EE5120 Linear Algebra: Tutorial 5, July-Dec 2018, Dr. Uday Khankhoje, EE IIT Madras

Covers Ch 4.1,4.2,5.1,5.2 of GS

1. Find the value of k in each of the following cases so that it satisfies the corresponding equation.
(a)

$$
\operatorname{det}\left[\begin{array}{ccc}
3 a & 3 b & 3 c \\
3 p & 3 q & 3 r \\
3 x & 3 y & 3 z
\end{array}\right]=k \operatorname{det}\left[\begin{array}{ccc}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right] .
$$

(b)

$$
\operatorname{det}\left[\begin{array}{ccc}
2 a & 2 b & 2 c \\
3 p+5 x & 3 q+5 y & 3 r+5 z \\
7 x & 7 y & 7 z
\end{array}\right]=k \operatorname{det}\left[\begin{array}{ccc}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right] .
$$

(c)

$$
\operatorname{det}\left[\begin{array}{lll}
p+x & q+y & r+z \\
a+x & b+y & c+z \\
a+p & b+q & c+r
\end{array}\right]=k \operatorname{det}\left[\begin{array}{lll}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right] .
$$

2. Prove each of the following statements.
(a) Two square matrices A and B, of same size, are said to be similar, if there exists an invertible matrix P of same size as that of $A($ or $B)$ such that $A=P B P^{-1}$. Prove that determinant of A and B are same.
(b) Let M be an $n \times n$ matrix with complex-valued entries in it. Matrix M^{*} refers to the complex conjugate of matrix M, i.e., if $[M]_{i, j}$ is the $(i, j)^{\text {th }}$ of matrix M, then $(i, j)^{\text {th }}$ element of the matrix M^{*} equals $[M]_{i, j}^{*}$. Show that $\operatorname{det}\left(M^{*}\right)=(\operatorname{det}(M))^{*}$.
(c) Determinant of the matrix $A+t I$, where $t \neq 0, I$ is an $n \times n$ identity matrix and,

$$
A=\left[\begin{array}{ccccc}
0 & 0 & 0 & \ldots & a_{0} \\
-1 & 0 & 0 & \ldots & a_{1} \\
0 & -1 & 0 & \ldots & a_{2} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & a_{n-1}
\end{array}\right]
$$

is equal to $t^{n}+\sum_{i=0}^{n-1} a_{i} t^{i}$.

3. (a) Let $\mathrm{L}: \mathbb{M}_{n \times n} \rightarrow \mathbb{R}^{1 \times n}$ be a linear transformation, with $\mathbb{M}_{n \times n}$ being the set of all $n \times n$ matrices, defined as $\mathrm{L}(P)=\mathbf{x}^{T} A P-\mathbf{x}^{T} P$, for any $P \in \mathbb{M}_{n \times n}$. Here, A is some fixed $n \times n$ symmetric matrix and \mathbf{x} is some fixed $n \times 1$ column vector. If it is given that all invertible $n \times n$ matrices from $\mathbb{M}_{n \times n}$ map to $\mathbf{0}^{T} \in \mathbb{R}^{1 \times n}$ under the transformation L , can you comment about at least one eigenvalue and one eigenvector of matrix A ?
(b) Let $H=I-2 \mathbf{u u}^{T}$, where I is $n \times n$ identity matrix and \mathbf{u} is an $n \times 1$ column vector such that $\mathbf{u}^{T} \mathbf{u}=1$. Can you comment on at least two eigenvalues and corresponding eigenvectors of H ?
(c) Let $A=\left[\begin{array}{ll}1 & b \\ 0 & c\end{array}\right]$, where $b \neq 0, c \neq 1$ and b, c are real numbers. Compute eigenvalues and eigenvectors of the matrices A and $B=\left[\begin{array}{ll}A & O \\ O & A\end{array}\right]$, where O is a 2×2 all-zero matrix.

4. Show that the sum of eigenvalues of a matrix is given by its trace, and that the product of eigenvalues is given by its determinant.
5. (i) Given that $A \mathbf{x}=\lambda \mathbf{x}$, prove the following:
(a) λ^{2} is an eigenvalue of A^{2},
(b) λ^{-1} is an eigenvalue of A^{-1},
(c) $\lambda+1$ is an eigenvalue of $A+I$.
(ii) A 3×3 matrix B is known to have eigenvalues $0,1,2$. This information is enough to find three of these:
(a) the rank of B,
(b) the determinant of $B^{T} B$,
(c) the eigenvalues of $B^{T} B$, and
(d) the eigenvalues of $(B+I)^{-1}$.
6. Prove that two $n \times n$ matrices are equal if all their eigenvalues and their corresponding eigenvectors are equal, and the matrices have n linearly independent eigenvectors.
7. The powers A^{k} of this matrix A approaches a limit as $k \rightarrow \infty$:

$$
A=\left[\begin{array}{ll}
.8 & .3 \\
.2 & .7
\end{array}\right], \quad A^{2}=\left[\begin{array}{ll}
.70 & .45 \\
.30 & .55
\end{array}\right], \quad \text { and } \quad A^{\infty}=\left[\begin{array}{ll}
.6 & .6 \\
.4 & .4
\end{array}\right]
$$

The matrix A^{2} is halfway between A and A^{∞}. Explain why $A^{2}=\frac{1}{2}\left(A+A^{\infty}\right)$ from the

8. Consider a matrix A of size $n \times n$. If A has $\left(n_{1}+1\right)$ distinct eigen values and one of them is repeated n_{2} number of times, satisfying $n_{1}+n_{2}=n$, then derive a condition that can ensure the diagonalizability of A.

9. An $n \times n$ matrix M is said to be 'Markov matrix' if all it's entries are non-negative and the sum of the entries of each column is 1 . If $\left\{\lambda_{i}\right\}$ are the eigen values of M and M is a real matrix, prove the followings
(a) $\lambda_{1}=1$ is always an eigen value of M.
(b) $\left|\lambda_{i}\right| \leq 1 \quad \forall i \in\{1, \ldots n\}$.

10. If $p(\lambda)=\prod_{i=1}^{m}\left(\lambda-\lambda_{i}\right)$ is the characteristic polynomial of a matrix A with distinct eigen values, then find the characteristic polynomial of the matrix $A^{n}-k I$, where I is the identity matrix of appropriate dimension and $k, n \in \mathbb{R}$.
11. Describe how you might try to build a solution of a difference equation $\mathbf{x}_{k+1}=A \mathbf{x}_{k}$, ($k=0,1,2, \ldots$), if you were given the initial \mathbf{x}_{0} and this vector did not happen to be an eigenvector of A. Assume A is an $p \times p$ matrix with all its p eigenvectors being linearly independent.
12. Consider a linear operator $\mathrm{T}, \mathrm{T}: \mathcal{V} \longrightarrow \mathcal{V}$, where \mathcal{V} is a vector space and let $\mathcal{E}_{\lambda}=$ $\{\mathbf{x} \mid T(\mathbf{x})=\lambda \mathbf{x}\}$ (called the eigen space of λ). Prove that \mathcal{E}_{λ} is a subspace of \mathcal{V}.
13. An elastic object in the $x y$ plane with a circular boundary $x^{2}+y^{2}=1$ is stretched so that a point $\mathrm{P}\left(x_{1}, y_{1}\right)$ goes over into the point $\mathrm{Q}\left(x_{2}, y_{2}\right)$ given by

$$
b=\left[\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Find the principal directions, that is the directions of the position vector d_{1} of P for which the direction of the position vector d_{2} of Q is the same or exactly opposite. What shape does the boundary circle take under the deformation?
14. Let

$$
A=\left[\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right]
$$

(a) Find all eigenvalues and corresponding eigenvectors.
(b) Find a nonsingular matrix P such that $D=P^{-1} A P$ is diagonal, and P^{-1}.
(c) Find A^{6} and $f(A)$, where $f(t)=t^{4}-3 t^{3}-6 t^{2}+7 t+3$.
(d) Find a real cube root of B, that is, a matrix B such that $B^{3}=A$ and B has real eigenvalues. Assume B is diagonalizable.

