Give your answers in the space provided. No calculators or smartphones allowed. Please take a few minutes to read the questions carefully and answer only what is asked, keeping your answers brief.

Roll: No: \qquad NAME:
Time: 15 mins
3 1. Consider a vector space consisting of all possible upper triangular 3×3 matrices. Enumerate a set of basis vectors for this vector space.

Solution: The canonical basis can be formed by putting 1 in any one of the 6 upper triangular positions, i.e.:
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.
$[0.5 \times 6=3]$
2. The trace of a matrix is defined as the sum of its diagonal values. Consider the vector space from the above question, but with an added constraint: the trace of any matrix of this vector space is a fixed constant, say $c=0$. Will the number of basis vectors of this new vector space increase, decrease or remain the same? Enumerate this new set of basis vectors $[1+4]$.

Solution: Decrease. The diagonal entries get modified and give the following basis (each one of them has trace $=c$):
$\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c-(a+b)\end{array}\right],\left[\begin{array}{ccc}a & 1 & 0 \\ 0 & b & 0 \\ 0 & 0 & c-(a+b)\end{array}\right],\left[\begin{array}{ccc}a & 0 & 1 \\ 0 & b & 0 \\ 0 & 0 & c-(a+b)\end{array}\right],\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 1 \\ 0 & 0 & c-(a+b)\end{array}\right]$.
$[1+4 \times 1]$
3. Fill in the blanks: The span of the following set of vectors forms a \qquad dimensional sub-space of the vector space \qquad .

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
-1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Solution: Since $v_{1}-v_{2}=v_{3}$, answers are $2, \mathbb{R}^{5}$.

