
EE5120 Linear Algebra: Tutorial 5, July-Dec 2018, Dr. Uday Khankhoje, EE IIT Madras
Covers Ch 4.1,4.2,5.1,5.2 of GS

1. Find the value of k in each of the following cases so that it satisfies the corresponding
equation.

(a)

det

3a 3b 3c
3p 3q 3r
3x 3y 3z

 = k det

a b c
p q r
x y z

 .

(b)

det

 2a 2b 2c
3p + 5x 3q + 5y 3r + 5z

7x 7y 7z

 = k det

a b c
p q r
x y z

 .

(c)

det

p + x q + y r + z
a + x b + y c + z
a + p b + q c + r

 = k det

a b c
p q r
x y z

 .

Hint:Usepropertiesofdeterminants.

Solution:

(a) Here we have,

det

3a 3b 3c
3p 3q 3r
3x 3y 3z

 = 3det

 a b c
3p 3q 3r
3x 3y 3z

 = 32det

 a b c
p q r

3x 3y 3z

 = 33det

a b c
p q r
x y z


Hence, value of k in this case is 27.

(b) Adding − 5
7 times the third row to the second row, will not change the determi-

nant. Thus, we get,

det

 2a 2b 2c
3p + 5x 3q + 5y 3r + 5z

7x 7y 7z

 = det

2a 2b 2c
3p 3q 3r
7x 7y 7z


Then, by proceeding the same way as part (a), we get k = 2× 3× 7 = 42.

(c) Here, we have,

det

p + x q + y r + z
a + x b + y c + z
a + p b + q c + r

 = −det

−(p + x) −(q + y) −(r + z)
a + x b + y c + z
a + p b + q c + r


= −2det

 a b c
a + x b + y c + z
a + p b + q c + r


= −2det

a b c
x y z
p q r


= 2det

a b c
p q r
x y z

 .



In the above, the second step is obtaining by adding all second and third rows
to first row. Third step is by subtracting first row from second and third row
elements. And, the last step is got by interchanging rows two and three. Thus,
the value of k, in this case, is 2.

2. Prove each of the following statements.

(a) Two square matrices A and B, of same size, are said to be similar, if there exists an
invertible matrix P of same size as that of A (or B) such that A = PBP−1. Prove that
determinant of A and B are same.

(b) Let M be an n× n matrix with complex-valued entries in it. Matrix M∗ refers to the
complex conjugate of matrix M, i.e., if [M]i,j is the (i, j)th of matrix M, then (i, j)th

element of the matrix M∗ equals [M]∗i,j. Show that det(M∗) =
(

det(M)
)∗

.

(c) Determinant of the matrix A + tI, where t 6= 0, I is an n× n identity matrix and,

A =


0 0 0 ... a0
−1 0 0 ... a1
0 −1 0 ... a2
... ... ... ... ...
0 0 0 ... an−1

 ,

is equal to tn +
n−1
∑

i=0
aiti.

Hint:Usethepropertiesofdeterminantsfor(a),andthedefinitionofdeterminantsfor(b)and(c).

Solution:

(a) We have the following:

det(A) = det(P−1BP) = det(P−1)det(B)detP =
1

det(P)
det(B)det(P) = det(B).

Hence, proved.

(b) We prove by mathematical induction. First, let n = 1. Then, matrix M =

[M]1,1 ⇒ det(M) = [M]1,1. And, M∗ = [M]∗1,1 ⇒ det(M∗) = [M]∗1,1 =
(

det(M)
)∗

.

Hence, it is true for n = 1. Let us assume that it is true for a (M, M∗) pair of ma-
trices of size n− 1× n− 1. We now have to prove it for the size n× n.

Suppose for a k× k matrix A, let Ãi,j be the sub-matrix of A obtained by consid-
ering all the elements of A in same order, except those elements that are present
along ith row and jth column. Then, by the definition of determinants, we have,

det(A) =
k

∑
i=1

(−1)1+i[A]1,idet(Ã1,i). (1)
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From (1), we can write the following for a general n× n matrix M∗:

det(M∗) =
n

∑
i=1

(−1)1+i[M]∗1,idet(M̃∗1,i)

=
n

∑
i=1

(
(−1)1+i

)∗
[M]∗1,idet(M̃∗1,i),

[
(−1)1+i =

(
(−1)1+i

)∗]
=

n

∑
i=1

(
(−1)1+i

)∗
[M]∗1,i

(
det(M̃1,i)

)∗
, [By hypothesis assumed.]

=
{ n

∑
i=1

(−1)1+i[M]1,idet(M̃1,i)
}∗

=
(

det(M)
)∗

Hence, proved.

(c) We have,

det


t 0 0 ... a0
−1 t 0 ... a1
0 −1 t ... a2
... ... ... ... ...
0 0 0 ... an−1 + t

 = (t)det


t 0 0 ... a1
−1 t 0 ... a2
0 −1 t ... a3
... ... ... ... ...
0 0 0 ... an−1 + t



+ a0(−1)1+n det


−1 t 0 ... 0
0 −1 t ... 0
... ... ... ... ...
0 0 0 ... −1



= (t)
[
(t)det


t 0 0 ... a2
−1 t 0 ... a3
0 −1 t ... a4
... ... ... ... ...
0 0 0 ... an−1 + t



+ a1(−1)2+n det


−1 t 0 ... 0
0 −1 t ... 0
... ... ... ... ...
0 0 0 ... −1

 ]
+ a0(−1)1+n(−1)n−1

By expanding the determinants, we finally arrive at,

det(A + tI) = t[a1 + t[a2 + t[...[an−1 + t]..]] + a0 = tn + a0 + a1t + a2t2 + ... + an−1tn−1.

Hence, proved.

3. (a) Let L : Mn×n → R1×n be a linear transformation, with Mn×n being the set of all n× n
matrices, defined as L(P) = xT AP− xTP, for any P ∈ Mn×n. Here, A is some fixed
n× n symmetric matrix and x is some fixed n× 1 column vector. If it is given that all
invertible n× n matrices from Mn×n map to 0T ∈ R1×n under the transformation L,
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can you comment about at least one eigenvalue and one eigenvector of matrix A?
(b) Let H = I − 2uuT, where I is n× n identity matrix and u is an n× 1 column vector

such that uTu = 1. Can you comment on at least two eigenvalues and corresponding
eigenvectors of H?

(c) Let A =

[
1 b
0 c

]
, where b 6= 0, c 6= 1 and b, c are real numbers. Compute eigenvalues

and eigenvectors of the matrices A and B =

[
A O
O A

]
, where O is a 2 × 2 all-zero

matrix.

Hint:Usedefinitionofeigenvalue/eigenvectorofasquarematrix.

Solution:

(a) Given that all invertible matrices map to 0 under L. Let B be an invertible n× n
matrix. Then,

xT AB− xTB = 0T ⇒ BT
(

ATx− x
)
= 0. (2)

Since, B is invertible, so is BT. This implies all columns of BT are linearly in-
dependent. Thus, from (2), we obtain, ATx − x = 0 ⇒ Ax − x = 0 since A is
symmetric. Finally, we get, Ax = x. So, an eigenvalue of matrix A is equal to 1
and corresponding eigenvector is x.

(b) Given: H = I − 2uuT with uTu = 1. Now, multiplying by u on both sides, we
get,

Hu =
(

I − 2uuT
)

u

= u− 2uuTu = u− 2u(1)
= −u.

Hence, u is an eigenvector of H with corresponding eigenvalue equal to −1.

Now, let v be any vector orthogonal to u. Then,

Hv =
(

I − 2uuT
)

v

= v− 2uuTv = v− 2u(0)
= v.

Therefore, H has another eigenvalue equal to 1 with eigenvector as the one or-
thogonal to u.

(c) Given A matrix is upper triangular. So, its eigenvalues are simply its diagonal
entries⇒ λA = 1, c. It can be verified that eigenvectors of A are [1 0]T, [ b

c−1 1]T.

B is a block diagonal matrix. In fact, since A is upper triangular, so is B. So,
eigenvalues of B are: 1, 1, c, c. Eigenvectors are given by, [1 0 0 0]T, [0 0 1 0]T,
[ b

c−1 1 0 0]T, [0 0 b
c−1 1]T.

4. Show that the sum of eigenvalues of a matrix is given by its trace, and that the product of
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eigenvalues is given by its determinant.

Solution:

(a) Let matrix A be of size n× n. We know that det(A− λI) gives us the characteristic
equation of the matrix, which can be written in terms of its eigenvalues as shown
below,

det(A− λI) = (λ1 − λ)(λ2 − λ)...(λn − λ)

= (−λ)n + (−λ)n−1(λ1 + λ2 + ... + λn) + ... + c

And

det(A− λI) =


a11 − λ a12 .. a1n

a21 a22 − λ .. a2n
: : .. :
: : .. :

an1 . .. ann − λ


= (−λ)n + (−λ)n−1(a11 + a22 + ... + ann) + ... + c

Equating λn−1 terms in the above two simplifications, we get,

λ1 + λ2 + ... + λn = a11 + a22 + ... + ann = trace(A)

Hence proved.

(b) Let matrix A be of size n× n. We know that det(A− λI) gives us the characteristic
equation of the matrix, which can be written in terms of its eigenvalues as shown
below,

det(A− λI) = (λ1 − λ)(λ2 − λ)...(λn − λ)

Setting λ = 0
det(A− 0I) = (λ1 − 0)(λ2 − 0)...(λn − 0)

det(A) = λ1λ2...λn

Hence proved.

5. (i) Given that Ax = λx, prove the following:
(a) λ2 is an eigenvalue of A2,
(b) λ−1 is an eigenvalue of A−1,
(c) λ + 1 is an eigenvalue of A + I.

(ii) A 3× 3 matrix B is known to have eigenvalues 0, 1, 2. This information is enough to
find three of these:
(a) the rank of B,
(b) the determinant of BTB,
(c) the eigenvalues of BTB, and
(d) the eigenvalues of (B + I)−1.
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Solution:

(i) Given, λ is eigenvalue of A matrix

(a) Ax = λx⇒ AAx = A(λx) = λAx = λ2x.

(b) Ax = λx⇒ A−1Ax = A−1(λx)⇒ x = λA−1x⇒ λ−1x = A−1x.

(c) Ax = λx⇒ Ax + x = λx + x⇒ (A + I)x = (λ + 1)x.

(ii) Given 0, 1, 2 as eigenvalues of 3 by 3 matrix B.

(a) rank(B) = 2, i.e, rank is equal to the number of non-zero eigenvalues.

(b) det(BTB) = det(BT)det(B) = det(B)det(B) = (0× 1× 2)2 = 0.

(c) Eigenvalues of BT are same as eigenvalues of B. But, we can’t find eigenval-
ues of BTB from eigenvalues of B in general unless all eigenvectors of B are
orthogonormal to each other.

(d) Eigenvalues of B + I are 1, 2, 3. So, the eigenvalues of (B + I)−1 are 1, 1
2 , 1

3 .

6. Prove that two n × n matrices are equal if all their eigenvalues and their corresponding
eigenvectors are equal, and the matrices have n linearly independent eigenvectors.

Solution: Given: Matrices A and B have same eigenvalues and corresponding eigen-
vectors. Let λi and vi be the ith eigenvalue and corresponding eigenvector for i ∈
1, 2, ..., n.

Avi = Bvi = λivi, ∀i ∈ 1, 2, ..., n
⇒(A− B)vi = 0, ∀i ∈ 1, 2, ..., n
⇒(A− B)[v1 v2 ... vn] = O,

where O is an n× n all-zero matrix. Because the eigenvectors span Rn and all rows of
(A− B) are orthogonal to Rn, the only possibility for the last equation (in the above)
to hold true will be when all the rows of (A− B) are zero vectors. Thus, we have,

A− B = O⇒ A = B. Hence, proved.

7. The powers Ak of this matrix A approaches a limit as k→ ∞ :

A =

[
.8 .3
.2 .7

]
, A2 =

[
.70 .45
.30 .55

]
, and A∞ =

[
.6 .6
.4 .4

]

The matrix A2 is halfway between A and A∞. Explain why A2 = 1
2 (A + A∞) from the

eigenvalues and eigenvectors of these three matrices. Hint:UsethefactfromQ6.

Solution: Eigenvalues of A : 1, 0.5.
(If λ is eigenvalue of A, then λn is eigenvalue of An)
⇒ Eigenvalues of A2 : 1, 0.25 and Eigenvalues of A∞ : 1, 0.
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We know eigenvectors are same for A, A2, A∞. Same for 1
2 (A + A∞). It can be seen

that eigenvalues of 1
2 (A + A∞) equals 1

2 [(1, 0.5) + (1, 0)] = (1, 0.25), which is equal to
eigenvalues of A2. Because eigenvalues and eigenvectors of A2, 1

2 (A + A∞) are equal.
⇒ A2 = 1

2 (A + A∞).

8. Consider a matrix A of size n× n. If A has (n1 + 1) distinct eigen values and one of them
is repeated n2 number of times, satisfying n1 + n2 = n, then derive a condition that can
ensure the diagonalizability of A.

Hint:Findtheconditionintermsofrankofsomematrix.

Solution: Let λ̂ be the eigen value that is repeated for n2 number of times. For A to be
diagonalizable, it should have n linearly independent eigen vectors. The set of eigen
vectors correspondng to n1 distict eigen values will be independent. The eigen vectors
correponding to repeated eigen value are also need to be independent. The nullspace
of the n × n matrix A − λ̂I are the eigen vectors corresponding to the eigen value λ̂.
Hence it’s dimension should be n2. Rank of A− λ̂I being (n− n2) will ensure this.

9. An n× n matrix M is said to be ’Markov matrix’ if all it’s entries are non-negative and the
sum of the entries of each column is 1. If {λi} are the eigen values of M and M is a real
matrix, prove the followings

(a) λ1 = 1 is always an eigen value of M.

(b) |λi| ≤ 1 ∀i ∈ {1, . . . n}.

Hint:(b)UsethefactthatthematricesAandAThavesameeigenvalues.

Solution:

(a) A = [aij] where aij ≥ 0 and ∑n
i=1 aij = 1 ∀j

Consider the matrix [AT − I] and n× 1 vector x =
[
1 1 . . . 1

]T. Their product
yields

y = [AT − I]x = ATx− x

=⇒ yj =
n

∑
i=1

aij − 1 = 0 ∀j

=⇒ y = 0

[AT − 1I] has non-trivial nullspace, hence singular. Therefore, 1 is an eigen value
of AT. A and AT have same eigen values. So, 1 is an eigen value of A.

(b) A and AT have same eigen values. Let λ and v be the eigen value and the corre-
sponding eigen vector of AT. Let vk be the entry of v that has maximum absolute
value,
i.e., |vk| = max(|v1|, |v2|, . . . , |vn|) > 0 (equal to 0 will imply v itself is zero).

Page 7



We have ATv = λv. Considering it’s kth row,

λvk = a1kv1 + a2kv2 + · · ·+ ankvn

|λ||vk| = |a1kv1 + a2kv2 + · · ·+ ankvn|
≤ a1k|v1|+ a2k|v2|+ · · ·+ ank|vn| (Triangle inequality and aij ≥ 0)

≤ a1k|vk|+ a2k|vk|+ · · ·+ ank|vk|

= |vk|
n

∑
i=1

aik

= |vk|
=⇒ |λ| ≤ 1

Hence absolute value of all the eigen values of AT, therefore A, will be less than
or equal to 1.

10. If p(λ) = ∏m
i=1(λ− λi) is the characteristic polynomial of a matrix A with distinct eigen

values, then find the characteristic polynomial of the matrix An− kI, where I is the identity
matrix of appropriate dimension and k, n ∈ R.

Solution: Let Λ be the diagonal matrix with eigen values of A in it’s diagonal posi-
tions. Then there exists a matrix B such that A = BΛB−1. Further, An = (BΛB−1)n =
BΛnB−1.
The characteristic polynomial of (An − kI) is given by

p̂(λ) = det((An − kI)− λI)) = det(BΛnB−1 − (k + λ)I)

= det(BΛnB−1 − (k + λ)BB−1)

= det(B(Λn − (k + λ)I)B−1)

= det(B)det(Λn − (k + λ)I)det(B−1)

= det(Λn − (k + λ)I)

=
m

∏
i=1

(
λn

i − (k + λ)
)

11. Describe how you might try to build a solution of a difference equation xk+1 = Axk,
(k = 0, 1, 2, ...), if you were given the initial x0 and this vector did not happen to be an
eigenvector of A. Assume A is an p× p matrix with all its p eigenvectors being linearly
independent.

Solution: Let the eigenvectors of A be, v1, ..., vp, with eigenvalues λ1, ..., λp. Since the
eigenvectors are all independent and can span the Rp space, the initial solution vector
x0 can be written as, x0 = c1v1 + ...+ cpvp, i.e., as linear combination of the eigenvector.
Then, we have the following:

x1 = Ax0 = c1λ1v1 + ... + cpλpvp.
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By this way, we obtain,

xk+1 = c1λk+1
1 v1 + ... + cpλk+1

p vp.

In short, if A = SDS−1 is the eigenvalue decomposition, then, xk+1 = Ak+1x0 =
SDk+1S−1x0.

12. Consider a linear operator T, T : V −→ V , where V is a vector space and let Eλ =

{x
∣∣∣T(x) = λx} (called the eigen space of λ). Prove that Eλ is a subspace of V .

Solution: We have to prove,
1) Zero vector is in Eλ, which clearly holds true by definition of the set Eλ.
2) If u ∈ Eλ, then ku ∈ Eλ for any scalar k.
3) If u, v ∈ Eλ, then u + v ∈ Eλ.
Proceeding with the proof, we have,

i) u ∈ Eλ ⇒ T(u) = λu. Then, T(ku) = kT(u) = k(λu) = λ
(

ku
)

.
So, ku ∈ Eλ.
ii) Let u, v ∈ Eλ. Then,
T(u + v) = T(u) + T(v) = λu + λv = λ(u + vv), so u + v ∈ Eλ. Hence, proved.

13. An elastic object in the xy plane with a circular boundary x2 + y2 = 1 is stretched so that a
point P(x1, y1) goes over into the point Q(x2, y2) given by

b =

[
5 3
3 5

] [
x
y

]
Find the principal directions, that is the directions of the position vector d1 of P for which
the direction of the position vector d2 of Q is the same or exactly opposite. What shape
does the boundary circle take under the deformation?

Solution: Consider,

A =

[
5 3
3 5

]
Eigenvalues of A are λ = 8 and 2.
Eigen vector for λ1 = 8 is

v1 =

[
1
1

]
and for λ2 = 2 is,

v2 =

[
1
−1

]
These vectors make 450 and 1350 angles with positive x direction. They give the prin-
cipal directions. The eigen values show that in the principal directions, the object is
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stretched by factors 8 and 2, respectively as shown in fig 1.

To find the shape of deformation, choose the principal axes are the axes of new carte-
sian (u1, u2) coordinate system. Where u1 is the semi-axis in the first quadrant and u2
is the semi-axis in the second quadrant of the xy plane. Then, define
u1 = r cos(φ)
u2 = r sin(φ)
i.e., cos(φ) and sin(φ) are the coordinates of circular boundary (unstretched object).
After stretching, we get,
z1 =8cos(φ)
z2 =2sin(φ)

and, cos2(φ) + sin2(φ) = 1⇒ z2
1

82 +
z2

2
22 = 1. So the deformed object is an ellipse.

14. Let

A =

[
2 2
1 3

]
(a) Find all eigenvalues and corresponding eigenvectors.

(b) Find a nonsingular matrix P such that D = P−1AP is diagonal, and P−1.

(c) Find A6 and f (A), where f (t) = t4 − 3t3 − 6t2 + 7t + 3 .

(d) Find a real cube root of B, that is, a matrix B such that B3 = A and B has real eigen-
values. Assume B is diagonalizable.

Solution: (a) Eigenvalues are λ = 1 and 4. Eigenvector belonging to λ = 1 is v1 =
(2,−1), and Eigenvector belonging to λ = 4 is v2 = (1, 1).
(b) Let P is the matrix whose columns are v1 and v2. Then

P =

[
2 1
−1 1

]
D = P−1AP =

[
1 0
0 4

]
(c) Using the diagonal factorization A = PDP−1, and 16 = 1 and 46 = 4096, we get

A6 = PD6P−1 =

[
2 1
−1 1

] [
1 0
0 4096

] [
1/3 −1/3
1/3 2/3

]
=

[
1366 2230
1365 2731

]
f (1) = 2 and f (4) = −1. So,

f (A) = P f (D)P−1 =

[
2 1
−1 1

] [
2 0
0 1

] [
1/3 −1/3
1/3 2/3

]
=

[
1 2
−1 0

]
(d)

D1/3 =

[
1 0
0 41/3

]
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Hence the real cube root of A is

B = PD1/3P−1 =

[
2 1
−1 1

] [
1 0
0 41/3

] [
1/3 −1/3
1/3 2/3

]
= (1/3)

[
2 + 41/3 −2 + 2(41/3)
−1 + 41/3 1 + 2(41/3)

]
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