Give your answers in the space provided. No calculators or smartphones allowed. Please take a few minutes to read the questions carefully and answer only what is asked, keeping your answers brief.

Roll: No: $\qquad$ NAME: Time: 15 mins

1. The product of three matrices is given as $D=A B C$.
(i) State the conditions on the sizes of $A, B, C$ such that this product is legal, and (ii) Write the expression for the $(i, j)$ th element of $D$ in terms of the elements of $A, B, C$ in compact form. [1+2]

Solution: (i) $A: m \times p, B: q \times r, C: s \times n$, condition: $p=r$ and $r=s$ [1]
(i) Since $(A B)_{i, j}=\sum_{p} A_{i p} B_{p j}$, we get $(A B C)_{i, j}=\sum_{q}\left(\sum_{p} A_{i p} B_{p q}\right) C_{q j}$ [2]

7 2. Let $A$ and $B$ be $m \times n$ matrices, and $A_{1}, B_{1}$ and $B_{2}$ be $(m+1) \times(n+1)$ matrices defined as,

$$
A_{1}=\left[\begin{array}{cc}
1 & \mathbf{0}_{1}^{T} \\
\mathbf{0}_{2} & A
\end{array}\right] ; B_{1}=\left[\begin{array}{cc}
1 & \mathbf{0}_{1}^{T} \\
\mathbf{0}_{2} & B
\end{array}\right], B_{2}=\left[\begin{array}{cc}
\mathbf{0}_{2} & B \\
1 & \mathbf{0}_{1}^{T}
\end{array}\right]
$$

where $\mathbf{0}_{1}$ is an $n \times 1$ all-zero vector and $\mathbf{0}_{2}$ is an $m \times 1$ all-zero vector. Given that $A$ can be transformed to $B$ by elementary row transformations, find the transformation required to transform: (i) $A_{1}$ to $B_{1}$, and (ii) $B_{1}$ to $B_{2}$.
Hint: If you can't solve (i) you can still attempt (ii) directly. [3+4]

Solution: (i) Suppose $E$ is the elementary row transformation matrix such that, $B=$ $E A$. Then, it can be verified that $\tilde{B}=\tilde{E} \tilde{A}$, with $\tilde{E}$ being,

$$
\tilde{E}=\left[\begin{array}{cc}
1 & \mathbf{0}_{2}^{T} \\
\mathbf{0}_{2} & E
\end{array}\right]
$$

which is clearly an elementary row transformation matrix. [3]
(ii) The required permutation matrix is

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & \ldots \\
0 & 0 & 1 & \ldots \\
\vdots & & & \\
1 & 0 & 0 & \ldots
\end{array}\right]
$$

[4]

