1)

2)

3)

Fig. 1.

4)

ELL212 - Tutorial 1, Sem II 2015-16

Consider a monochromatic wave function given by

B(F) = A(F) cos(wt + 6(F)

Show that if v (7) satisfies the wave-equation then so does

§(7) = A(F) exp[j{wt + 6(")}]

and vice-versa.
Consider the two dimensional wave equation in cylindrical coordinates:
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Obtain an expression for an azimuthally symmetric (i.e. ¢ independant) cylindrical wave at frequency
w for large p. (Hint: Use the substitution ¢(p,t) = f(p,t)/\/p). Compare with the case of a spherical
plane wave.

Approximate distributed circuit models of (lossless) a lossless transmission operating in high frequency
modes is shown in fig.1. Note that L has units H-m, C' has units F-m, Ly has units H/m and Cy has
units F/m. Obtain expressions for the propagation constant 8 and the characteristic impedance Zy of
the line for both circuits at frequency w.
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Distributed circuit models for Q3
*Consider a one dimensional wave satisfying the wave equation:
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and the following boundary conditions:
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Also assume that the function v(z, t) is fourier transformable with respect to time ¢ at every x. Obtain
an expression for ¢ (x,t) for all x and ¢.



