Give your answers in the space provided. No calculators or smartphones allowed. Please take a few minutes to read the questions carefully and answer (briefly) only what is asked.

Roll: No: \qquad NAME: \qquad Time: 15 mins
6 1. You are given the following matrix, $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 2\end{array}\right]$, and are asked to find out the value of the expression: $A^{3}-7 A^{2}+14 A-11 I$. You must do so without explicitly computing the power of any matrix (no credit if you do this). Show your steps to receive credit.

Solution: This can be solved using the Cayley Hamilton theorem.

1. The characteristic polynomial is $p(\lambda)=|A-\lambda I|=(2-\lambda)^{2}(3-\lambda)=0$, since the matrix is triangular and its determinant is the product of diagonal values.
2. From the C-H theorem, the matrix also satisfies this and we get: $A^{3}-7 A^{2}+16 A-$ $12 I=0$.
3. Given expression simplifies as $A^{3}-7 A^{2}+14 A-11 I=(-16 A+12 I)+(14 A-$ $11 I)=-2 A+I=\left[\begin{array}{ccc}-3 & -4 & -2 \\ 0 & -5 & -2 \\ 0 & 0 & -3\end{array}\right]$

2 2. Find any one eigenvalue and eigenvector of the matrix $X=I+2 u u^{T}$, where $u^{T} u=1$.

Solution: We can see that $X u=3 u$, thus u is an eigenvector with value 3 .

2 3. Is the matrix $A-3 I$ invertible? A is the matrix from question 1 . Write your answer / calculation in one line.

Solution: No, since it has 0 as an eigenvalue.

