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Abstract— In this paper, we consider change detection in a
sensor network where an unknown subset of sensor nodes are
affected by the change. We consider two models for the channel
between the sensors and the fusion center: (1) parallel non-
interfering channels, and (2) physical layer fusion. For both
these models, we propose quantized transmission schemes for
the sensors and corresponding fusion rules at the fusion center.
The proposed fusion rules are based on an adaptive version
of CUSUM. The detection delay performance of the proposed
schemes is studied as a function of the number of affected sensors
for a given false alarm constraint. Simulation results show that
the proposed schemes can work well for a wide range of the
fraction of affected sensors.

Keywords—change detection, CUSUM, Adaptive CUSUM, sen-
sor networks

I. INTRODUCTION

Detection of abrupt changes based on statistical tests has
been studied for several decades [1], [2]. Recently, applications
in sensor networks have led to further advancements (See [3]
and references therein). In this paper, we consider change
detection in a sensor network where an unknown subset of
sensor nodes are affected by the change.

Consider a network of K sensors where each sensor makes
observations {Xk,n} with discrete time index n = 1, · · · ,∞
and sensor index k = 1, · · · ,K. Observations are assumed
to be statistically independent across time and across sensors.
Initially, the observations Xk,n follow the distribution fk at
the kth sensor. A change event happens at an unknown time
ν ∈ N. Only a subset of sensors S ⊂ {1, · · · ,K} are affected
by the change. After the change event, the observations at
the affected sensors follow a different distribution gk. To
summarize,

Xk,n ∼


fk : n < ν

fk : n ≥ ν and k /∈ S
gk : n ≥ ν and k ∈ S

(1)

The set of affected sensors S and its size |S| are unknown
apriori. Based on their observations, sensors send signals Uk,n
to the fusion center. Let Y n denote the signal received at the
fusion center at time n. We consider two models: (1) where
the fusion center receives noiselessly through parallel channels
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such that observation vector is given by

Y n = [U1,n, · · · , UK,n], (2)

and (2) the noisy physical layer fusion model [4] where the
scalar observation is given by

Yn =
K∑
k=1

Uk,n + Vn, (3)

where Vn is white gaussian noise with variance σ2. The models
are depicted in Figure 1.

Based on its observations, say at time T , the fusion center
declares that change has happened. A typical problem formu-
lation is to minimize the worst-case detection delay subject to
a constraint on the false alarm rate. Using Fn to denote the set
of all the observations up to time n, the worst case detection
delay τw is obtained as

τw = sup
ν≥1

ess sup E[(T − ν + 1)+ / Fν−1] (4)

where the supremum is taken over all possible change points
and all possible pre-change observations and expectation is
taken over the post change observations. The average false
alarm rate also referred as the average run length is given by

φl = E[T / ν =∞]. (5)

φl gives the average time taken to falsely declare the change
when there was no change event. In [5], under the noiseless
parallel channel model, the problem of minimizing τw under
the constraint that φl ≥ γ for a prespecified γ is considered.
Several asymptotically optimal schemes when γ → ∞ were
proposed in [5]. However, the schemes assume availability of
infinite bandwidth parallel channels between sensors and the
fusion center. The goal of our work is to study the problem
under practical considerations of finite bandwidth and noisy
channels. Specifically, we study the following scenarios.

1) Using finite number of levels for summary messages Uk,n
from sensors to the fusion center.

2) Using variants of CUSUM algorithms at the fusion center
for the noisy physical layer fusion model.

3) Using prior information on the change event for ON/OFF
observation control and message quantization for the
sensors.

We develop new processing algorithms for the above scenarios
and make relevant comparison with several algorithms in the978-1-4673-5952-8/13/$31.00 c© 2013 IEEE
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Fig. 1. Observation Model at sensors and fusion center.

existing literature.

II. PARALLEL CHANNEL MODEL

In this section, we consider the model in (2) where the
fusion center gets the noiseless observations from the sensors.
For the single sensor case, the problem of minimizing the
worst case detection delay under the average run length
constraint is well studied [2]. It is well known that CUSUM
algorithm is asymptotically optimal as average run-length
approaches ∞. At each sensor, the log-likelihood ratio (LLR)
at time instant n is computed as,

Lk,n = log
gk(Xk,n)
fk(Xk,n)

, (6)

and the CUSUM metric at each sensor is calculated as

Wk,n = max (Wk,n−1 + Lk,n, 0) (7)

with the initialization Wk,0 = 0 ∀ k.

A. Hard thresholding scheme

For reference, we present the hard thresholding scheme
presented in [5]. The summary message sent by the sensors
are given by

Uk,n =
{
Wk,n if Wk,n ≥ b
0 else (8)

where b is a suitably chosen threshold. The fusion center gets
the noiseless observations Y n as given in (2). The decision at
the fusion center is given by

δh(Y n) =
{

declare change at time n if
∑K
k=1 Uk,n ≥ a

Continue else
(9)

The constant a is chosen to satisfy the run-length constraint
φl ≥ γ. This hard thresholding scheme is shown to be
asymptotically optimal in minimizing τw in (4) as φl → ∞.
One practical problem with this scheme is that the sensors
need to transmit the CUSUM metric Wk,n (once it goes above
threshold) and this may consume significant bandwidth.

B. Binary Quantization at Sensors

In this section, we propose a binary message quantization at
the sensors and subsequent detection at the fusion center. The

summary message Uk,n sent from the sensors to the fusion
center is the quantized version of the LLR Lk,n as given by

Uk,n =

{
1 if Lk,n ≥ tk
0 else

(10)

In order to optimize the performance we have to choose tk
such that E[LBQk,n ] is maximized [6] where

LBQk,n = log
P

(g)
k (Uk,n)

P
(f)
k (Uk,n)

= a
(g)
k Uk,n + a

(f)
k (11)

with P (g)
k (·) and P (f)

k (·) denoting the probability induced on
Uk,n given that the observation Xk,n is distributed as fk and
gk respectively. The scalars ak’s are given as

a
(g)
k = log

β
(g)
k (1− β(f)

k )

β
(f)
k (1− β(g)

k )
, a

(f)
k = log

(1− β(f)
k )

(1− β(g)
k )

,

where β(f)
k = P

(f)
k {Uk,n = 1} and β

(g)
k = P

(g)
k {Uk,n = 1}.

Now, E[LBQk,n ] = β
(g)
k a

(g)
k + a

(f)
k = IBQk (tk) which is the

Kullback-Leibler (KL) distance between P (g)
k and P (f)

k and

toptk = arg max
tk>0
IBQk (tk). (12)

Now each sensor transmits Uk,n to the fusion center through
the dedicated channel. At the fusion center, we calculate

Rk,n = max
{

0, Rk,n−1 + LBQk,n

}
and compute the SUM (Sn) and MAX (Mn)

Sn =
K∑
k=1

Rk,n, Mn = max
1≤k≤K

Rk,n.

The decision rule at the fusion center is given by

δb =
{

declare change if Sn ≥ a1 or Mn ≥ a2

Continue else (13)

and the constants a1 and a2 are chosen to satisfy the constraint
φl ≥ γ. Through simulations, we compare the performance of
binary quantization and hard thresholding schemes.



III. NOISY PHYSICAL LAYER FUSION MODEL

Here we consider the physical layer fusion model (3) and
develop suitable signal processing algorithms at the sensor and
at the fusion center.

A. Adaptive Quantization at the Sensors

In this section we propose an adaptive quantization approach
for the physical layer fusion model. The summary message
Uk,n is obtained by multi-level quantization of CUSUM metric
Wk,n as

Uk,n =


0 if Wk,n < ∆ρkb
s if ∆ρkb ≤Wk,n < 2∆ρkb
· · · · · ·
(L− 1)s if Wk,n ≥ (L− 1)∆ρkb

(14)

where s > 0 and ∆ ≥ 1 are pre-specified constants
and threshold b is suitably chosen. Threshold scaling factor
ρk is chosen as ρk = I(gk||fk)PK

k=1 I(gk||fk)
, where I(gk||fk) =∫

gk(x) log gk(x)
fk(x)dx. Intuitively the sensors with lower KL dis-

tance between the pre change and the post change distributions
will have a lower threshold bk and vice versa. Ideally, the
observation at the fusion center given by (3) follows N (0, σ2)
before change and N (m,σ2) after the change and the mean
m > 0 is unknown as the number of affected sensors is
unknown. In Section IV, we discuss the algorithms which can
be employed at the fusion center for this model.

B. ON-OFF Observation control and Quantization at Sensors

For the single sensor case, using a Bayesian prior model
for the change point, an ON-OFF observation control policy
is designed in [7] to minimize the average number of observa-
tions obtained at the sensor and the detection delay subject to
a constraint on the false alarm probability. In this section, we
use this ON-OFF observation control scheme at each sensor
in the multi-sensor model with unknown number of affected
sensors and physical layer fusion.

The change point is considered to follow geometric distri-
bution with parameter ρ as given by

πn = P [ν = n] = ρ(1− ρ)(n−1), n ≥ 1.

When the change happens, the observations follow the model
in (1). Let Sk,n ∈ {0, 1} denote the binary variable which
indicates whether observation is made or not at time instant
n by sensor k. Let Tk denote the time instant at which kth

sensor decides that change has happened. The average number
of observations (ANO) made by sensors prior to change point
is defined as ANO(k) = E

[∑min{Tk,ν−1}
n=1 Sk,n

]
, and the

average detection delay is given by EDD(k) = E(Tk − ν)+.
We consider the problem of

minimize EDD(k)
subject to P{Tk < ν} ≤ α, and ANO (k) ≤ β

where α and β are given constraints. Using results from the
single sensor case [7], we obtain the following optimal policy

at each sensor.
The sufficient statistic for the above problem is

pk,n = P{ν ≤ n|Xk,1(Sk,1), · · · , Xk,n(Sk,n)} (15)

where {Xk,i(Sk,i), 1 ≤ i ≤ n} represents the history of
measurements made upto time n. pk,n can be updated as

pk,n+1 =
{

Φ(0)(pk,n) if Sk,n = 0
Φ(1)(Xk,n, pk,n) if Sk,n = 1

(16)

where
Φ(0)(pk,n) = pk,n + (1− pk,n)ρ (17)

Φ(1)(Xk,n, pk,n) =
Φ(0)(pk,n)Lk,n

Φ(0)(pk,n)Lk,n + (1− Φ(0)(pk,n))
(18)

with Lk,n is the LLR given in (6) and p0 = π0.
The optimal ON-OFF control policy is

Sk,n+1 =
{

0 if pk,n < B
1 if pk,n ≥ B

(19)

and the optimal sensor change detection policy is

δo =
{

declare change at time n if pk,n ≥ A
Continue else (20)

for suitably chosen thresholds A and B. Once the sensors
decide on the change, the sensor sends signals

Uk,n =
{
s after declaring change
0 else (21)

The fusion center receives the signals Uk,n from the sensors
and makes its decision. Ideally, fusion center can use the prior
information as well as the signals from the sensors to make
its decision. However, the computation of sufficient statistics
at the fusion center is highly involved and hence we resort to
simple non-bayesian CUSUM algorithms at the fusion center.
We consider the physical layer fusion model (3) at the fusion
center and the detection algorithms at the fusion center is
discussed in the following section.

IV. DETECTION ALGORITHMS AT THE FUSION CENTER

From the physical layer fusion model (3), it is clear that,
when the sensors do not send any signal (before they detect the
change), the fusion center simply observes the noise. On the
other hand, after the sensors identify the change, their signals
coherently add up at the fusion center. When the number of
affected sensors is known, a dual CUSUM approach has been
proposed in [4]. As the number of affected sensors is unknown
in our model, we develop alternative approaches which are
discussed below.

For convenience of exposition, we assume that Tk = Γ for
all k ∈ S, i.e., all the affected sensors identify the change at
the same instant. This may sound impractical but the adaptive
algorithms proposed in this paper are robust and do not rely
on this assumption. Denoting Gaussian distribution of mean



m and variance σ2 by Nm, we have the following model

Yn ∼
{
N0 n < Γ
Nm̃ n ≥ Γ

where the mean m̃ is unknown since the number of affected
sensors is unknown. The mean m̃ belongs to a finite discrete
set M = {0, s, · · · ,Ms} for some M which depends on the
number of sensors K and the number of quantization levels
used by the sensors (14). When the unknown post-change
mean takes a values from a continuum, a parallel recursive
test (parallel CUSUM) has been proposed and studied in [8].
Its extension (adaptive CUSUM) to a time-varying unknown
mean case has been studied in [9]. Here, we adapt these al-
gorithms to our problem in which the unknown mean belongs
to a discrete set.

A. Parallel CUSUM

Here we run a CUSUM algorithm for each possible mean
in M as follows. For each m ∈M, compute the LLR

Lmn = log
Nm(Yn)
N0(Yn)

(22)

and the CUSUM metric is computed as

Wm
n = max(Wm

n−1 + Lmn , 0). (23)

Let us look at characteristics of the post-change CUSUM
metrics. For n > Γ, define F (m) = ELmn where the
expectation is taken over the distribution of Yn. Note that,
for n > Γ, the true distribution of Yn is Nm̃. We have

F (m̃) = E log
Nm̃(Yn)
N0(Yn)

= E log
Nm̃(Yn)
Nm(Yn)

+ E log
Nm(Yn)
N0(Yn)

= I(Nm̃||Nm) + F (m)

and since the KL distance I(·||·) is non-negative, we have
F (m̃) ≥ F (m) with equality if and only if m = m̃. Hence
the post change CUSUM metric Wm

n has a non-negative drift
with the average slope of the drift F (m) being maximum when
m = m̃. So, among the parallel CUSUM metrics Wm

n , the one
corresponding to m = m̃ is expected to be maximum after
the change point. So, the fusion center detection rule for the
parallel CUSUM is

δp =
{

declare change if maxmWm
n ≥ a

Continue else (24)

where a is a suitably chosen threshold to satisfy the average
run length constraint.

B. Adaptive CUSUM

Parallel CUSUM computes the CUSUM metrics Wm
n for all

m ∈M. In order to reduce the computational load, we employ
the adaptive CUSUM approach developed in [9]. We consider
an adaptive approach which estimates the unknown mean m̃.
Allowing m to take continuum of values, we note that F (m)
is a strictly concave function which achieves global maximum
when m = m̃. So, given a small value of ε, we can always
find two values p, q such that q = p+ ε and F (p) = F (q) and

m̃ lies in the interval (p, q). Once we find such p and q, we
have narrowed down the value of m̃. Given an ε, to find the
values for p and q, we proceed as follows. Choose arbitrarily
the value of p0 and set q0 = p0 +ε and then subsequent values
are obtained as

pn+1 = max(0, pn+ξDn), qn+1 = min(Ms, pn+1 +ε) (25)

where ξ is the step size and Dn is the difference F (qn) −
F (pn). Since, we do not have the values F (·) as they involve
expectation over unknown distribution, we replace the ensem-
ble average Dn by the time average given as

D̂n = log
Nqn

(Yn)
Npn

(Yn)
(26)

The convergence analysis is straight forward. If D̂n > 0,
pn+1 and qn+1 will increase according to (25), so that D̂n+1

will decrease due to the concavity of the function. Similarly,
if D̂n < 0, pn+1 and qn+1 will decrease so that D̂n+1

will increase. In both the cases, D̂n will converge to zero.
The choice of ε is crucial. Higher value of ε leads to faster
convergence but it also increases the interval range of the
estimated parameter.

Based on the current values pn and qn, the mean value is
estimated as m̂n = pn+qn

2 and the CUSUM is computed based
on the current estimate of the mean as

Wn = max
(

0,Wn−1 + log
Nm̂n(Yn)
N0(Yn)

)
(27)

and the decision rule is

δa =
{

declare change if Wn ≥ a
Continue else (28)

where a is a suitably chosen threshold to satisfy the average
run length constraint.

V. SIMULATION RESULTS

Number of sensors K = 100. All the sensors are assumed
to be homogeneous. The observations at each sensor are
i.i.d. with pre-change distribution N (0, 1) and post-change
distribution N (0.5, 1). We use the detection delay at the fusion
center as the performance metric of interest and keep the same
average run length constraint for different schemes.

For the noiseless parallel channel model, the Figure 2
compares the delay performance of hard thresholding scheme
[5] with the likelihood binary quantization scheme for the
same average run length constraint. We see that even with
binary messages from the sensors, the delay performance is
close to the hard thresholding scheme.

In Fig. 3, we compare the performance of adaptive and
parallel CUSUM methods for the noisy physical layer channel
model. The simulations are performed with Signal to Noise
ratio (SNR) 10 log s2

σ2 being 0dB and binary quantization (14)
with threshold b = 460.52. From the plot we can observe that
the delay performance is nearly the same for the two schemes.
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Figure 4 illustrates a realization of the convergence behavior
of adaptive CUSUM with the change point being ν = 100 and
it can be seen that the estimated mean converges to the true
mean.
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Figure 5 compares the delay performance of Adaptive
CUSUM with binary quantization (14) for various values of
average run lengths.

Figure 6 compares the delay for various ON/OFF obser-
vation policy thresholds with adaptive CUSUM at the fusion
center. We see that as the thresholds A and B are changed,
the average number of observations (ANO) changes and hence
the delay at the fusion center is affected.
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VI. SUMMARY

We proposed and studied variants of CUSUM when the
number of affected sensors is unknown. We also studied the
effect of using finite quantization levels for sensor messages.
An interesting future direction will be to study the robustness
of the proposed methods to the pre-change and post-change
distributions, and number of quantization levels.
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