
Chapter 4 : A quick tour to JMF Developing multimedia apps with JMF/TGV
4.9 The JMF time model

4.9.1 Time

The JMF keeps track of the time using the class "Time" [userguide]. A Time object represents a
particular instant of time in the time axis. Basically the Time object uses a field of the data type
long. This field holds the value of time that has passed from a time origin. The value of time is
maintained to nanosecond precision. You can construct a Time object using one of its
following two constructors. One constructor takes as parameter the value of the time to
nanosecond precision and the other constructor takes to second precision. The constructors
are
 public Time(double seconds) , and

 public Time(long nanoseconds).
The methods
 long getNanoseconds() , and

 double getSeconds() ,

can be used to get the value of the time from the Time object to either nanosecond precision or
second precision respectively.

4.9.2 TimeBase

The interface TimeBase abstracts a constantly ticking source of time. TimeBase is analogous
to an energized crystal oscillator in a digital clock. An energized crystal oscillator generates
clock pulses at a certain frequency, that is dependent upon the physical characteristics of the
crystal. An energized crystal oscillator can neither be paused and then restarted (while the
oscillator remains energized), nor can we change the rate of the oscillator. Likewise the
TimeBase does not allow the user to control the generation of the timing signals. In essence
TimeBase is just an uncontrolled source of clock ticks.

JMF provides a default implementation of the TimeBase interface. It is called the
SystemTimeBase, that presumably makes use of the timing information provided by the
operating system. The method
 public Time getTime()

of TimeBase returns a Time object representing the time instant at which this method is
invoked. The returned Time object can then be used to get the value of time to second or
nanosecond precision. Alternatively the following convenient method

 public long getNanoseconds()

of TimeBase can be invoked to get the time directly in nanoseconds at any time instant.

4.9.3 Clock

We saw that the TimeBase is an uncontrolled source of time. On the other hand we would like
to have a controlled source of time, and that is provided by the interface Clock. The JMF Clock
is analogous to a digital clock in the sense that it uses the timing signals of a TimeBase
(crystal oscillator) to derive its clock ticks. However the Clock allows the user to control the
generation of the clock ticks. The Clock can be started, stopped, restarted and its rate can also

Chapter 4 : A quick tour to JMF Developing multimedia apps with JMF/TGV
be adjusted.

The time that is kept track by the Clock is called the media-time. The time maintained by the
TimeBase is called time-base time. Methods

 public Time getMediaTime()
and
 public long getMediaNanoseconds()

can be used on a clock to get its media time.

JMF interfaces like Players, Processors have to keep track of time and therefore they extend
the Clock interface. Most of the JMF objects implementing the Clock interface use the default
SystemTimeBase. However some Clock interfaces implemented by hardware encoders,
decoders and renderers may use TimeBase represented by hardware clock. Methods
 public void setTimeBase(TimeBase master)
 throws IncompatibleTimeBaseException
and
 public TimeBase getTimeBase()

can be used to set and get the TimeBase of a Clock. In a multimedia presentation you may
want the Clocks of two media players to be synchronized. For example you may want to
synchronize the audio and video playback. Synchronization can be done by getting the
TimeBase from one player and setting it as the TimeBase for another.

The rate of a Clock represents how fast the Clock is running with respect to its TimeBase. A
rate of 1.0 represents normal playback rate while values more than 1.0 represent fast
forwarding. A rate inbetween 0.0 and 1.0 denotes slow motion, and a negative rate denotes
rewinding of the media. The rate of the Clock can be set using the method

 public float setRate(float factor).

The returned value of the above method is the actual rate that is set. The rate of a Clock can be
obtained through the method

 public float getRate().

When a media presentation starts the media time of the Clock that controls the media
presentation is initialized to zero. The maximum value of the media time of the Clock is the
maximum time duration for which the media is supposed to be presented at the normal
playback rate. You start the Clock by invoking its method

 public void syncStart(Time at)

wherein you pass the time-base time at which the Clock should start. Suppose you want to
start a media presentation from its begining at a given time-base time which we denote as
tbst(time-base start time). You then invoke syncStart(tbst) on the Clock. When time-base
time(tbt) reaches tbst, the clock starts and the media time (mt) of the clock is set to the media
start time (mst). In this case mst is zero as it is the beginning of the presentation. Afterwards
both the tbt and mt advances and they are related by the equation

mt = mst + (tbt – tbst) * rate . --------------- Eq. 1.1

Chapter 4 : A quick tour to JMF Developing multimedia apps with JMF/TGV

 javax.media.Time

public static final long ONE_SECOND
public static final Time TIME_UNKNOWN
protected long nanoseconds

 <<constructor>>
public Time(long nanoseconds)
public Time(double seconds)

<< get methods>>
public long getNanoseconds()
public double getSeconds()

<< convenient method>>
protected long secondsToNanoseconds
(double seconds)

<<interface>>
javax.media.Duration

public static final Time
DURATION_UNBOUNDED
public static final Time
public Time getDuration()

 javax.media.SystemTimeBase

public SystemTimeBase()
public Time getTime()
public long getNanoseconds()

 <<interface>>
javax.media.TimeBase

public Time getTime()
public long getNanoseconds()

 1
 Has a
 1
 <<interface>>
javax.media.Clock

public static final Time RESET
public void setTimeBase(TimeBase master)
 throws IncompatibleTimeBaseException
public void syncStart(Time at)
public void stop()
public void setStopTime(Time stopTime)
public Time getStopTime()
public void setMediaTime(Time now)
public Time getMediaTime()
public long getMediaNanoseconds()
public Time getSyncTime()
public TimeBase getTimeBase()
public Time mapToTimeBase(Time t)
 throws ClockStoppedException
public float getRate()
public float setRate(float factor)

Figure 4.4 : The JMF Time model

Chapter 4 : A quick tour to JMF Developing multimedia apps with JMF/TGV

Fig 4.3 shows this relation.

 mst
 __|__|__|__|__|__|__|__|__|__|__|__|__|__|__ media time
 mt

 _|__|__|__|__|__|__|__|__|__|__|__|__|__|__ time-base time
 tbst tbt

Figure 4.3 Relationship between time-base time and media time for rate = 2.0

Suppose you want to pause the media presentation then you can call the method

public void stop()
which stops the clock immediately.

To pause the media presentation you can also call the method

public void setStopTime(Time stopTime).

By using the setStopTime method you set a time-base time at which you want to stop the clock
and the presentation. Once the clock is stopped the media time is frozen, it does not advance.
However the time-base time keeps on running at its own pace.

Now suppose you want to restart the presentation then you should invoke the method
syncStart(Time newTBST) by supplying a new TBST. When the TBT reaches newTBST, the
frozen media time becomes the media start time for the restarting procedure. The clock starts
running from the newTBST, and the media time starts advancing and then onwards mt is again
governed by the equation Eq. 4.1.

4.9.4 Duration

The Duration interface is implemented by those classes that can compute and advertise the
duration of the media they are handling. For example Players and Processors extend Duration
interface. Interface Duration has only one method

public Time getDuration(),

which returns a Time object that indicates the duration of the media handled by that class. The
returned duration is computed at the default playback rate. The method returns the Time object
DURATION_UNKNOWN if the duration of the media cannot be computed

