EE5120 Linear Algebra: Tutorial 5, July-Dec 2018, Dr. Uday Khankhoje, EE IIT Madras Covers Ch 4.1,4.2,5.1,5.2 of GS

- 1. Find the value of k in each of the following cases so that it satisfies the corresponding equation.
 - (a)

(b)

(c)

$$\det \begin{bmatrix} 3a & 3b & 3c \\ 3p & 3q & 3r \\ 3x & 3y & 3z \end{bmatrix} = k \det \begin{bmatrix} a & b & c \\ p & q & r \\ x & y & z \end{bmatrix}.$$
$$\det \begin{bmatrix} 2a & 2b & 2c \\ 3p+5x & 3q+5y & 3r+5z \\ 7x & 7y & 7z \end{bmatrix} = k \det \begin{bmatrix} a & b & c \\ p & q & r \\ x & y & z \end{bmatrix}$$
$$\det \begin{bmatrix} p+x & q+y & r+z \\ a+x & b+y & c+z \\ a+p & b+q & c+r \end{bmatrix} = k \det \begin{bmatrix} a & b & c \\ p & q & r \\ x & y & z \end{bmatrix}.$$

Hint: Use properties of determinants.

- 2. Prove each of the following statements.
 - (a) Two square matrices *A* and *B*, of same size, are said to be similar, if there exists an invertible matrix *P* of same size as that of *A* (or *B*) such that $A = PBP^{-1}$. Prove that determinant of *A* and *B* are same.
 - (b) Let *M* be an $n \times n$ matrix with complex-valued entries in it. Matrix M^* refers to the complex conjugate of matrix *M*, i.e., if $[M]_{i,j}$ is the (i, j)th of matrix *M*, then (i, j)th element of the matrix M^* equals $[M]_{i,j}^*$. Show that $\det(M^*) = \left(\det(M)\right)^*$.
 - (c) Determinant of the matrix A + tI, where $t \neq 0$, I is an $n \times n$ identity matrix and,

$$A = \begin{bmatrix} 0 & 0 & 0 & \dots & a_0 \\ -1 & 0 & 0 & \dots & a_1 \\ 0 & -1 & 0 & \dots & a_2 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_{n-1} \end{bmatrix},$$

is equal to $t^n + \sum_{i=0}^{n-1} a_i t^i$.

Hint: Use the properties of determinants for (a), and the definition of determinants for (b) and (c).

- 3. (a) Let $L : \mathbb{M}_{n \times n} \to \mathbb{R}^{1 \times n}$ be a linear transformation, with $\mathbb{M}_{n \times n}$ being the set of all $n \times n$ matrices, defined as $L(P) = \mathbf{x}^T A P \mathbf{x}^T P$, for any $P \in \mathbb{M}_{n \times n}$. Here, A is some fixed $n \times n$ symmetric matrix and \mathbf{x} is some fixed $n \times 1$ column vector. If it is given that all invertible $n \times n$ matrices from $\mathbb{M}_{n \times n}$ map to $\mathbf{0}^T \in \mathbb{R}^{1 \times n}$ under the transformation L, can you comment about at least one eigenvalue and one eigenvector of matrix A?
 - (b) Let H = I 2uu^T, where I is n × n identity matrix and u is an n × 1 column vector such that u^Tu = 1. Can you comment on at least two eigenvalues and corresponding eigenvectors of H?

(c) Let $A = \begin{bmatrix} 1 & b \\ 0 & c \end{bmatrix}$, where $b \neq 0, c \neq 1$ and b, c are real numbers. Compute eigenvalues and eigenvectors of the matrices A and $B = \begin{bmatrix} A & O \\ O & A \end{bmatrix}$, where O is a 2 × 2 all-zero matrix.

Hint: Use definition of eigenvalue/eigenvector of a square matrix.

- 4. Show that the sum of eigenvalues of a matrix is given by its trace, and that the product of eigenvalues is given by its determinant.
- 5. (i) Given that $A\mathbf{x} = \lambda \mathbf{x}$, prove the following:
 - (a) λ^2 is an eigenvalue of A^2 ,
 - (b) λ^{-1} is an eigenvalue of A^{-1} ,
 - (c) $\lambda + 1$ is an eigenvalue of A + I.
 - (ii) A 3×3 matrix *B* is known to have eigenvalues 0, 1, 2. This information is enough to find three of these:
 - (a) the rank of *B*,
 - (b) the determinant of $B^T B$,
 - (c) the eigenvalues of $B^T B$, and
 - (d) the eigenvalues of $(B + I)^{-1}$.
- 6. Prove that two $n \times n$ matrices are equal if all their eigenvalues and their corresponding eigenvectors are equal, and the matrices have *n* linearly independent eigenvectors.
- 7. The powers A^k of this matrix A approaches a limit as $k \to \infty$:

$$A = \begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix}, \quad A^2 = \begin{bmatrix} .70 & .45 \\ .30 & .55 \end{bmatrix}, \quad and \quad A^{\infty} = \begin{bmatrix} .6 & .6 \\ .4 & .4 \end{bmatrix}$$

The matrix A^2 is halfway between A and A^{∞} . Explain why $A^2 = \frac{1}{2}(A + A^{\infty})$ from the eigenvalues and eigenvectors of these three matrices. \Im_{0} word \Im_{1} and \Im_{1} and \Im_{1}

8. Consider a matrix *A* of size $n \times n$. If *A* has $(n_1 + 1)$ distinct eigen values and one of them is repeated n_2 number of times, satisfying $n_1 + n_2 = n$, then derive a condition that can ensure the diagonalizability of *A*.

Hint: Find the condition in terms of rank of some matrix.

- 9. An $n \times n$ matrix *M* is said to be 'Markov matrix' if all it's entries are non-negative and the sum of the entries of each column is 1. If $\{\lambda_i\}$ are the eigen values of *M* and *M* is a real matrix, prove the followings
 - (a) $\lambda_1 = 1$ is always an eigen value of *M*.
 - (b) $|\lambda_i| \leq 1 \quad \forall i \in \{1, \dots n\}.$

Hint: (b) Use the fact that the matrices A and A^1 have same eigen values.

10. If $p(\lambda) = \prod_{i=1}^{m} (\lambda - \lambda_i)$ is the characteristic polynomial of a matrix A with distinct eigen values, then find the characteristic polynomial of the matrix $A^n - kI$, where I is the identity matrix of appropriate dimension and $k, n \in \mathbb{R}$.

- 11. Describe how you might try to build a solution of a difference equation $\mathbf{x}_{k+1} = A\mathbf{x}_k$, (k = 0, 1, 2, ...), if you were given the initial \mathbf{x}_0 and this vector did not happen to be an eigenvector of A. Assume A is an $p \times p$ matrix with all its p eigenvectors being linearly independent.
- 12. Consider a linear operator T, T : $\mathcal{V} \longrightarrow \mathcal{V}$, where \mathcal{V} is a vector space and let $\mathcal{E}_{\lambda} = \{\mathbf{x} \mid T(\mathbf{x}) = \lambda \mathbf{x}\}$ (called the eigen space of λ). Prove that \mathcal{E}_{λ} is a subspace of \mathcal{V} .
- 13. An elastic object in the *xy* plane with a circular boundary $x^2 + y^2 = 1$ is stretched so that a point P(x_1, y_1) goes over into the point Q(x_2, y_2) given by

$$b = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Find the principal directions, that is the directions of the position vector d_1 of P for which the direction of the position vector d_2 of Q is the same or exactly opposite. What shape does the boundary circle take under the deformation?

14. Let

$$A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$

- (a) Find all eigenvalues and corresponding eigenvectors.
- (b) Find a nonsingular matrix *P* such that $D = P^{-1}AP$ is diagonal, and P^{-1} .
- (c) Find A^6 and f(A), where $f(t) = t^4 3t^3 6t^2 + 7t + 3$.
- (d) Find a real cube root of *B*, that is, a matrix *B* such that $B^3 = A$ and B has real eigenvalues. Assume *B* is diagonalizable.