1. Theory of Eigenvalues and eigenvectors can be used to solve differential equations of multiple variables of the form: $\frac{d \mathbf{u}}{d t}=P \mathbf{u}$ for $\mathbf{u}(t)$, given its initial value $\mathbf{u}(0)$. If $\mathbf{u}(t)=c e^{\lambda t} \mathbf{x}$, then $\frac{d \mathbf{u}}{d t}=c \lambda e^{\lambda t} \mathbf{x}$. We can see that \mathbf{x} is the eigenvector with eigenvalue λ for the matrix P. Also, $\mathbf{u}(0)=c \mathbf{x} \Rightarrow \mathbf{u}(t)=c e^{\lambda t} \mathbf{x}$
So, Any given arbitrary initial value can be expanded in terms of the eigenvectors of P matrix, i.e, $\mathbf{u}(0)=\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}$. Then, $\mathbf{u}(t)=\sum_{i=1}^{n} c_{i} e^{\lambda_{i} t} \mathbf{v}_{i}$.
Solve the below differential equation for $\mathbf{u}(t)$

$$
\frac{d \mathbf{u}}{d t}=\left[\begin{array}{rr}
0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right] \mathbf{u}, \quad \text { with } \quad \mathbf{u}(0)=\left[\begin{array}{l}
5 \\
3
\end{array}\right]
$$

Is the output bounded? If not, for what values of $\mathbf{u}(0)$ will $\mathbf{u}(t)$ be bounded?

Solution: To find eigenvalues: $\operatorname{det}(P-\lambda I)=0$

$$
\Rightarrow(0.5-\lambda)^{2}-0.5^{2}=0 \Rightarrow \lambda^{2}-\lambda=0 \Rightarrow \lambda=0,1 .
$$

To find eigenvectors: $(P-\lambda I) x=0, P x=0$

$$
\begin{gathered}
\Rightarrow(P-I) x=0 \Rightarrow\left[\begin{array}{cc}
-0.5 & 0.5 \\
0.5 & -0.5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\Rightarrow P x=0 \Rightarrow\left[\begin{array}{ll}
0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{gathered}
$$

Solving for c_{1}, c_{2} and then writing $u(0)$ in terms of eigenvectors:

$$
\Rightarrow u(0)=\left[\begin{array}{l}
5 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+4\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Writing for $u(t)$:

$$
u(t)=e^{0 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+4 e^{1 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The above expression is not bounded due to the e^{t} term. On the other hand, if this term has zero coefficient, the output will be bounded. This will happen when:

$$
\text { If } u(0)=\alpha\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \text {, then } u(t) \text { will be bounded. }
$$

2. The matrices A and B are said to be similar if there exists an invertible matrix M such that $A=M B M^{-1}$.
(a) The identity transformation takes every vector to itself: $T x=x$. Find the corresponding matrix, if both the input and output bases are $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{ll}1 & -1\end{array}\right]^{T}$. How is this matrix related to identity matrix? Are they similar?
(b) If the transformation T is reflection across the 45 degree line in the plane, find its matrix with respect to the standard basis $\mathbf{e}_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$ and $\mathbf{e}_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}$. Find the corresponding matrix when both the input and output bases are $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ as mentioned in (a). Show that these two matrices are similar by finding the matrix M. Give a geometrical interpretation of M.

Solution:

(a) Since both the input and output bases are same, the matrix corresponding to new bases will still be identity matrix. Note that if the input and output bases were different, the corresponding matrix would not be identity. Since both the matrices are identity, any invertible matrix M will satisfy $I=M I M^{-1}$. Hence they are similar.
(b) Consider the projection matrix, that projects the input onto the 45 degree line. This matrix projects onto the line spanned by $\mathbf{a}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$. Hence $P=\frac{\mathbf{a}{ }^{T}}{\mathbf{a}^{T} \text { a }}$.
$P=\frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. Recall that the reflection matrix about this 45 degree line can be expressed as $R_{1}=2 P-I . R_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] . R_{1}$ is the reflection matrix in canonical basis. To find the same matrix in new basis, find where do $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ land on applying the transformation, and express them in new basis. $T\left(\mathbf{v}_{\mathbf{1}}\right)=\left[\begin{array}{cc}1 & 0\end{array}\right]^{T}$, $T\left(\mathbf{v}_{\mathbf{2}}\right)=\left[\begin{array}{ll}0 & -1\end{array}\right]^{T}$ (Output is in new basis). These two vectors form the columns of new matrix. Reflection matrix in new basis $R_{2}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Consider the matrix M whose columns are $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$. It can be verified that $R_{1}=M R_{2} M^{-1}$, hence R_{1} and R_{2} are similar.

Interpretation of $R_{1}=M R_{2} M^{-1}$:The matrix M^{-1} can be interpreted as the matrix which takes a vector in R^{2} represented in canonical basis as input and outputs the same vector in R^{2} but represented in new basis. R_{2} takes the vector represented in new basis and does the transformation then outputs the resultant vector in new basis. The matrix M then takes this vector and represents it in canonical basis. On the whole, $M R_{2} M^{-1}$ takes a vector represented in canonical basis, and does the transformation then outputs the resultant in canonical basis. This is exactly same as the operation done by R_{1}.
3. Suppose A is a 3×3 symmetric matrix with eigenvalues $0,1,2$.
(a) What properties can be guaranteed for the corresponding unit eigenvectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$?
(b) In terms of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ describe the nullspace, left nullspace, rowspace, and columnspace of A.
(c) Find a vector \mathbf{x} that satisfies $A \mathbf{x}=\mathbf{v}+\mathbf{w}$. Is \mathbf{x} unique?
(d) Under what conditions on \mathbf{b} does $A \mathbf{x}=\mathbf{b}$ have a solution?
(e) If $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are the columns of S, what are S^{-1} and $S^{-1} A S$?

Solution:

(a) Since A is symmetric, it's unit eigen vectors are orthonormal.
(b) $\operatorname{Rank}(A)=$ number of non-zero eigen values $=2$. Since $A=A^{T}$, the nullspace and leftnullspace of A are same, the rowspace and columnspace of A are same. As we know $A \mathbf{u}=\mathbf{0}, \mathcal{N}=\{\alpha \mathbf{u}, \alpha \in R\}$ is the 1-dimensional nullspace and leftnullspace of $A . \mathbf{v}$ and \mathbf{w} will span the rowspace and columnspace.
(c) Consider $\mathbf{x}=\mathbf{v}+\frac{1}{2} \mathbf{w} . A \mathbf{x}=\mathbf{v}+\mathbf{w}$. Since A has non trivial nullspace, \mathbf{x} is not unique. $\mathbf{v}+\frac{1}{2} \mathbf{w}+\mathbf{n}$ will also give $\mathbf{v}+\mathbf{w}$ for any $\mathbf{n} \in \mathcal{N}$.
(d) \mathbf{b} should be in coulumnspace of A, i.e \mathbf{b} should be equal to $\alpha \mathbf{v}+\beta \mathbf{w}$ for some $\alpha, \beta \in R$.
(e) Recall the diagonalisation of a symmetric matrix $A=S \Lambda S^{-1} \Longrightarrow S^{-1} A S=\Lambda$, where the columns of S are unit orthogonal eigenvectors of A and the digaonal entries of the diagonal matrix Λ are the eigen values of A. Here, the diagonal entries of Λ are 0,1 and 2 .
4. Let A be an $n \times n$ complex matrix. Assume $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots\end{array} \mathbf{a}_{n}\right]$, where \mathbf{a}_{i} refers to the $i^{t h}$ column of matrix A. Define a parameter μ_{A}, for matrix A, as,

$$
\mu_{A}=\max _{k \neq l} \frac{\left|\mathbf{a}_{k}^{H} \mathbf{a}_{l}\right|}{\left\|\mathbf{a}_{k}\right\|\left\|_{2}\right\| \mathbf{a}_{l} \|_{2}}
$$

In the literature of compressive sensing, μ_{A} is called the mutual coherence parameter of matrix A. Recall $\left\|\mathbf{a}_{i}\right\|_{2}=\sqrt{\mathbf{a}_{i}^{H} \mathbf{a}_{i}}$, where \mathbf{a}_{i}^{H} denotes hermitian (i.e., complex conjugate transpose) of \mathbf{a}_{i}, and define $B=A^{H} A$.
(a) Show that $0 \leq \mu_{A} \leq 1$.
(b) Denote $[B]_{i, j}$ as the $(i, j)^{\text {th }}$ entry in matrix B. Prove that for every λ being an eigenvalue of B, there exists at least one row, say some $m^{t h}$ row, of B such that,

$$
\left|\lambda-[B]_{m, m}\right| \leq \sum_{p=1, p \neq m}^{n}\left|[B]_{m, p}\right| .
$$

Refer to the technique used to solve Q9) in tutorial 5 and follow a similar procedure here too. Also, the above result is independent of the information assumed that $B=$ $A^{H} A$. It is true for any complex square matrix.
(c) Suppose \mathbf{x} is some arbitrary n-length non-zero complex column vector such that $\|\mathbf{x}\|^{2}=$ 1 , then prove that,

$$
\lambda_{\min } \leq \mathbf{x}^{H} B \mathbf{x} \leq \lambda_{\max }
$$

where $\lambda_{\min }$ and $\lambda_{\max }$ are the minimum and maximum eigenvalues of the matrix B. From this part onwards, the information that $B=A^{H} A$ is needed.
(d) Suppose all the columns of A have unit norm, then prove that $\lambda_{\min }$ and $\lambda_{\max }$, as defined in (c), are bounded as,

$$
\begin{aligned}
& \lambda_{\max } \leq 1+(n-1) \mu_{A}, \text { and } \\
& \lambda_{\min } \geq 1-(n-1) \mu_{A} .
\end{aligned}
$$

Make use of the result derived in (b) to obtain the above equations.
(e) Finally, deduce that for a general vector $\mathbf{x} \neq \mathbf{0}$ and matrix A, the generalized result combining (c) and (d) will look like,

$$
a_{\min }-a_{\max }(n-1) \mu_{A} \leq \frac{\mathbf{x}^{H} B \mathbf{x}}{\|\mathbf{x}\|^{2}} \leq a_{\max }\left(1+(n-1) \mu_{A}\right)
$$

where $a_{\min }=\min _{1 \leq k \leq n}\left\|\mathbf{a}_{k}\right\|^{2}$ and $a_{\max }=\max _{1 \leq k \leq n}\left\|\mathbf{a}_{k}\right\|^{2}$.

Solution: Throughout this solution assume $m^{t h}$ entry in a vector \mathbf{y} as y_{m}.
(a) Here, we have,

$$
\begin{aligned}
\text { LHS } & =\frac{\left|\mathbf{a}_{k}^{H} \mathbf{a}_{l}\right|}{\left\|\mathbf{a}_{k}| |_{2}| | \mathbf{a}_{l}\right\| \|_{2}}=\frac{\left|\sum_{m=1}^{n} a_{k m}^{*} a_{l m}\right|}{\left\|\mathbf{a}_{k}\right\|_{2}\left\|\mathbf{a}_{l}\right\|_{2}} \\
& \leq \sum_{m=1}^{n} \frac{\left|a_{k m} \| a_{l m}\right|}{\left\|\mathbf{a}_{k}| |_{2}\left|\mathbf{a}_{l}\right|\right\|_{2}}=\sum_{m=1}^{n} \frac{\left|a_{k m}\right|}{\| \mathbf{a}_{k}| |_{2}} \frac{\left|a_{l m}\right|}{\left\|\mathbf{a}_{l}\right\|_{2}} \\
& \leq \sum_{m=1}^{n} \frac{1}{2}\left(\frac{\left|a_{k m}\right|^{2}}{\left\|\mathbf{a}_{k}\right\|^{2}}+\frac{\left|a_{l m}\right|^{2}}{\left\|\mathbf{a}_{l}\right\|^{2}}\right) \quad\left[\operatorname{Using}(a-b)^{2} \geq 0 \Rightarrow a b \leq 0.5\left(a^{2}+b^{2}\right), \forall a, b \geq 0\right] \\
& =\frac{\sum_{m=1}^{n}\left|a_{k m}\right|^{2}}{2\left\|\mathbf{a}_{k}\right\|^{2}}+\frac{\sum_{m=1}^{n}\left|a_{l m}\right|^{2}}{2\left\|\mathbf{a}_{l}\right\|^{2}}=\frac{\left\|\mathbf{a}_{k}\right\|^{2}}{2\left\|\mathbf{a}_{k}\right\|^{2}}+\frac{\left\|\mathbf{a}_{l}\right\|^{2}}{2\left\|\mathbf{a}_{l}\right\|^{2}} \\
& =1
\end{aligned}
$$

This is independent of k and l, hence, $\max _{k \neq l} \frac{\left|\mathbf{a}_{k}^{H} \mathbf{a}_{l}\right|}{\left|\mathbf{a}_{k}\right||2| \mathbf{a}_{l} \mid \|_{2}}=\mu_{A} \leq 1$. Further, $\left|\mathbf{a}_{k}^{H} \mathbf{a}_{l}\right| \geq$ $0, \forall k, l$. This implies, $\frac{\left|\mathbf{a}_{k}^{H} \mathbf{a}_{a}\right|}{\left\|\boldsymbol{a}_{k}\left|{ }_{2}\right| \mathbf{a}_{l}\right\|_{2}} \geq 0, \forall k, l$. Thus, $\max _{k \neq l} \frac{\left|\mathbf{a}_{\boldsymbol{k}}^{H} \mathbf{a}_{l}\right|}{\left\|\boldsymbol{a}_{k}\left|{ }_{2}\right| \mathbf{a}_{l}\right\|_{2}} \geq 0 \Rightarrow \mu_{A} \geq 0$.
(b) The result proved in this part is popularly called as Gershgorin's circle theorem. B is an $n \times n$ matrix. Suppose λ is some eigenvalue of B and \mathbf{v} be its eigenvector. Define $\mathbf{u}=\frac{\mathbf{v}}{v_{s}}$, where $s=\arg \max _{1 \leq q \leq n}\left|v_{q}\right|$. Clearly, \mathbf{u} is also an eigenvector of B corresponding to λ and there exists some entry in \mathbf{u} equal to 1 . Let it be some $m^{\text {th }}$ element, i.e., $u_{m}=1$. Then, note that $\left|u_{q}\right| \leq 1, \forall q \neq m$. Now, we have, $B \mathbf{u}=\lambda \mathbf{u}$. Concentrating on the $m^{\text {th }}$ element on the LHS and RHS vectors, we get,

$$
\begin{aligned}
& \sum_{p=1}^{n}[B]_{m, p} u_{p}=\lambda u_{m}=\lambda \\
\Rightarrow & \sum_{p=1, p \neq m}^{n}[B]_{m, p} u_{p}+[B]_{m, m}=\lambda \\
\Rightarrow & \left|\sum_{p=1, p \neq m}^{n}[B]_{m, p} u_{p}\right|=\left|\lambda-[B]_{m, m}\right| \\
\Rightarrow & \left|\lambda-[B]_{m, m}\right| \leq \sum_{p=1, p \neq m}^{n}\left|[B]_{m, p}\right|\left|u_{p}\right| \leq \sum_{p=1, p \neq m}^{n}\left|[B]_{m, p}\right|(1) \\
\Rightarrow & \left|\lambda-[B]_{m, m}\right| \leq \sum_{p=1, p \neq m}^{n}\left|[B]_{m, p}\right| .
\end{aligned}
$$

Hence, proved.
(c) Since, $B=A^{H} A, B$ is an hermitian matrix. Let its eigenvalue decomposition be $B=U \Lambda U^{H}$. Now,

$$
\mathbf{x}^{H} B \mathbf{x}=\mathbf{x}^{H} U \Lambda U^{H} \mathbf{x}=\mathbf{y}^{H} \Lambda \mathbf{y} .
$$

Let $i^{\text {th }}$ diagonal element in the diagonal matrix Λ be λ_{i}. Hence, we have,

$$
\mathbf{y}^{H} \Lambda \mathbf{y}=\sum_{i=1}^{n} \lambda_{i}\left|y_{i}\right|^{2} .
$$

Now, $\sum_{i=1}^{n} \lambda_{i}\left|y_{i}\right|^{2} \leq \sum_{i=1}^{n} \lambda_{\max }\left|y_{i}\right|^{2}=\lambda_{\max } \sum_{i=1}^{n}\left|y_{i}\right|^{2}=\lambda_{\max }\|\mathbf{y}\|^{2}$. Here, $\lambda_{\max }$ is as defined in the question. But, $\mathbf{y}=U^{H} \mathbf{x} \Rightarrow\|\mathbf{y}\|^{2}=\mathbf{y}^{H} \mathbf{y}=\mathbf{x}^{H} U U^{H} \mathbf{x}=\mathbf{x}^{H} \mathbf{x}=$ $\|\mathbf{x}\|^{2}$. Hence, we get,

$$
\begin{equation*}
\mathbf{x}^{H} B \mathbf{x} \leq \lambda_{\max }\|\mathbf{x}\|^{2} . \tag{1}
\end{equation*}
$$

Similarly, $\sum_{i=1}^{n} \lambda_{i}\left|y_{i}\right|^{2} \leq \sum_{i=1}^{n} \lambda_{\min }\left|y_{i}\right|^{2}=\lambda_{\min }\|\mathbf{y}\|^{2}=\lambda_{\text {min }}\|\mathbf{x}\|^{2}$. Also, $\lambda_{\text {min }}$ is as defined in the question. This implies,

$$
\begin{equation*}
\mathbf{x}^{H} B \mathbf{x} \geq \lambda_{\min }\|\mathbf{x}\|^{2} . \tag{2}
\end{equation*}
$$

Combining equations (1) and (2), we get,

$$
\begin{equation*}
\lambda_{\min }\|\mathbf{x}\|^{2} \leq \mathbf{x}^{H} B \mathbf{x} \leq \lambda_{\max }\|\mathbf{x}\|^{2} . \tag{3}
\end{equation*}
$$

We will be using the above result in proving (e) part. But to arrive at the result for (c), just use the given fact that \mathbf{x} is unit norm, i.e., $\|\mathbf{x}\|^{2}=1$, in the above equation. Further, the result stated in equation (3) is called Rayleigh-Ritz theorem.
(d) Here it is given that A has unit norm columns. So, $\left\|\mathbf{a}_{i}\right\|^{2}=1, \forall i=1, \ldots, n$, where \mathbf{a}_{i} refers to the $i^{\text {th }}$ column of matrix A. So, μ_{A} reduces to, $\mu_{A}=\max _{k \neq l}\left|\mathbf{a}_{k}^{H} \mathbf{a}_{l}\right|$. Also, recall that $B=A^{H} A$. As a result, $(p, q)^{t h}$ entry of B is given by,

$$
[B]_{p, q}=\mathbf{a}_{p}^{H} \mathbf{a}_{q} .
$$

Hence, if $p=q$, we get $[B]_{p, p}=\mathbf{a}_{p}^{H} \mathbf{a}_{p}=\left\|\mathbf{a}_{p}\right\|^{2}=1, \forall 1 \leq p \leq n$. And, if $p \neq q$, then,

$$
\begin{equation*}
\left|[B]_{p, q}\right|=\left|\mathbf{a}_{p}^{H} \mathbf{a}_{q}\right| \leq \mu_{A}, \tag{4}
\end{equation*}
$$

where we used the definition of μ_{A}. From (c), we get,

$$
\begin{aligned}
& \left|\lambda-[B]_{m, m}\right| \leq \sum_{p=1, p \neq m}^{n}\left|[B]_{m, p}\right| \\
\Rightarrow & |\lambda-1| \leq \sum_{p=1, p \neq m}^{n}\left|[B]_{m, p}\right| \leq \sum_{p=1, p \neq m}^{n} \mu_{A}=(n-1) \mu_{A} \\
\Rightarrow & |\lambda-1| \leq(n-1) \mu_{A} .
\end{aligned}
$$

In the above, we made use of equation (4). Clearly, the last equation stated above is independent of the row index of B. Thus, it holds true for all eigen values of B. Now, we get,

$$
\begin{aligned}
& |\lambda-1| \leq(n-1) \mu_{A} \\
\Rightarrow & -(n-1) \mu_{A} \leq \lambda-1 \leq(n-1) \mu_{A} \\
\Rightarrow & 1-(n-1) \mu_{A} \leq \lambda \leq 1+(n-1) \mu_{A} .
\end{aligned}
$$

Since, the above holds true for all eigenvalues we get,

$$
\lambda_{\max } \leq 1+(n-1) \mu_{A} ; \lambda_{\min } \geq 1-(n-1) \mu_{A} .
$$

(e) Now for a general matrix A without unit norm columns, let $a_{\max }=\max _{1 \leq k \leq n}\left\|\mathbf{a}_{i}\right\|^{2}$ and $a_{\text {min }}=\min _{1 \leq k \leq n}\left\|\mathbf{a}_{i}\right\|^{2}$. Then, for all $p \neq q$, the $(p, q)^{\text {th }}$ entry in B will be,

$$
\left|[B]_{p, q}\right| \leq\left|\mathbf{a}_{p}^{H} \mathbf{a}_{q}\right| \leq a_{\max } \frac{\left|\mathbf{a}_{p}^{H} \mathbf{a}_{q}\right|}{\max _{1 \leq i \leq n}\left\|\mathbf{a}_{i}\right\|^{2}} \leq a_{\max } \frac{\left|\mathbf{a}_{p}^{H} \mathbf{a}_{q}\right|}{\left\|\mathbf{a}_{p}\right\|_{2}\left\|\mathbf{a}_{q}\right\|_{2}} \leq a_{\max } \mu_{A} .
$$

Recall the step in (d),

$$
\left|\lambda-[B]_{m, m}\right| \leq \sum_{p=1, p \neq m}^{n}\left|[B]_{m, p}\right| \leq \sum_{p=1, p \neq m}^{n} a_{\max } \mu_{A}=a_{\max }(n-1) \mu_{A} .
$$

Finally, we get,

$$
\begin{equation*}
[B]_{m, m}-a_{\max }(n-1) \mu_{A} \leq \lambda \leq[B]_{m, m}+a_{\max }(n-1) \mu_{A} . \tag{5}
\end{equation*}
$$

Note that $[B]_{m, m}=\mathbf{a}_{m}^{H} \mathbf{a}_{m}=\left\|\mathbf{a}_{m}\right\|^{2}$. So, we have, $a_{\min } \leq[B]_{m, m} \leq a_{\max }$. Thus, equation (5) can be re-written as,

$$
a_{\min }-a_{\max }(n-1) \mu_{A} \leq \lambda \leq a_{\max }+a_{\max }(n-1) \mu_{A} .
$$

The above is true for any eigenvalue of B. Therefore, we get,

$$
\lambda_{\max } \leq a_{\max }\left(1+(n-1) \mu_{A}\right) ; \lambda_{\min } \geq a_{\min }-a_{\max }(n-1) \mu_{A}
$$

Inserting above result in equation (3) derived in (c), we get the desired result.
5. Define matrix D as, $D=\left[\begin{array}{lllllll}A_{1} & A_{2} & \ldots & A_{K} & B_{1} & B_{2} & \ldots\end{array} B_{M}\right]$, where all the sub-matrices A_{i} 's and B_{j} 's are of size $m \times n$ with $m>n$ and has unit norm columns. Let μ_{D} denote the mutual coherence of matrix D (refer to $Q 4$ for definition of mutual coherence). Suppose,

$$
\mathbf{y}=\sum_{k=1}^{K} A_{k} \mathbf{x}_{k}
$$

where \mathbf{x}_{k} 's are $n \times 1$ vectors such that $\left\|\mathbf{x}_{1}\right\|^{2}=\left\|\mathbf{x}_{2}\right\|^{2}=\ldots=\left\|\mathbf{x}_{K}\right\|^{2}$.
(a) Show that,

$$
\left\|A_{k}^{H} \mathbf{y}\right\|_{2} \geq\left[1-(K n-1) \mu_{D}\right]\left\|\mathbf{x}_{k}\right\|_{2} .
$$

First, try to lower bound the LHS term as $\left\|P \mathbf{x}_{k}\right\|_{2}-a$, where P is an hermitian matrix and a is an appropriate scalar. For this, you might have to use the following fact: For any two column vectors \mathbf{u}, \mathbf{v}, the statement $\|\mathbf{u}+\mathbf{v}\|_{2} \geq\|\mathbf{u}\|_{2}-\|\mathbf{v}\|_{2}$ holds true. After which, incorporate the results stated as questions in Q4 to arrive at the desired inequality equation.
(b) Now, prove that the term $\left\|B_{m}^{H} \mathbf{y}\right\|_{2}$ can be upper bounded as,

$$
\left\|B_{m}^{H} \mathbf{y}\right\|_{2} \leq K n \mu_{D}\left\|\mathbf{x}_{k}\right\|_{2},
$$

for some $k=1, \ldots, K$.
(c) As a last step, prove that $\max _{1 \leq l \leq K}\left\|A_{l}^{H} \mathbf{y}\right\|_{2}>\max _{1 \leq m \leq M}\left\|B_{m}^{H} \mathbf{y}\right\|_{2}$ can hold true if,

$$
K<\frac{1}{2 n}\left(1+\frac{1}{\mu_{D}}\right) .
$$

The above is an important result obtained in Greedy Algorithm theory. The scenario has been simplified in this question to make the entire derivation straight-forward. However, the final result provides a sufficient condition under which a particular greedy algorithm will be able to solve a special type of compressive sensing problem.

Solution: In this solution, suppose Q is a square matrix, we denote $\lambda_{\min }(Q)$ as minimum eigen value of matrix Q and $\lambda_{\max }(Q)$ as it's maximum eigenvalue.
(a) We have,

$$
\begin{aligned}
\left\|A_{k}^{H} \mathbf{y}\right\|_{2} & =\left\|A_{k}^{H}\left(\sum_{l=1}^{K} A_{l} \mathbf{x}_{l}\right)\right\|_{2} \\
& =\left\|A_{k}^{H} A_{k} \mathbf{x}_{k}+\sum_{l=1, l \neq k}^{K} A_{k}^{H} A_{l} \mathbf{x}_{l}\right\|_{2} \\
& \geq\left\|A_{k}^{H} A_{k} \mathbf{x}_{k}\right\|_{2}-\left\|\sum_{l=1, l \neq k}^{K} A_{k}^{H} A_{l} \mathbf{x}_{l}\right\|_{2} .
\end{aligned}
$$

Now, we will concentrate on each term in the RHS.

$$
\begin{aligned}
\left\|A_{k}^{H} A_{k} \mathbf{x}_{k}\right\|_{2} & =\sqrt{\mathbf{x}_{k}^{H} C_{k}^{H} C_{k} \mathbf{x}_{k}} \quad\left[C_{k}=A_{k}^{H} A_{k}\right] \\
& \geq \sqrt{\lambda_{\min }\left(C_{k}^{H} C_{k}\right)\left\|\mathbf{x}_{k}\right\|^{2}} \quad\left[C_{k}^{H} C_{k} \text { - is hermitian matrix. }\right] \\
& =\sqrt{\lambda_{\min }\left(C_{k}^{2}\right)}\left\|\mathbf{x}_{k}\right\|_{2} \quad\left[C_{k} \text { - is hermitian matrix }\right] \\
& =\sqrt{\left(\lambda_{\min }\left(C_{k}\right)\right)^{2}}\left\|\mathbf{x}_{k}\right\|_{2} \\
& =\lambda_{\min }\left(C_{k}\right)\left\|\mathbf{x}_{k}\right\|_{2}=\lambda_{\min }\left(A_{k}^{H} A_{k}\right)\left\|\mathbf{x}_{k}\right\|_{2} .
\end{aligned}
$$

Using the result from $\mathrm{Q} 4(\mathrm{~d})$, we get,

$$
\lambda_{\min }\left(A_{k}^{H} A_{k}\right) \geq 1-(n-1) \mu_{D},
$$

where n is the row (and column) size of the hermitian matrix $A_{k}^{H} A_{k}$. Thus, we obtain,

$$
\begin{equation*}
\left\|A_{k}^{H} A_{k} \mathbf{x}_{k}\right\|_{2} \geq \lambda_{\min }\left(A_{k}^{H} A_{k}\right)\left\|\mathbf{x}_{k}\right\|_{2} \geq\left[1-(n-1) \mu_{D}\right]\left\|\mathbf{x}_{k}\right\|_{2} . \tag{6}
\end{equation*}
$$

Now, we focus on the term $\left\|\sum_{l=1, l \neq k}^{K} A_{k}^{H} A_{l} \mathbf{x}_{l}\right\|_{2}$.

$$
\begin{aligned}
\left\|\sum_{l=1, l \neq k}^{K} A_{k}^{H} A_{l} \mathbf{x}_{l}\right\|_{2} & \leq \sum_{l=1, l \neq k}^{K}\left\|A_{k}^{H} A_{l} \mathbf{x}_{l}\right\|_{2} \\
& =\sum_{l=1, l \neq k}^{K} \sqrt{\mathbf{x}_{l}^{H} A_{l}^{H} A_{k} A_{k}^{H} A_{l} \mathbf{x}_{l}} \\
& \sum_{l=1, l \neq k}^{K} \sqrt{\lambda_{\max }(E)\left\|\mathbf{x}_{l}\right\|_{2}}
\end{aligned}
$$

where $E=A_{l}^{H} A_{k} A_{k}^{H} A_{l}$ and clearly E is an hermitian matrix of size $n \times n$. Let $\tilde{E}=A_{k}^{H} A_{l}$. Note that we are considering the case $l \neq k$. So, the $(i, j)^{t h}$ entry in \tilde{E} is s.t.,

$$
\left|[\tilde{E}]_{i, j}\right|=\left|\mathbf{a}_{k_{i}}^{H} \mathbf{a}_{l_{j}}\right|,
$$

where $\mathbf{a}_{k_{i}}$ and $\mathbf{a}_{l_{j}}$ refer to $i^{t h}$ and $j^{\text {th }}$ columns of matrices A_{k} and A_{l} respectively. So, $\left|[\tilde{E}]_{i, j}\right|=\left|\mathbf{a}_{k_{i}}^{H} \mathbf{a}_{l_{j}}\right| \leq \mu_{D}$. Further, $(i, j)^{t h}$ entry of E is such that,

$$
\begin{aligned}
\left|[E]_{i, j}\right| & =\left|\tilde{\mathbf{e}}_{i}^{H} \tilde{\mathbf{e}}_{j}\right| \\
& =\left|\sum_{p=1}^{n}[\tilde{E}]_{n, i}^{*}[\tilde{E}]_{n, j}\right| \\
& \leq \sum_{p=1}^{n}\left|[\tilde{E}]_{n, i}\right|\left|[\tilde{E}]_{n, j}\right| \\
& \leq \sum_{p=1}^{n} \mu_{D}^{2} \\
& =n \mu_{D}^{2} .
\end{aligned}
$$

Now, using the procedure adopted in Q4(d), we get,

$$
\lambda_{\max }(E) \leq n \mu_{D}^{2}+(n-1) n \mu_{D}^{2}=n^{2} \mu_{D}^{2}
$$

Thus, we get,

$$
\begin{equation*}
\left\|\sum_{l=1, l \neq k}^{K} A_{k}^{H} A_{l} \mathbf{x}_{l}\right\|_{2} \leq \sum_{l=1, l \neq k}^{K} \sqrt{n^{2} \mu_{D}^{2}}\left\|\mathbf{x}_{l}\right\|_{2}=(K-1) n \mu_{D}\left\|\mathbf{x}_{k}\right\|_{2} \tag{7}
\end{equation*}
$$

Combining equations (6) and (7), we finally get a lower bound on $\left\|A_{k}^{H} \mathbf{y}\right\|_{2}$ as,

$$
\begin{aligned}
\left\|A_{k}^{H} \mathbf{y}\right\|_{2} & \geq\left[1-(n-1) \mu_{D}-(K-1) n \mu_{D}\right]\left\|\mathbf{x}_{k}\right\|_{2} \\
& =\left[1-(K n-1) \mu_{D}\right]\left\|\mathbf{x}_{k}\right\|_{2}
\end{aligned}
$$

Hence, proved.
(b) In this case, we have,

$$
\begin{aligned}
\left\|B_{m}^{H} \mathbf{y}\right\|_{2} & =\left\|B_{m}^{H} \sum_{k=1}^{K} A_{k} \mathbf{x}_{k}\right\|_{2} \\
& \leq \sum_{k=1}^{K}\left\|B_{m}^{H} A_{k} \mathbf{x}_{H}\right\|_{2} \\
& \leq \sum_{k=1}^{K} \sqrt{\lambda_{\max }\left(A_{k}^{H} B_{m} B_{m}^{H} A_{k}\right)}\left\|\mathbf{x}_{k}\right\|_{2} \\
& \leq \sum_{k=1}^{K} n \mu_{D}\left\|\mathbf{x}_{k}\right\|_{2}=K n \mu_{D}\left\|\mathbf{x}_{k}\right\|_{2}
\end{aligned}
$$

Here, the upper bound for $\lambda_{\max }\left(A_{k}^{H} B_{m} B_{m}^{H} A_{k}\right)$ is obtained in exactly the same way as that obtained for $\lambda_{\max }\left(A_{l}^{H} A_{k} A_{k}^{H} A_{l}\right)$ when $k \neq l$.
(c) We can see that $\max _{1 \leq k \leq K}\left\|A_{k}^{H} \mathbf{y}\right\|_{2} \geq\left[1-(K n-1) \mu_{D}\right]\left\|\mathbf{x}_{k}\right\|_{2}$. Also, $\max _{1 \leq m \leq M}\left\|B_{m}^{H} \mathbf{y}\right\|_{2} \leq$ $K n \mu_{D}\left\|\mathbf{x}_{k}\right\|_{2}$. The condition,

$$
\max _{1 \leq k \leq K}\left\|A_{k}^{H} \mathbf{y}\right\|_{2}>\max _{1 \leq m \leq M}\left\|B_{m}^{H} \mathbf{y}\right\|_{2}
$$

will be satisfied if the lower bound of the LHS term is greater than the upper bound of the RHS term. Hence, we get,

$$
\left[1-(K n-1) \mu_{D}\right]\left\|\mathbf{x}_{k}\right\|_{2}>K n \mu_{D}\left\|\mathbf{x}_{k}\right\|_{2}
$$

On re-arranging the terms we can arrive at the desired result.
6. Consider two adjoining cells separated by a permeable membrane, and suppose that a fluid flows from the first cell to the second one at a rate (in milliliters per minute) that is numerically equal to three times the volume (in milliliters) of the fluid in the first cell. It then flows out of the second cell at a rate (in milliliters per minute) that is numerically equal to twice the volume in the second cell. Let $x_{1}(t)$ and $x_{2}(t)$ denote the volumes of the fluid in the first and second cells at time t, respectively. Assume that, initially, the first cell has 40 milliliters of fluid, while the second one has 5 milliliters of fluid. Find the volume of fluid in each cell at time t.

Figure 1: Figure for Q. 6

Solution: No fluid is flows into the first cell and fluid flows from the first cell to the second cell is equal to three times the volume of the fluid in the first cell. So,

$$
\frac{d x_{1}(t)}{d t}=-3 x_{1}(t)
$$

The change in volume of the fluid in the second cell is given by

$$
\frac{d x_{2}(t)}{d t}=3 x_{1}(t)-2 x_{2}(t)
$$

This can be written in matrix form as

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-3 & 0 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The eigenvalues of the matrix

$$
A=\left[\begin{array}{cc}
-3 & 0 \\
3 & -2
\end{array}\right]
$$

are $\lambda_{1}=-3$, and $\lambda_{2}=-2$ and corresponding eigen vectors are

$$
\left[\begin{array}{c}
1 \\
-3
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Hence the general solution is given by

$$
x(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=b_{1}\left[\begin{array}{c}
1 \\
-3
\end{array}\right] e^{-3 t}+b_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{-2 t}
$$

Using the initial conditions,
$b_{1}=40$, and $b_{2}=125$
Thus the volume of fluid in each cell at time t is given by

$$
\begin{gathered}
x_{1}(t)=40 e^{-3 t} \\
x_{2}(t)=-120 e^{-3 t}+125 e^{-2 t}
\end{gathered}
$$

7. (a) Prove that $C(A), N(A), C\left(A^{H}\right)$ and $N\left(A^{H}\right)$ are the fundamental spaces in complex case, i.e, give their properties and derive them. Verify for the matrix

$$
A=\left[\begin{array}{lll}
1 & i & 0 \\
i & 0 & 1
\end{array}\right]
$$

(b) Prove that determinant of a Hermitian matrix is real.

Solution:

(a) Let A is a matrix of size $m \times n$.

- Proof that $N(A)$ is orthogonal to $C\left(A^{H}\right)$.
i.e, We should show that $v^{H} w=0$, if $w \in C\left(A^{H}\right)$ and $v \in N(A)$.

$$
\begin{gathered}
w \in C\left(A^{H}\right) \Rightarrow \exists u \in \mathbb{C}^{n} \quad \text { s.t } \quad w=A^{H} u \\
\Rightarrow v^{H} w=v^{H} A^{H} u=(A v)^{H} u=(0)^{H} u \\
\Rightarrow v^{H} w=0 \quad \forall w \in C\left(A^{H}\right)
\end{gathered}
$$

So, $N(A)$ is orthogonal to $C\left(A^{H}\right)$.

- Proof that $N\left(A^{H}\right)$ is orthogonal to $C(A)$.
i.e, We should show that $v^{H} w=0$, if $w \in C(A)$ and $v \in N\left(A^{H}\right)$.

$$
\begin{gathered}
w \in C(A) \Rightarrow \exists u \in \mathbb{C}^{n} \quad \text { s.t } \quad w=A u \\
\Rightarrow v^{H} w=v^{H} A u=\left(A^{H} v\right)^{H} u=(0)^{H} u=0 \\
\Rightarrow v^{H} w=0 \quad \forall w \in C(A)
\end{gathered}
$$

So, $N\left(A^{H}\right)$ is orthogonal to $C(A)$.

- Proof that $C(A), C\left(A^{H}\right), N(A), N\left(A^{H}\right)$ are subspaces.

Let $w_{1}, w_{2} \in C(A) \Rightarrow \exists u_{1}, u_{2} \in \mathbb{C}^{n}$ s.t $A u_{1}=w_{1}, A u_{2}=w_{2}$
$\Rightarrow A\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}\right)=\alpha_{1} w_{1}+\alpha_{2} w_{2} \Rightarrow \alpha_{1} w_{1}+\alpha_{2} w_{2} \in C(A)$
and $A\left(0_{n \times 1}\right)=0_{m \times 1} \Rightarrow 0_{m \times 1} \in C(A)$, so $C(\mathrm{~A})$ is a subspace.
Similarly do it for $C\left(A^{H}\right), N(A), N\left(A^{H}\right)$.

- Let $\operatorname{dim}(N(A))=r$ and $u_{1}, u_{2}, . ., u_{r}$ be the basis of $N(A)$.

Since $u_{1}, u_{2}, \ldots, u_{r}$ is a linearly independent set in \mathbb{C}^{n}, we can extend it to form a basis of \mathbb{C}^{n}. Now there exists vectors $u_{r+1}, u_{r+2}, \ldots, u_{n}$ such that the set $\left\{u_{1}, \ldots, u_{r}, u_{r+1}, \ldots, u_{n}\right\}$ is a basis of \mathbb{C}^{n}.
Span of $C(A)=$ span of $\left\{A u_{1}, . ., A u_{r}, A u_{r+1}, . . A u_{n}\right\}=\operatorname{span}$ of $\left\{0, . ., 0, A u_{r+1}, . . A u_{n}\right\}$ \Rightarrow span of $C(A)=$ span of $\left\{A u_{r+1}, . . A u_{n}\right\}$.
we now prove that $\left\{A u_{r+1}, . . A u_{n}\right\}$ are linearly independent. Suppose the set is linearly dependent, then there exist scalars
alpha $\left.a_{r+1}, . . \alpha_{n}\right\}$ not all zero such that $\alpha_{r+1} A u_{r+1}+\ldots+\alpha_{n} A u_{n}=0$.

$$
\Rightarrow A\left(\alpha_{r+1} u_{r+1}+\ldots+\alpha_{n} u_{n}\right)=0
$$

This implies $\alpha_{r+1} u_{r+1}+\ldots+\alpha_{n} u_{n}$ belongs to null space of A.

$$
\Rightarrow \alpha_{r+1} u_{r+1}+\ldots+\alpha_{n} u_{n}=\alpha_{1} u_{1}+\ldots+\alpha_{r} u_{r}
$$

But, as u_{1}, \ldots, u_{n} are linearly independent only possibility is all α^{\prime} s are zero. So, $\left\{A u_{r+1}, . . A u_{n}\right\}$ are linearly independent.
So, $\operatorname{dim}(C(A))=n-r$.
i.e, $\operatorname{dim}(C(A))+\operatorname{dim}(N(A))=n$

Similarly prove $\operatorname{dim}\left(C\left(A^{H}\right)\right)+\operatorname{dim}\left(N\left(A^{H}\right)\right)=m$
Row reduced echolon form of $A=\left[\begin{array}{lll}1 & i & 0 \\ i & 0 & 1\end{array}\right]$ is $\left[\begin{array}{ccc}1 & 0 & -i \\ 0 & 1 & 1\end{array}\right]$.
So, $C(A):\left[\begin{array}{l}1 \\ i\end{array}\right],\left[\begin{array}{l}i \\ 0\end{array}\right]$ and $N(A):\left[\begin{array}{c}i \\ -1 \\ 1\end{array}\right]$
Row reduced echolon form of $A^{H}=\left[\begin{array}{cc}1 & -i \\ -i & 0 \\ 0 & 1\end{array}\right]$ is $\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$.
So, $C\left(A^{H}\right):\left[\begin{array}{c}1 \\ -i \\ 0\end{array}\right],\left[\begin{array}{c}-i \\ 0 \\ 1\end{array}\right]$ and $N\left(A^{H}\right):\left[\begin{array}{l}0 \\ 0\end{array}\right]$
(b) We can see this for 1×1 matrix directly. i.e, $\operatorname{det}\left(c^{H}\right)=c^{H}=\operatorname{conj}(c)=\operatorname{conj}(\operatorname{det}(c))$, where c is a scalar.
We know that, $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right) \Rightarrow \operatorname{det}\left(A^{H}\right)=\operatorname{det}\left(A^{H^{T}}\right)$
i.e, $A^{H^{T}}$ is each element of A replaced by its complex conjugate.

If you see the expansion of $\operatorname{det}\left(A^{H^{T}}\right)$, each term is same as $\operatorname{det}(A)$ except elements replaced by their complex conjugates. Taking the conjugate out.

$$
\Rightarrow \operatorname{det}\left(A^{H^{T}}\right)=\operatorname{det}(\operatorname{conj}(A))=\operatorname{conj}(\operatorname{det}(A))
$$

Now, If A is Hermitian:

$$
A^{H}=A \Rightarrow \operatorname{det}\left(A^{H}\right)=\operatorname{det}(A)
$$

But, we have seen that $\operatorname{det}\left(A^{H}\right)=\operatorname{conj}(\operatorname{det}(A))$

$$
\Rightarrow \operatorname{det}\left(A^{H}\right)=\operatorname{conj}(\operatorname{det}(A))=\operatorname{det}(A) \Rightarrow \operatorname{det}(A)=\operatorname{conj}(\operatorname{det}(A))
$$

So, $\operatorname{det}(A)$ is real.
8. The Harmonic Oscillator is shown in figure 2, where a particle is constrained by some kind of forces like in the case of atoms in solids. Find the energy values that can be taken by

Figure 2: Classical picture of an harmonic oscillator particle by solving the following eigen equation:

$$
\mathbf{H} \psi=E \psi
$$

where ψ is the eigen function which gives the probability of finding the particle at (x, y, z), E is the corresponding eigen energy value and \mathbf{H} is the Hamiltonian given as below,

$$
\mathbf{H}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+\frac{c}{2}\left(x^{2}+y^{2}+z^{2}\right)
$$

Solution: Using Variable separable method, write $\psi(x, y, z)=\psi_{x}(x) \psi_{y}(y) \psi_{z}(z)$ and substitute in eigen equation.

$$
\begin{gathered}
\mathbf{H} \psi_{x}(x) \psi_{y}(y) \psi_{z}(z)=E \psi_{x}(x) \psi_{y}(y) \psi_{z}(z) \\
{\left[-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+\frac{c}{2}\left(x^{2}+y^{2}+z^{2}\right)\right] \psi_{x}(x) \psi_{y}(y) \psi_{z}(z)=E \psi_{x}(x) \psi_{y}(y) \psi_{z}(z)}
\end{gathered}
$$

On doing partial derivatives and then dividing by ψ :

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+\frac{c}{2}\left(x^{2}+y^{2}+z^{2}\right)\right] \psi_{x}(x) \psi_{y}(y) \psi_{z}(z)=E \psi_{x}(x) \psi_{y}(y) \psi_{z}(z) } \\
\Rightarrow & -\frac{\hbar^{2}}{2 m \psi_{x}(x)} \frac{\partial^{2} \psi_{x}(x)}{\partial x^{2}}+\frac{c x^{2}}{2}+-\frac{\hbar^{2}}{2 m \psi_{y}(y)} \frac{\partial^{2} \psi_{y}(y)}{\partial y^{2}}+\frac{c y^{2}}{2}+-\frac{\hbar^{2}}{2 m \psi_{z}(z)} \frac{\partial^{2} \psi_{z}(z)}{\partial z^{2}}+\frac{c z^{2}}{2}=E
\end{aligned}
$$

writing the constant $E=E_{x}+E_{y}+E_{z}$, We can solve the following equation:

$$
-\frac{\hbar^{2}}{2 m \psi_{l}(l)} \frac{\partial^{2} \psi_{l}(l)}{\partial l^{2}}+\frac{c l^{2}}{2}=E_{l} \quad \forall l=x, y, z
$$

One of the solutions will be of the form $a e^{-b l^{2}}$, where a is a normalization constant used to see that total probability of finding the particle anywhere from $(-\infty, \infty)$ is 1 .

$$
\begin{gathered}
\Rightarrow-\frac{\hbar^{2}}{2 m a e^{-b l^{2}}} a\left[-2 b e^{-b l^{2}}+4 b^{2} l^{2} e^{-b l^{2}}\right]+\frac{c l^{2}}{2}=E_{l} \\
\Rightarrow-\frac{\hbar^{2}}{2 m}\left[-2 b+4 b^{2} l^{2}\right]+\frac{c l^{2}}{2}=E_{l} \\
\Rightarrow\left[2 b \frac{\hbar^{2}}{2 m}-E_{l}\right]+l^{2}\left[\frac{c}{2}-4 b^{2} \frac{\hbar^{2}}{2 m}\right]=0
\end{gathered}
$$

This has to satisfy for all l,

$$
\Rightarrow b= \pm\left(\frac{c m}{4 \hbar^{2}}\right)^{1 / 2}, \quad E_{l}= \pm\left(\frac{c m}{4 \hbar^{2}}\right)^{1 / 2} \frac{\hbar^{2}}{m}
$$

We take only $E_{l_{0}}=\frac{\hbar}{2}\left(\frac{c}{m}\right)^{1 / 2}$, as in the other case there will be finite probability for particle to stay at ∞, which is not physical as the force is trying to restrict to some space. And corresponding eigen function as $\psi_{l} 0=a_{0} \exp \left[-\left(\frac{c m}{4 \hbar^{2}}\right)^{1 / 2} l^{2}\right]$. Similar to the above expression, we expect other eigen functions also to have zero at $\pm \infty$. So, We take $\psi_{l}=f(l) e^{-k l^{2}}$ and substitute in eigen equation to get,

$$
\frac{\partial^{2} f(l)}{\partial l^{2}}-2 k \frac{\partial f(l)}{\partial l}+\left(k^{2}-1\right)-\frac{2 m}{\hbar^{2}}\left(\frac{c}{2}-E_{l}\right)=0
$$

When we write $f(l)=\sum_{i=0}^{\infty} p_{i} l^{p}$, and solve it will be observed that p_{i} has a recursive relation. As we need ψ_{l} to be finite everywhere, importantly when $l \rightarrow \pm \infty$. Only eigenvalues possible are :

$$
\begin{gathered}
E_{l_{n}}=\left(n_{l}+\frac{1}{2}\right) \frac{\hbar}{2}\left(\frac{c}{m}\right)^{1 / 2} \\
\Rightarrow E=E_{x}+E_{y}+E_{z}=\left(n_{x}+n_{y}+n_{z}+\frac{3}{2}\right) \frac{\hbar}{2}\left(\frac{c}{m}\right)^{1 / 2}
\end{gathered}
$$

That is energy levels that are allowed are quantized.

Refer to : https://quantummechanics.ucsd.edu/ph130a/130_notes/node153.html

The main take away is:

- Eigen functions are continuous equivalents of eigenvectors.
- Also, In case you have no analytic solution possible and domain is fintie, like if we say that particle can only exist between (-L,L), then you can discretize the problem into finite points and get to a matrix form as $A \psi=\lambda \psi$. (Solve the problem computationally).

