Give your answers in the space provided. No calculators or smartphones allowed. Please take a few minutes to read the questions carefully and answer (briefly) only what is asked.

Roll: No: \qquad NAME:
Time: 15 mins
1 1. Imagine a chess board of size $n \times n$ and now visualize it as a matrix, with white and black representing the values 0,1 respectively. What is the rank of such a matrix (with a one line reason)?

Solution: 2 linearly independent columns, rank $=2$.
2. Given a linear transformation T from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that:
$T\left[(x, y)^{T}\right]=(2 x+3 y, 3 x-2 y)^{T}$. Find the matrix corresponding to this transformation when both the input basis and output basis are the same and represented as $\left\{(1,1)^{T},(1,-1)^{T}\right\}$. If you find this tricky, you may solve this in the canonical basis (both i / p and o / p) for [3] points.

Solution: (i) $T\left[(1,1)^{T}\right]=(5,1)^{T}$ and $T\left[(1,-1)^{T}\right]=(-1,5)^{T}$.
(ii) But the output must be presented in the same basis, and we find that $\left[\begin{array}{l}5 \\ 1\end{array}\right]=$ $\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}3 \\ 2\end{array}\right]$, similarly, $\left[\begin{array}{c}-1 \\ 5\end{array}\right]=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{c}2 \\ -3\end{array}\right]$, so the final matrix is $\left[\begin{array}{cc}3 & 2 \\ 2 & -3\end{array}\right]$.

4 3. If a rectangular matrix A has full row rank, which of $\left(A A^{T}, A^{T} A\right)$ is invertible? Why?

Solution: Refer to tutorial 3 for solution.

