EE5120 Linear Algebra: Tutorial 4, July-Dec 2017-18

1. State True or False for each of the following with proper justification:

(a) Let matrix A be a transformation from R to IR”, then dimension of left nullspace of
A, ie. N(AT)ism —r.

(b) The pseudoinverse (AfA)~1A of any linear operator A exists even if the operator is
not invertible.

(c) Let V and W be vector spaces, and let T : V. — W be linear. The T is one-to-one iff

N(T) = {0}.
(d) Letv € R". The nullity of matrix vo' is n.
(e) A= [ (1) _01 ] is a rotation matrix and B = [ (1) é ] is a reflection matrix.
Solution:

(a) False. Dimension will be n — r.
(b) False. A!A needs to be invertible.

(c) True. Suppose that T is one-to-one and x € N(T). Then T(x) = 0 = T(0). Hence,
N(T) = {0}.

(d) False. vo' is a rank 1 matrix. By rank-nullity theorem, nullity = n — 1.

(e) True.

2. In R?, let L be the line y = 2x. Find an expression for T(x,y), where T is the reflection of
R? about L.

Solution: Refer section 2.6 of Gilbert Strang. The matrix for reflection about 6 line is

_[2c*=1 2 B - o s
H = 205 221 |’ where ¢ = cos and s = sinf. For line y = 2x, 0 = tan~"(2).
Substitute these values in H and you get, T(x,y) = (1/5) —3x +4y

S 4x + 3y

3. Prove that for two matrices, A, B, the following holds: rank(AB) < min(rank(A),rank(B)).

Solution: Step 1 (col picture): Consider the product AB in the following way: AB =
Alby...b,] = [Aby ... Aby], where b; is a column of B. Each of these Ab; is a linear
combination of the columns of A, hence, Ab; € C(A) (col space of A), thus C(AB) €
C(A). This implies that the rank of AB can not exceed that of A.

Step 2 (row picture): In the product AB, every row is a linear combination* of the rows
of B. We know that linear combinations of rows don’t change the rank of a matrix,
thus, the rank of AB can not exceed that of B. Putting the two steps together, we get
the desired result.

*: To see this, (AB);j = Yy aixbyj. So the i row of (AB) is:

[Craikbin Traibia - Lidikbkn] = Tianlbn ba . bra] = i ai[bi] where
[by] is the k™" row of B, i.e. a linear combination of the rows.




4. Let T be a linear transformation from R3 into R? and U be a linear transformation from R?
into R3. Prove that the transformation UT is not invertible. Generalize the theorem. (Can
you relate this to question no.7 of the previous tutorial?)

Solution: Since U, T are linear transformations, they must have matrix representa-
tions. T'is 2 x 3, and U is 2 x 3, thus both their ranks can be at most 2. Using the result
above, even though the size of UT is 3 x 3, it can have rank at most 2. Thus, UT is not
invertible.

Alt proof: For a transformation to be invertible, it should be both one-to-one and onto.
In this case, T is not one-to-one and therefore UT is not one-to-one. Hence it is not
invertible. Any transformation from a higher dimensional space to a lower dimen-
sional space leads to loss of information in one or more dimensions and hence is not
invertible.

5. What 3 by 3 matrices represent the transformations that,
(a) project every vector onto the x-y plane?
(b) reflect every vector through the x-y pane?
(c) rotate the x-y plane through 90°, leaving the z-axis alone?
(d) rotate the x-y plane, then x-z, then y-z through 90°?
(e) carry out the same three rotations, but each one through 180°?

Solution:
1 0 0
@ |01 0
1000
[1 0 ©
® |01 0
00 -1
cos(rt/2) —sin(mt/2) 0O 0 -1 0
(c) | sin(m/2) «cos(t/2) 0 |=]1 0 0
0 0 1 0 0 1

[1 0 O [0 0 -1 0 -1 0 0
d {00 -1 01 0 1 0 0|=1]0
01 O 1 0 O 0 0 1 1

0
1
0
1 0 071[-10 0 -1 0 0
e |0 -1 0 {010]{010]{
0 0 -1

1 00
010
|0 0 -1 | 0 0 1 0 01
1 0| [0 Oof [0 1] (0 O .
6. Let 01 = { [0 0] , [O 1} , [O O} , [1 0] } be the (ordered) basis for the vector space

My, which is the set of all real valued 2 x 2 matrices. Also, let ay = { x2,x, 1} be the basis
for the vector space P, which is the set of all real polynomials (with real co-efficients)
with minimum degree 2. Compute the matrix representations for the following linear
transformations:
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(@) T1: Maxpy = Moy with Tl(A) = AT, for everyA € Moo,

(b) T2 : Py — Moy with To(f(x)) = [f/(()()) szgﬂ Here, f/(x) and f”(x) are the 1%

and 2"¥ derivatives of f(x) € P,.

Solution:

(a) We have the following:

(o o)) =lo o) =®[o o] @1 3] +@ 5 o] +@ 7 o]

We take the co-efficients present in the linear combination shown above to con-
struct the first column in the matrix representation of T1 will be [1000]”. Simi-
larly,

0 0]\ _ [0 0] 1 0] 0 0] 0 1] 0 0]
Ti( 0 1 ) = 0 1] =@ o) TW o 1] TO ]y o/ TO]1 of
0 1]\ _ [0 0] 1 0] 0 0] 0 1] 0 0]
m( 0 0 ) = 1 0] =@o of T O]o 1) T@ g o]+ D |1 o
0 0]\ [0 1] 1 0] 0 0] 0 1] 0 0]
Ti( 1 0 ) = 0 0] =@ 1o o) TO g 1] TW o o/ TO]1 o
1000
. . . 0100
Thus, matrix representation of T; is given by 000 1
0010

(b) Following the same procedure as discussed above, we get,

e -[19 H0)-p -0t o af ool

nw=|y 2 =|s o=l o]+ @ I +@f o]+ o]
o 2=k Jof; §rof emf J-of §
010
The matrix representation for T, is given by ; g g .
0 0O

7. Let V be a vector space and T : V — V be a linear transformation. Suppose x € V is such
that Tk(x) =0,T"x) #0,V 1 <m < kand k > 1, then prove that the set of vectors
{x, T(x), T2 (x), ...y Th=1 (x)} is linearly independent.
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Solution: Given k > 1. Thus, T(x) # 0 = x # 0. Since T¥(x) = 0, forall p > 1,

T (x) = T7(TH(x)) = T7(0) =0. M

Assume that {x, T(x), T*(x), ..., T""}(x)} is linearly dependent. Then,
x4 aaT(x) + ... + @ TF1(x)} =0,

with not all a;s being zero, i.e., some a;s are not equal to zero. Now, consider the
following:
k-1 (alx F T (X) + o+ TE (x)}) = T+1(0)
= T (x) 4+ a, TF(X) + a3 TF (%) + ... + g, T2V (x) = 0
=TI (x) +0+0+..+0=0.
The above result is a consequence of equation (1) and other given information. Since
TS Y(x) # 0,4, = 0. Now,
TH-2 <a1x A T(X) + o+ aka—l(x)}) = TF2(0)
=a TF2(x) + a,TF (%) + a3 TF(x) 4 ... + 4, TH3(x) = 0
=0+ aT Y x) +0+...+0=0.
Again, since TE1(x) # 0, we get a = 0. On repeating this procedure, we get a; =
0,Vi = 1,2,...,k, which is contradicting to the initial assumption. Hence, the initial

assumption of the set {x, T(x), T>(x), ..., T""1(x) } being linearly dependent is incorrect.
Thus, the above set is linearly independent.

8. BONUS question: Definition: Let V be a vector space and T : V — V be a linear transfor-
mation on V. A subspace W C V is said to be T-invariant if for every w € W, T(w) € W.
Further, if W is T-invariant, define restriction of T on W as, Tw : W — W such that
Tw(w) = T(w),Vw € W. Then, prove the following results:

(a) Subspaces {0}, V, N(T) and R(T) are T-invariant. Here, N(T) = {v € V|T(v) = 0},
and R(T) = {u € V|3xy € Vs.t T(xyq) = u} (The choice of xy depends on u).

(b) For a T-invariant subspace W, the transformation Tyy is linear, and N(Tw) = N(T) N
W.

Solution:
(@) (i) Let U = {0}. Its a singleton set. Since T is linear T(0) = 0 = T(0) € U.
Hence, U = {0} is T-invariant.
(ii) Since T is defined from Vto V, for every v € V, T(v) € V = V is T-invariant.

(iii) Since T is linear T(0) = 0. Thus, 0 € N(T) by the definition of N(T). Further,
T(v) =0¢€ N(T), forall v N(T). Hence, N(T) is T-invariant.
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(b)

(iv)

(i)

(ii)

Let u € R(T). Since, R(T) C V (by definition), u € V. Thus, T(u) € R(T) =
R(T) is T-invariant.

Let x,y € W. Then, c;x + coy € W, for some scalars c1,c as W is a subspace.
W is T-invariant = T(x) € W, T(y) € W, T(c1x + c2y) € W. Thus, Tw(x) =
T(x), Tw(y) = T(y) and Tw(c1x + c2y) = T(c1x + c2y). Now, we have the
following:

Tw(cix+cy) = T(ax+cy) = aT(x) +T(y) = a1 Tw(x) + c2Tw(y).

The above is true for any scalars cq,c; and for any x,y € W. Thus, Ty is
linear.

Let w € N(Tw). Since N(Tw) C W, w € W. Further, Tw(w) = 0. But
by definition, Tw(w) = T(w) = T(w) = 0 = w € N(T). Thus, w €
N(T)NW = N(Tw) C N(T) N W.

Letu € N(T)NW. Then, u € N(T) = T(u) = 0. Sinceu € W and W is
T-invariant, Tw(u) = T(u) = 0 € W = u € N(Tw). Hence, N(T)NW C
N(Tw).

Therefore, N(Tw) = N(T) N'W. Hence, proved.
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