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Abstract—Multicast throughput from one source to multiple
sinks in a network can be improved using network coding. In
wireless networks, the maximum possible multicast throughput
has been recently evaluated using a linear programming opti-
mization model that incorporates constraints due to interference
between nodes. The model uses conflict graphs involving all
possible hyperarcs in a graph representing the wireless network
to determine an interference-free transmission schedule. In this
paper, we propose a simple pseudo-random transmission schedul-
ing algorithm that selects non-interfering hyperarcs node-by-
node in an iterative fashion. This results in a significant reduction
in the number of variables in the optimization model, while still
achieving an identical multicast throughput. For instance, in a
10 × 3 rectangular grid network, our approach requires only
74 hyperarcs out of a total of 336 hyperarcs for achieving the
maximum multicast throughput of 2/3.

I. INTRODUCTION

Data communications between nodes of a network is a

problem central to all modern communication systems. The

flow of information between such networks of nodes has un-

dergone a paradigm change with the recent advent of network

coding as introduced in [1]. By allowing simple combination

of information at participating nodes in addition to traditional

routing, the overall capacity of the network can be increased

significantly using ideas of network coding.

The capacity of wireless networks under suitable models,

has been determined by Gupta and kumar in [2]. They show

that in a network comprising of n identical nodes, with
atmost n/2 transmit-receive pairs, the throughput capacity

per node is Θ
(

1√
n log n

)

bits-per-second assuming random

node placement and Θ( 1√
n
) bits-per-second assuming optimal

node placement and communication pattern. Each node does

interference aware routing to forward their data. This analysis

does not consider network coding and multicast transmission.

Jain et al in [3] model interference using a conflict graph

and present methods for computing bounds on the optimal

throughput for a network with specified source-destination

pairs and traffic patterns using a linear programming model.

They achieve throughput gains over shortest path routing since

they use an interference aware routing protocol.

With the advent of network coding, multicast capacity

of network coding for random networks has been studied

in [4] for random wireline networks and random wireless

networks. However, [4] does not account for interference

between wireless links. Sagduyu et al in [5] proposed a link

scheduling based MAC with network coding, which improves

the performance of lossless wireless networks in terms of

throughput and energy efficiency over routing algorithms. It

has been shown that the throughput optimization and network

code design are separable. In [5], new wireless network codes

have also been designed. Network codes for lossy networks

is considered in [6] which shows that random network codes

work well for lossy networks also.

Smith et al in [7] have found the transport capacity of a

wireless broadcast network with interference constraints. It has

been shown in [7] that the transport capacity can be achieved

through routing and network coding provides only a constant

gain when employed.

In [8] Park et al have formulated another optimization model

to estimate wireless multicast throughput for an adhoc net-

work. The model considers losses in the network, interference-

aware scheduling and broadcast nature of wireless nodes. Our

approach follows the model in [8]. The novelty in our work

is in the determination of the scheduling of transmissions for

minimizing interference and contention. Our approach for the

determination of non-interfering subgraphs is node-based, as

opposed to the hyperarc-based approach in [8]. This results

in a significant reduction in the complexity of optimization

enabling determination of maximum multicast throughput in

larger networks. We assume the existence of random network

codes for our model, following [8].

By running the optimization on a nr ×3 rectangular grid of
nodes for 3 ≤ nr ≤ 10, we find that we obtain the maximum
throughput of 2/3 with a fraction of the total number of
hyperarcs possible in the network. This results in a significant

reduction in complexity. In addition, by running optimizations

with suitable sets of active hyperarcs, we find that receiver

selection ability, i.e., the ability of a Node i to determine a
subset of receivers from its neighbors for each transmission, is

central to the gains obtained by network coding over routing

in wireless networks.

Our results suggest that the optimal multicast throughput of

a large wireless network might be approachable by considering

a fraction of the possible hyperarcs by first selecting nodes

that can transmit with limited interference. Such a node-

based approach could result in further generalization of the

optimization process incorporating advanced physical-layer

transmission and reception methods at nodes of a wireless

network.



The rest of this paper is organized as follows. Section II

describes the model of the wireless network. The proposed

node-based scheduling algorithm along with the optimization

model for network coding is explained in Section III. The

performance of the proposed algorithm on an nr × 3 grid
network is detailed in Section IV. Complexity analysis for

random networks is done in Section V. Section VI concludes

the paper.

II. MODEL OF WIRELESS NETWORK

Consider a wireless packet network consisting of n nodes.
We assume that all the nodes are identical i.e. they have

uniform transmission power, transmission range, interference

range and omnidirectional antennas. We model the wireless

network as a graph G = (V,E), where V = {1, 2, · · · , n} is
the set of nodes and E ⊆ {(i, j) : i, j ∈ V } is the set of edges.
An edge (i, j) a Node i to Node j exists if dij ≤ r(n), where
dij be the Euclidean distance between Node i and Node j,
and r(n) be the transmission range of a node.
Each wireless node has inherent wireless multicast advan-

tage. If we assume nodes have omnidirectional transmission,

it can reach more than one receiver in its transmission range in

a single hop. This is modeled as a hyperarc as in [8]. Notation

(i, Ji) indicates that Node i reaches receivers in Ji (Ji ⊂ V )
in a single hop.

Scheduling is an interference avoidance scheme which

defines a maximal independent set (or a non-interfering sub-

graph) of non-interfering hyperarcs which can be active si-

multaneously. We follow the protocol model of [2] to define

non-interfering links. Slotted transmission is assumed where

one of the non-interfering subgraphs is activated at every slot

boundary to transmit packets.

III. NODE-BASED SCHEDULING ALGORITHM AND

NETWORK CODING

A. Selection of non-interfering subgraphs

The node-based scheduling(NBS) algorithm outputs a hy-

perarc set A and the non-interfering subgraphs Ak (1 ≤ k ≤
M ) for simultaneous transmission in a network represented
by a directed graph G = (V,E). We assume there are no
incoming links to the source node, s ∈ V . Let Ji = {j ∈ V :
(i, j) ∈ E} denote the neighbors of Node i in G. Initialize
the first n non-interfering subgraphs as follows:

Ak = {(k, Jk) : k ∈ V }, 1 ≤ k ≤ n.

Consider each hyperarc of the source in {(s,K) : K ⊆
Js,K 6= ∅} as a virtual node in a new directed graph
G′ = (V ′, E′). Denoting the virtual node corresponding to a
hyperarc (s,K) as vK , the nodes and edges of G

′ are defined
as

V ′ = {V \ s}
⋃

(
⋃

K

vK),

E′ = (E \ {(s, j) ∈ E}) ∪ E′
2,

where

E′
2 =

⋃

K⊆Js

K 6=∅

{(vK , k) : k ∈ K}.

In other words, the graph G′ is constructed by replacing s in
G with the virtual nodes representing the hyperarcs from s
as depicted in Fig. 1 Hence, dvij (in G′) = dsj (in G) and

s

j1 j2 j1 j2

G′G

v{j1} v{j2} v{j1,j2}

Fig. 1. Construction of G′

dvivj
= 0.

We now present an algorithm that provides one pseudo-

random non-interfering subgraph of the network. Let J ′
i =

{j ∈ V ′ : (i, j) ∈ E′} denote the neighbors of Node i in
G′. Let Ri = {j ∈ V ′ : dij ≤ r(n)} denote the set of nodes
present in the transmission range of Node i. Note that Ji ⊂ Ri,

for some arbitrary networks, the direction of the link between

Node i and Node j is specified for maximizing the wireless
network throughput.

1) Arrange the nodes in V ′ in a random order. Assign Ak =
{(v, J ′

v)}, where v ∈ V ′ is the first node in the random
arrangement. Assign T = v, N = J ′

v, and i = 2.
The set T denotes the set of transmitting nodes selected
in Ak. The set N denotes the set of active neighbors of
T in Ak.

2) Select the i-th node m in the random arrangement for
possible inclusion in Ak. The set Ak is altered under the

following conditions:

a) If m ∈ N , then the selected node is not included
in Ak. Go to Step 3.

If m /∈ N , proceed to (b) to determine a suitable
non-interfering hyperarc emanating from m for

possible inclusion in Ak.

b) Determine the set of neighbors ofm that are within
the transmission range of nodes in T i.e. compute

D1 = {j ∈ J ′
m : dtj ≤ r(n), for some t ∈ T}.

c) Determine the set of nodes in N that are within

the transmission range of Node m. i.e Determine
the neighbors of m that are present in N . Compute
D2 = Rm ∩ N

d) If |D1| ≤ 1 and |D2| ≤ 1, then

• Let t be the transmitter connected with D2.

• Update Ak and N as,

Ak = Ak \ (t, Jt),

Ak = Ak

⋃

{(t, Jt \ D2), (m,J ′
m \ D1)},

N = {N \ D2} ∪ {J ′
m \ D1}.

In determining a suitable non-interfering hyper-

arc above, only a subset of nodes are selected



as receivers for each selected transmitting node.

Nodes in D1 are not selected as receivers for

node m, and nodes in D2 are not selected in N .
For a Node m, if J ′

m = Rm, then D1 = D2

e) Update T = T ∪ {m}.

3) If i < |V ′|, increment i by 1 and go to Step 2.

The above algorithm is repeated several times to obtain distinct

non-interfering subgraphs A1, A2, · · · , AM that are maximal

in the sense that Ai * Aj . All distinct hyperarcs present in
⋃M

k=1 Ak are collected to form the hyperarc set A.

B. Linear Programming Model

We now follow the linear programming formulation pre-

sented in [8] for determining the maximum multicast through-

put from a source to multiple sinks. As before, we assume

that the wireless network is represented as a directed graph

G = (V,E). We construct non-interfering subgraphs Ak

(1 ≤ k ≤ M ) with hyperarcs from the set A as discussed
in Section III-A. An important difference in our optimization

when compared to [8] is that we consider only hyperarcs in

the set A.

Let ziJ be the average broadcast rate at which packets are

injected into the hyperarc (i, J) ∈ A. Let L packets per unit
time be the link capacity. The unreliability of wireless links

results in a packet loss in the link with probability p. If a
packet is injected on to the hyperarc (i, J) at an average rate
ziJ , it is shown in [6] that the packets reach a subset K ⊆ J
at an average rate ziJK given by

ziJK = ziJ(1 − p)|K|p(|J|−|K|),

assuming losses in each link of a hyperarc are independent.

As in [8], we assume that the subgraph Ak is used in a

particular slot of a slotted transmission schedule. Let λk be

the fraction of time for which the subgraph Ak is active.

Scheduling constraints that limit the average rate of packet

injection at hyperarcs are given by the following set of

equations:

∑

k

λk ≤ 1.

∑

k

λkck(i, J) − ziJ ≥ 0 ∀(i, J) ∈ A,

where

ck(i, J) =

{

L if (i, J) ∈ Ak,

0 otherwise.

We denote the average multicast throughput as f , the set
of destinations as T (T ⊂ V ), and the information flow rate
in link (i, j) of hyperarc (i, J) towards sink t ∈ T as x

(t)
iJj .

We maximize f over a rate vector z ∈ [0, L]|A| with linear
constraints. The optimization problem is stated precisely as

follows:

maximize f

subject to
∑

k

λkck(i, J) − ziJ ≥ 0, ∀(i, J) ∈ A.

∑

k

λk ≤ 1.

∑

{L⊆J:L∩K 6=∅}
ziJL −

∑

j∈K

x
(t)
iJj ≥ 0,

∀(i, J) ∈ A,K ⊆ J, t ∈ T.

∑

{J:(i,J)∈A}

∑

j∈J

x
(t)
iJj −

∑

{j:(j,I)∈A,i∈I}
x

(t)
jIi =











f if i = s

−f if i = t

0 otherwise

,

∀i ∈ V, t ∈ T.

ziJ ≥ 0, ∀(i, J) ∈ A.

x
(t)
iJj ≥ 0, ∀(i, J) ∈ A, j ∈ J, t ∈ T.

λk ≥ 0 ∀k.

It is shown in [8] and [6] that a feasible solution of the

above optimization problem always results in a valid network

code. Once a feasible rate vector z∗ is determined, a network
code can be designed, theoretically, to achieve the maximum

multicast throughput f .

IV. RESULTS AND DISCUSSION

We present results on the maximization of multicast

throughput on a nr×3 rectangular grid network as depicted in
Fig. 2 for nr = 4. The nodes are identical with a transmission

Source

Sink2 Sink3Sink1

Fig. 2. An example - 4 x 3 grid network

range, r(n) = 1. The operational area of a nr × 3 grid is
2(nr − 1) units. The number of rows nr is varied from 3
to 10. The center node in the first row is considered as the
source node. The three nodes in the nr-th row are taken to be

the sinks. The connections in the graph have been depicted for

nr = 4 in Fig. 2. For other values of nr, similar connections

have been assumed for nodes in each row.

The maximum multicast throughput for pure routing

schemes is 1/3 for all values of nr. With network coding,



a multicast throughput of 2/3 can be readily achieved for all

values of nr by using flows down the first and the third column

of the grid.

Now, we present results regarding the performance of

our proposed node-based interference-free subgraph selection

algorithm assuming that the link error probability p equals
0. The subgraph selection algorithm is run for several times
and value of M is tabulated. Table I presents a comparison

between the proposed method and the method in [8] in terms

of the number of hyperarcs generated by the scheduling algo-

rithms, the number of variables in the optimization process,

and the maximum multicast throughput. From the table, we

observe that there is a significant decrease in the number of

hyperarcs selected by our algorithm compared to [8], which

results in a significant decrease in the number of variables

in the optimization process. However, the maximum multicast

throughput remains the same.

From Table I, we see that the performance of the algorithm

depends on the number of interference-free subgraphs M . To
study the effect of M on the maximum multicast throughput,

we considered a 7 × 3 grid and varied M from 10 to 300

in steps of 25. Fig. 3 shows the resulting maximum multicast

throughput of our algorithm as a function ofM . We notice that
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Fig. 3. Maximum f versus M

the maximum throughput increases monotonically and reaches

a maximum of 2/3 at large values of M . As the value of M
increases, our algorithm constructs all hyperarcs of interest

from the source to destination, which results in maximum

achievable throughput. The error bars depict the variation due

to a choice of different random seeds in the subgraph selection

algorithm.

We now present results for the case when the link error

probability is non-zero. We consider a 4 × 3 grid network
depicted in Fig. 2. A plot of the maximum throughput ver-

sus p is presented in Fig. 4. When the losses in links are
independent, it is proved in [6] that the average rate of each

link is proportional to the link success probability. Hence, as

shown in Fig. 4, the multicast throughput scales down with

the link success probability. Note that our results agree with

those presented in [8] for the 4×3 grid both with and without
link error.

In all the above results, the receiver selection ability of each

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Link error Probability,p

A
v
e

ra
g

e
 m

u
lt
ic

a
s
t 

T
h

ro
u

g
h

p
u

t,
f

Network coding with Node−Based Scheduling

Network Coding − Lun et al method

Multicast with Single Tree

Fig. 4. Maximum f versus p

node is crucial in achieving the gains from network coding,

i.e., the multicast throughput of 2/3. It was observed that
if every node is assumed to have a fixed broadcast set, the

throughput was 1/3 irrespective of the row size, nr. Even if the

source alone is allowed to unicast and other nodes broadcast

to the fixed set of receivers as above, the throughput remains

at 1/3, for all nr. As reported in [8], this is equal to the

throughput in routing schemes.

V. COMPLEXITY ANALYSIS FOR RANDOM NETWORKS

In this section, we analyse the complexity reduction ob-

tained using the NBS algorithm for a n node random network.
A random network is modeled as a random geometric graph,

G = (V,E) where V = {1, 2, . . . , n} is the set of vertices
and E = {(i, j) : dij ≤ r(n)} is the set of edges. For n
nodes located according to a uniform distribution in a disk of

area P , it is shown in [10], that the network is asymptotically
connected as n → ∞, if the minimum transmission range of

a node is r(n) =
√

P (log n+γn)
πn

, (γn → ∞ as n → ∞).
We compare the expected number of hyperarcs for the n node
random network and the number of hyperarcs generated in the

NBS algorithm.

A. Expected number of hyperarcs of a n node random network

It is known that for a random geometric graph, if the nodes

are uniformly placed, the node-degree distribution is binomial

with probability q, where, q is the probability that Node i and
Node j are connected. The range of values of q is given by ,
πr2(n)

2P
≤ q ≤ πr2(n)

P
. The total number of hyperarcs present

in a given n node random network,

N =

n
∑

i=1

(2di − 1),

where di is the degree of Node i. Therefore, the expected
number of hyperarcs for a n node random network is

E[N ] =

n
∑

i=1

E(2di − 1).



nr M |A| |A| No. of Variables No. of Variables Maximum f

in [8] in [8]

3 24 26 77 245 628 0.6667

4 61 44 114 420 929 0.6667

5 106 49 151 503 1230 0.6667

6 179 54 188 614 1531 0.6667

7 219 59 225 692 1832 0.6667

8 306 64 262 817 2133 0.6667

9 377 69 299 926 2434 0.6667

10 410 74 336 997 2735 0.6667

TABLE I

COMPARISON OF PARAMETERS IN THE OPTIMIZATION PROBLEM.

Using the fact that all the node degree distributions are

identical, we can rewrite E[N ] as

E[N ] = nE[2di − 1],

= n

n−1
∑

k=0

(

n − 1

k

)

qk(1 − q)n−1−k(2k − 1),

= n
(

(1 + q)n−1 − 1
)

.

B. Expected number of hyperarcs generated in NBS algorithm

Let N ′ be the number of hyperarcs generated in the NBS
algorithm. An upper bound on the value of N

′

is found using

the knowledge on the size of the non-interfering subgraph,

Ak, which inturn depends on the spatial reuse. As mentioned

earlier, we choose M non-interfering subgraphs to find the

multicast throughput. We find the maximum number of non-

interfering nodes that can be active simultaneously. This is

the number of circles that can be packed in a disk of area P .

Each node has atleast a coverage area of
πr2(n)

2 . Therefore, the

maximum number of nodes with non-overlapping transmission

area is 2P
πr2(n) and the maximum number of hyperarcs present

in a non interfering subgraph is upper bounded by 2Pn
log n
. If we

assume hyperarcs present in all non interfering subgraphs are

distinct, the upper bound on N
′

is

N
′

≤
2PMn

log n
.

Note that N ′ is linear with n and M . We can choose the
value of M to reduce the complexity. As in Fig.3, higher val-

ues of M acheive optimal multicast throughput. Therefore, a

trade-off exists between throughput and complexity reduction.

VI. CONCLUSION

In this paper, we have considered the problem of reducing

the complexity of optimization in determining the maximum

multicast throughput in a wireless network. We proposed

a node-based pseudo-random transmission scheduling algo-

rithm. This algorithm results in a significant reduction in

variables, which would be useful in practice. We have analyzed

the performance of our algorithm for various sizes of a

rectangular grid network, link error probability, and number of

iterations. We have shown that our simpler algorithm results in

the same multicast throughput as more complicated versions

in some example networks. We have analysed the complexity

reduction in the optimization model using our algorithm.

The simpler optimization method appears to suggest that a

crucial factor in the gains in throughput because of network

coding is the capability of receiver selection. Simulation of

receiver selection in a practical network is one avenue of future

research. Other avenues of future work are the following: (1)

the extension of our optimization method to random networks

with large number of nodes, (2) deriving a tighter bound

for N ′ and (3) the extension of the optimization to more
advanced physical layer implementations in the transmitting

and receiving nodes.
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