EE5120 Linear Algebra: Tutorial 5, July-Dec 2017-18

1. (a) Suppose S = {vy, vy, ..., v, } is a set of non-zero orthogonal vectors, then prove that S
is linearly independent.
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(b) Let V be a finite dimensional vector space with {uy, ..., u } being its orthonormal basis

k
vectors. If for some v € V, wehave v = ) a;u;, then find an expression for the scalars
i=1
a;’s in terms ofu;’s and v.
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(c) Using Gram-Schmidt procedure find orthonormal vectors q1, q2 and q3 correspond-
ing to the vectors [110]7, [101]T and [011]7.
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(d) Suppose S = {aj,ay,...,a,} is a set of n x 1 orthonormal vectors. Prove that Gram-

Schmidt procedure when applied to S leads to S itself. Further if a; is the i column of
matrix A, then show that R matrix in the QR-factorization of A is an identity matrix.
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2. (a) Suppose V is a vector space and W is a sub-space. If U = {v € V|vIw =0, Yw € W},
prove that U is a sub-space.
(b) Letu € R"iss.t. u’u = 1and Q = I — 2uu’, where L is an n x 1 identity matrix.

(i) Prove that Q is an orthogonal matrix.
(ii) If w € R" is s.t. Qw = w, compute the relation between w and u.
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3. (a) Square the matrix P = aa’ /(a’a), which projects onto a line, and show that P> = P.
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(b) Find the matrix P that projects every vector b in R? onto the line in the direction of a
and the projection p. Check that error e = b — p is perpendicular to a for the following;:

1 2 1 -1
@)b=|1|anda=|1 | @G@)b=|3 |anda=| -3
1 3 6 1

‘0 = 1,2 JeY} MOYys pue qJ = d Jui
(c) Is the projection matrix P invertible? Why or why not?
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4. A Middle-Aged man was stretched on a rack to lengths L = 5,6, and 7 feet under applied
forces of F = 1,2, and 4 tons. Assuming Hooke’s law L = a + bF, find his normal length a
by least squares.
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5. Let W = span({(i,0,1)}) in complex-valued vector space of dimension 3. Find orthonor-
mal bases for W and W+.
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6. Find the parabola C + Dt + Et? that comes closest to the values b = (0,0,1,0,0) at the
timest = —-2,—1,0,1, 2.
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7. If T is a linear transformation on a vector space V such that ||T(x)|| = ||x|| for x € V, prove
that it is one to one
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8. Let V be an innear product space and define for each pair of vectors x, y, the scalar d(x,y) = ||[x — y||,
called distance between x and y. Prove for all x,y,z € V that
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9. The fundamental theorem is often stated in the form of Fredholms alternative: For any A
and b, one and only one of the following systems has a solution:
(i) Ax = b (or)
(ii) ATy = 0 with y™b # 0.
Either b is in the column space C(A) or thereisayin N(AT) such that y’b = 0. Show that
it is contradictory for (i) and (ii) both to have solutions.
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10. Why is each of these statements false?

(@) (1,1,1) is perpendicular to (1,1,-2), so the planes x +y +z = 0and x +y — 2z = 0 are
orthogonal subspaces.
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(b) The subspace spanned by (1,1,0,0,0) and (0,0,0,1,1) is the orthogonal complement of
the subspace spanned by (1,-1,0,0,0) and (2,-2,3,4,-4).
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(c) Two subspaces that meet only in the zero vector are orthogonal.
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