EE5120 Linear Algebra: Tutorial Test 4, 04.10.18A

Give your answers in the space provided. Please take a few minutes to read the questions carefully and answer (briefly) only what is asked.

Roll: No: NAME: Time: 15 mins

1. You are given a set of polynomials $\left\{1, t, t^{2}\right\}$ that are defined over the interval $(0, \infty)$, and the definition of inner product is modified as:
$(f, g)=\int_{0}^{\infty} f(t) g(t) w(t) d t$, where $w(t)=\exp (-t)$ (Notice the change, earlier $w(t)=1)$. As always, squared length of a function is $\|f\|^{2}=(f, f)$.
(a) What is the length of each of the functions in the given set?
(b) Convert the given set of polynomial functions to an orthogonal set using Gram

Schmidt (i.e. it is sufficient that the set you produce is orthogonal - need not be orthonormal). Additional information given is that $\int_{0}^{\infty} t^{n} e^{-t} d t=(n)(n-1)(n-$ 2) $\cdots 1=n!$.

If you can solve this problem you have just learnt how to produce Laguerre polynomials from standard polynomials. By changing the form of $w(t)$, many different kinds of orthogonal polynomials can be generated, e.g. Legendre, Hermite, Laguerre, etc.

Solution:

1. Squared lengths of given set: $\|1\|^{2}=1,\|t\|^{2}=\int_{0}^{\infty} t^{2} e^{-t} d t=2$, and $\left\|t^{2}\right\|^{2}=$ $\int_{0}^{\infty} t^{4} e^{-t} d t=24$.
2. First polynomial will be $f_{1}(t)=1 /\|1\|$ and since $\|1\|=\int_{0}^{\infty} e^{-t} d t=1, f_{1}(t)=$ 1.
3. Second polynomial is $f_{2}(t)=t-\frac{\left(t, f_{1}(t)\right)}{\left(f_{1}(t), f_{1}(t)\right)} f_{1}(t)=t-\left(\int_{0}^{\infty} t e^{-} t d t\right) / 1 \cdot 1=$ $t-1$
4. Third polynomial is $f_{3}(t)=t^{2}-\frac{\left(t^{2}, f_{2}(t)\right)}{\left(f_{2}(t), f_{2}(t)\right)} f_{2}(t)-\frac{\left(t^{2}, f_{1}(t)\right)}{\left(f_{1}(t), f_{1}(t)\right)} f_{1}(t)$

Note that $\left(f_{2}(t), f_{2}(t)\right)=\int\left(t^{2}-2 t+1\right) e^{-t} d t=2-2+1=1$.
This gives: $f_{3}(t)=t^{2}-\left(\int\left(t^{3}-t^{2}\right) e^{-t} d t\right)(t-1)-\left(\int\left(t^{2}\right) e^{-t} d t\right) 1=t^{2}-4(t-$ 1) $-2=t^{2}-4 t+2$

These f_{i} are our orthogonal polynomials.

