucsd.edu/ph130a/130_notes/node153.html

The main take away is:

• Eigen functions are continuous equivalents of eigenvectors.

• Also, In case you have no analytic solution possible and domain is fintie, like
if we say that particle can only exist between (-L,L), then you can discretize the
problem into finite points and get to a matrix form as Aψ = λψ. (Solve the
problem computationally).

Page 13

https://quantummechanics.ucsd.edu/ph130a/130_notes/node153.html

