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Abstract—Cognitive radio based systems rely on spectrum
sensing techniques to detect whitespaces to exploit. For the
sake of ease of implementation, simple schemes such as energy
detector have been proposed and studied widely. However,
such simple schemes perform far from optimally, thereby
affecting the performance of the underlying system. On the
other hand sophisticated detectors are difficult to implement,
giving rise to a trade-off. This paper explores the idea of using
spectral estimates for detection. The case of HDTV based
cognitive radio is explored and an optimal detection scheme
following multi taper estimation is proposed and studied.

I. INTRODUCTION

Software Defined Radio (SDR) [1] has been proposed

as a solution to the spectrum scarcity problem [2] in

literature. Cognitive radio systems allow for unlicensed

users (secondaries) to exploit vacancies in frequency bands

to transmit without interfering with the licensed (primary)

user’s transmissions. Investigations by FCC have pointed

towards using television bands for cognitive radio appli-

cations due to the large fraction of underutilized spectrum

and recent efforts have focused on the development of a

Wireless Regional Area Network (WRAN) standard along

these lines (IEEE 802.22).

To avoid interfering with primaries, the cognitive radio

needs to sense the radio spectrum. Traditionally methods

such as energy sensing, etc. have been proposed as simple

solutions for this problem. On the other hand cyclosta-

tionary feature detection, tone detection, waveform based

sensing, etc. perform better at the cost of increased cost and

complexity. In this work, we propose a detection algorithm

that performs better, while being easy to implement and

analyze, with the idea of estimate and detect. For the

HDTV case, Thomson’s Multi Taper Method has been

suggested by Haykin [3] et al to be optimal in a certain

sense. We look at estimating the power spectral density

and using this to detect the signal.

This paper has been organized as follows. In Section

II we give describe ATSC transmission scheme and the

system considered. Section III, briefly reviews Thomson’s

multi taper method for spectral estimation. Section IV talks

about the main contributions of this work. The idea of

detection following spectral estimation is introduced and

the problem is framed in terms of the Neyman-Pearson

criterion. This is solved to obtain the optimal detector post

spectral estimation. In Section V we study the performance

of the proposed method using simulations. In conclusion,

we summarize some of the improvements due to the

proposed detector and the allied benefits.

II. SYSTEM MODEL

We consider a simple cognitive radio system with a

single HDTV transmitter and secondary receiver. In this

simplified IEEE 802.22 setup, we assume that there are no

interferers (or are absorbed into the AWGN). The receiver

has prior knowledge of the band of transmission from MAC

layer information [4] and senses in this band.

The primary uses an 8-VSB modulation scheme [5]. Ves-

tigial Sideband Modulation is a practical implementation of

Single Sideband Modulation where the pass-band cut-off

is gradual. The coded and interleaved data bits get mapped

to a symbol stream (sd[n]) of 8 equiprobable levels. The

data stream prior to modulation, and thereby the output

symbol stream, are white.

Rsdsd = E [sd[i]s
∗
d [j]] = δij (1)

In practice, a 2X upsampled stream ({s[n]}), is pulse

shaped with a finite-length SRRC filter (h). After adding a

constant pilot (p), the baseband equivalent is then filtered

to get the VSB spectrum which is upconverted to the

designated RF and transmitted. The receiver downconverts

the signal and extracts the baseband equivalent. We assume

a single-tap Rayleigh fading ({α[n]}) channel and AWGN

({w[n]}) at the receiver. The case with multiple taps can

be handled similarly.

x[n] = α[n]
(

hT sn + p
)

+ w[n] (2)

Even a filter length of 10 periods spans about 100 symbols

owing to the high sampling rate of around 20 MHz. The

shaped output process is given by xT [n] = hT sn. Here

textbfsn is the vector of symbols that contribute to the

output at time n. This can be seen a weighted sum of

i.i.d random variables. As h is long, we can resort to

extensions of the Central Limit Theorem (CLT) [6] to

say that xT [n] is approximately Gaussian distributed and

calculate its parameters as follows:

Mean (3)

E{xT [n]} = E{hT sn} = hTE{sn} = 0

Variance (4)

V ar{xT [n]} = E{hT snsHn h∗} = h∗
d = σ2

sRhdhd
[0]

where hd is the filter downsampled twice. As sd,n is white,

the correlation matrix, E{sd,nsHd,n} is scaled unit matrix I.

Using actual HDTV data1, we plot the distribution of

xT [n] in Figure 1. We see that the histogram looks very

1Observed HDTV (8-VSB) transmitted data obtained from the Indian
Institute of Science (courtesy Dr. Chandra Murthy)



much like a Gaussian. Further, a Jarque-Bera test [7] on

the observed data admitted the Gaussian hypothesis with

a confidence of 95% (usually considered sufficient). For

−1000 −500 0 500 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

Transmitted Signal Value

F
re

q
u

en
cy

 o
f 

O
cc

u
rr

en
ce

 

 

Histogram Frequency

Scaled Gaussian

Figure 1: Histogram of Actual Transmitted Data - 100 bins

single-tap Rayleigh fading, α[n] is a zero-mean complex

Gaussian with unit variance (σ2
α). The noise variance is

denoted by σ2
w. The receiver is assumed to know the SNR,

owing to ease and accuracy of its estimation due to slow

variation in the HDTV SNR.

III. PRELIMINARIES: MULTI TAPER METHOD BASED

SPECTRAL ESTIMATION

As the first of two steps, we look at the problem

of spectral estimation which has been well studied in

literature. In [3], Haykin proposed the use of Thomson’s

multi taper method [8] and showed it to be an optimal

non-parametric estimation method for a hybrid spectrum

such as that of HDTV containing continuous as well as

line components. Motivated by this, we choose to employ

the multi taper method.

A typical non-parametric estimator is the windowed

periodogram. Varying the data window represents varying

across the bias-variance trade-off. It is not possible to

simultaneously decrease both the bias and variance of an

estimator with the same data. Thomson’s method [8] tries

to find the optimal trade-off point. Also, as shown in [9],

non-parametric methods do not handle line spectra well as

they assume a continuous spectrum and do not resolve line

spectra well. In [8], this concern is also addressed through

the MTM.

MTM uses Discrete Prolate Spheroidal Wave functions

(DPSW) which were introduced by Slepian as a solutions

to the spectral concentration problem [10]. DPSW corre-

spond to sequences of a given length (N ) with maximal

spectral concentrations in a specified band (of width W ).

The DPSW are solutions of the Toeplitz matrix eigenvalue

equation

T (N,W ) vk (N,W ) =λk (N,W ) vk (N,W ) (5)

where

T (N,W )mn =

{

sin[2πW (m−n)]
[π(m−n)] , m, n = 0, ..., N − 1 and m 6= n

2W for m 6= n

(6)

These sequences form an orthonormal set with decreas-

ing eigenvalues correspond to increasing spectral leakage.

MTM uses these windows to minimize spectral smearing

due to windowing. Multiple windows are used to reduce

variance of the estimation through averaging. The ‘crude’

version of the method [8] is as follows:

1) Apply the first K DPSW sequences with some

leakage bandwidth W as windows to the N -point

observed data.

xk[n] =x[n].vk[n](N,W ) (7)

2) Compute the N point periodograms of these win-

dowed sequences

Ŝk(fi) =|
N−1
∑

n=0

x(n)vk[n](N,W )e−j2πfin|2 (8)

These eigenspectra represent spectral estimates with

increasing leakage.

3) Crude MTM estimate is a linear combination of the

eigenspectra with weights as scaled eigenvalues:

Ŝcrude(fi) =

K−1
∑

k=0

akŜk(fi) (9)

where the weights ak are defined as ak = λk∑K−1
i=0 λi

The bias-variance trade-off is now replaced by a three way

bias-resolution-variance trade-off [3] with C0 and K as the

tunable parameters. Setting K = ⌊2NW ⌋ has been shown

to minimize the variance within the trade-off [3], owing

to optimal averaging, and the problem is now of bias-

resolution trade-off. The optimal trade-off point is decided

empirically while varying the value of W . It has been noted

in [3] that a K of 2 − 8 gives the best estimates for a

reasonable sample size.

Thomson in [8] introduces an improved set of weights

{dk(f)} that are arrived at by minimizing certain mean-

square error criteria. However, for the sake of simplicity in

implementation and analysis, we restrict ourselves to the

crude method. The proposed scheme would work well with

the adaptive-weights algorithm also, albeit the analysis

would be more involved.

IV. DETECTION FOLLOWING ESTIMATION

Having dealt with estimation, we proceed to the second

step of signal detection using spectral estimates. A brief

literature survey indicates two attempts at this problem.

The first one [11] makes use of the complete spectral

estimate

TChiang =(K − 1)

N−1
∑

i=0

ln
[

ŜMTM (fi)
] H1

≷
H0

ξChiang

(10)
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while the second [12] considers only the MTM estimate

of the DC tone strength as a heuristic test-statistic

TWang =ŜMTM (f0)
H1

≷
H0

ξWang (11)

Both the methods are shown to perform better than simple

energy detector and cooperative detection schemes using

the energy detector. However, both methods are sub-

optimal with reference to Neyman-Pearson.

For our system model explained in Section II we have an

MTM estimates at N frequencies. Redefining hypotheses

in terms of these new “observations", we look to solve the

detection problem stated below:

Neyman-Pearson criterion: We are given a set of es-

timates (observations) Ŝobs
MTM (fi), (i = 0, 1, ..., N − 1),

drawn as per the model

H1 : ŜMTM (fi) = (x+w)
H
Ω(fi, N) (x+w) (12a)

H0 : ŜMTM (fi) = w
H
Ω(fi, N)w (12b)

Given a PFA(= α) to be achieved, the detection rule that

maximizes PD is given by the Likelihood-Ratio Test:

p
ŜMTM

(

Ŝ
obs
MTM ;H1

)

p
ŜMTM

(

Ŝobs
MTM ;H0

)

H1

≷
H0

ξ (13)

where ξ is appropriately chosen such that PFA = α.

A. Optimal detection rule

To examine the distribution of the random vector ŜMTM

under both the hypotheses, it is useful to consider a vector

representation of the MTM:

Ŝk
MTM (fi) = |

N−1
∑

n=0

x[n]vk[n]e
−j2πfi |2, (14)

where vk denotes the kth DPSW window and the fre-

quency fi = i/N (i, k = 0, ..., N − 1). Then

Ŝk
MTM (fi) = |bH

k (fi)x|
2 = x

H
bk(fi)b

H
k (fi)x (15)

where the N × 1 vector bk is defined as the suitably

frequency-shifted version of vk. The crude MTM estimate

now becomes, when written compactly,

ŜMTM (fi) =
K−1
∑

k=0

akx
H
bk(fi)b

H
k (fi)x = x

H
Ω(fi)x

(16)

where the N × N frequency-dependent matrix Ω(fi) is

defined as

Ω(fi) =

K−1
∑

k=0

akbk(fi)b
H
k (fi) (17)

This quadratic form in the x, under H0(x = w), can be

shown to be a scaled chi-squared variable [6].

ŜMTM (fi)
H0
≈

S0(fi)

2K
.χ2

2K (18)

where S0 is the analytic spectrum of the received signal

under H0. where D(fi) = S(fi)
2K , a scaled version of the
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Figure 2: Histogram of the MTM Estimate at a Single

Frequency

analytic spectrum. For frequencies fi, i = 0, 1, 2, ..., N−1,

pŜMTM,0
(x(fi)) =

1

2KΓKD(fi)

[

x(fi)

D(fi)

]K−1

e
− 1

2D(fi)
x(fi)

(19)

Under H1, the distribution is no longer exactly χ2
2K

as ŜMTM is a sum of squares of 2K correlated non-

zero mean normal variables. At non-zero frequencies,

due to the low-leakage of the DPSW windows, the non-

zero mean does not contribute significantly to the PSD

estimate. As such we make the simplifying assumption

that ŜMTM is a scaled χ2
2K distributed variable (verified

through simulations as shown in Figure 2). Also, the

PSD estimates at different frequencies are correlated under

both the hypotheses, making the joint PSD distribution

difficult to analyze analytically. We therefore approximate

the joint pdf as a product of individual densities assuming

independence of estimates at different frequencies under

both hypotheses. By choosing the leakage bandwidth W
appropriately (W < 1

N
), the leakages can be approximated

to be zero - justifying the aforementioned assumptions. The

likelihood ratio under question can be written as

LMTM (Ŝobs
MTM ) ,

p
ŜMTM

(

Ŝ
obs
MTM ;H1

)

p
ŜMTM

(

Ŝobs
MTM ;H0

) (20)

=

∏N−1
i=0 p(ŜMTM (fi) = Ŝobs

MTM (fi);H1)
∏N−1

i=0 p(ŜMTM (fi) = Ŝobs
MTM (fi);H0)

(21)

(with a slight abuse of notation) (22)

=

∏N−1
i=0

1
2KΓKD1(fi)

[

Ŝ
obs
MTM

D1(fi)

]K−1

e
−

Ŝobs
MTM

(fi)

2D0(fi)

∏N−1
i=0

1
2KΓKD0(fi)

[

Ŝobs
MTM

(fi)

D0(fi)

]K−1

e
−

Ŝobs
MTM

(fi)

2D0(fi)

On simplifying, the LRT now becomes

=

N−1
∏

i=0





DK
0 e

−
Ŝobs
MTM

(fi)

2D1(fi)

DK
1 e

−
Ŝobs
MTM

(fi)

2D0(fi)





H1

≷
H0

ξ (23)
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Figure 3: Block Diagram of Proposed Detector

Taking logarithm on both the sides

ln(L(Ŝobs
MTM )) =

N−1
∑

i=0

(

K ln

[

D0

D1

]

(24)

+
1

2

(

1

D0(fi)
−

1

D1(fi)

)

Ŝobs
MTM (fi)

)

H1

≷
H0

ξ
′

Subtracting out the constant terms on the LHS and substi-

tuting Dfi =
S(fi)
2K , after some simplification gives

Tprop =
N−1
∑

i=0

(

1

S0(fi)
−

1

S1(fi)

)

Ŝobs
MTM (fi)

H1

≷
H0

ξprop

(25)

Equation (25) is the proposed Neyman-Pearson optimal

detection rule using MTM estimates. The test-statistic is a

weighted combination of the MTM estimates. The weights

are related to the difference in analytic spectra under the

two hypotheses. In the stop-band which has only noise

under H1, the analytic spectra are equal and the PSD

estimates at those frequencies are ignored. On the other

hand, at the tone frequency, the difference becomes large

and is therefore weighted more, which makes intuitive

sense. The weights, however, go as the inverse and not

direct difference between spectra, as the higher valued

spectral components are also affected by a higher variance

in their PSD estimates. The inverse difference, in this

regard, does not give as large a weighting to such high

variance terms as a direct difference (S1(fi) − S0(fi))
does and therefore the performance is not worsened due

to increase in variance of statistic. The entire procedure of

the proposed test is shown in Figure 3.

B. Setting the threshold

For the detector to achieve a predefined PFA,target(=
β), the threshold needs to be set appropriately (in terms

of β). Denoting by Ŝi the vector of MTM estimates under

Hi, PFA can be expressed in terms of the threshold ξ as:

PFA = P (Tprop > ξ;H0) (26)

Tprop(x)
H0=

N−1
∑

i=0

(

1

S0(fi)
−

1

S1(fi)

)

Ŝobs
MTM (fi) (27)

=
N−1
∑

i=0

(

1

S0(fi)
−

1

S1(fi)

)K−1
∑

k=0

akw
H
bk(fi)b

H
k (fi)w

Looking at the expectations of the inner summands,

E
[

w
H
bk(fi)b

H
k (fi)w

]

= σ2
wδk,l (28)

As both b vectors are at the same frequency, the corre-

sponding frequency dependent factors cancel out to convert

it to a dot-product of v vectors. These DPSW sequences

as mentioned in Section III are form an orthogonal set,

leading to (28). It can be seen that b
H
k w and b

H
k w

(k 6= l) are uncorrelated zero-mean normal variables. Then

Ŝobs
MTM (fi) reduces to a weighted sum of squares of K

uncorrelated zero-mean Gaussian variables, distributed as:

pŜobs
MTM

(x) =

[

n
∏

i=1

λi

]

K
∑

j=1

e−λjx

∏K
k 6=j
k=1

λk − λj

, x > 0.

(29)

where λj =
(

|aj |
2σ2

w

)−1
. Ŝobs

MTM (fi) is a sum of K
independent exponential random variables with different

means. As we consider K values that are sufficiently large,

using extensions of the CLT [6], we can approximate

the resultant, and thereby the test-statistic, as a Gaussian

variable. The mean (µ0) and variance (σ2
0) are given as:

µ0 =

N−1
∑

i=0

(

1

S0(fi)
−

1

S1(fi)

)

S0(fi) (30)

σ2
0 =

N−1
∑

i=0

σ4
w

K−1
∑

k=0

a2k +
N−1
∑

i1,2=0

K−1
∑

k1,2=0

ak1
ak2

|b2
k2
(fi2)bk1

(fi1)|
2

We omit the derivations due to lack of space. Then,

PFA = P (T > ξ;H0) = Q

(

ξ − µ0

σ0

)

(31)

Inverting the above relation, we obtain

ξ = µ0 + σ0.Q
−1 (PFA) (32)

In our simulations, we use data blocks of length N = 128
or 256 - which correspond to a small fraction of the

typical coherence times associated with the high-frequency

HDTV channels and hence forsake time-diversity gains.

One possible solution is to improve spectral estimates

by averaging out over multiple coherence time windows

(without necessarily changing the block length). While

improving diversity gain, this does not severely affect the

threshold analysis. Under H0, the new test statistic is still

Gaussian with the same mean and variance decreased by

a factor of Nav (number of time windows) due to noise

being uncorrelated across time windows.

µ0,avg = µ0, σ2
0,avg =

σ2
0

Nav

(33)

The detector of Wang et al assumes the presence of

Detector O(N) Detector O(N)
Energy Detector N Proposed Rule N logN
Wang, Chiang N logN Cyclostationary N2

Table I: Comparison of Computational Complexities
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a pilot signal, thereby also leading to simplification of

analysis. The Chiang et al rule, besides being sub-optimal,

is difficult to analyze [11]. The proposed detector, while

being optimal, permits the threshold to be set easily. We

emphasize that the proposed detector is of relatively low

complexity when compared to some of the commonly used

detectors. As the proposed detector has K windowing

operations, FFTs and weighted additions, its complexity

lies in O (N logN). A comparison with some other de-

tectors is shown in Table I. The proposed detector can be

expressed as FFT based spectral estimation followed by

filtering operation (Figure 3), thereby admitting an easy

implementation as well.

V. NUMERICAL RESULTS

To verify the performance of our proposed detector,

we simulate the detection rule in MATLAB with HDTV

data. We generate HDTV data of sufficient length and

apply the MTM. K is varied between 2 to 16 to find

the optimal number empirically while using a suitable

block size of 128 or 256 (N ). We implement the three

different rules mentioned in this chapter - the Chiang et

al test, the Wang et al “tone-detection” algorithm, our

proposed detection rule and also energy detection using

sufficiently large number of iterations (around 104), and

simultaneously over multiple fading coefficients for the

quasi-statistic to get the average performance over fading.

Note that we iterate and not average the test statistic over

multiple coherence windows. We consider SNR in the

range of 0 to −40dB, which corresponds to actual range

of operation. The IEEE 802.22 guidelines mention that

detection should be possible with low PFA (around 0.1

- 0.2) and PMD (around 10−2) at signal power as low as

−125dB. This is, obviously, the upper limit on the least

SNR required for operation. We use small data windows

to ease our simulations and as such do not try to reach the

benchmarks mentioned. We compare the various schemes

under consideration and note that the required performance

can be obtained by suitably increasing the window size.

The performance (PMD vs. SNR) of each scheme is

plotted while varying PFA over over a large range (plotted

for two values of PFA in Figures 4,5). We observe that for

almost all values of PFA and SNR, the proposed detection

rule clearly outperforms the other methods. Note that the

value of drastic performance decay (in PMD) occurs at a

much lower value of SNR than the other two methods.

VI. CONCLUSION

In this work the problem of spectral estimation in the

context of cognitive radios designed to operate in HDTV

whitespaces is considered. We put forth the idea of spectral

estimation followed by optimal detection. Choosing Thom-

son’s multi taper method for spectral estimation, we frame

the problem of finding the optimal detector following this.

The optimal detection rule under suitable approximations,

as well as the appropriate threshold for it, are derived.

The proposed detector’s performance is evaluated through

simulations using actual HDTV data. Lastly, the solution

is compared to previous attempts in this direction and the

performance improvements, reduced computational com-

plexity among other benefits are highlighted. The essential
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Figure 4: Performance of Proposed Scheme (PFA = 0.5)
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Figure 5: Performance of Proposed Scheme (PFA = 0.01)

idea of optimal detection following estimation could be

extended to other system models as well.
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