
EE613: Estimation Theory

Problem Set 3

1. If x[n] for n = 0, 1, · · · , N − 1 are IID according to U [0, θ], show that the regularity
condition does not hold, i.e.,
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Hence, the CRLB cannot be applied to this problem.

2. If a single sample x[0] = A + w[0] is observed and w[0] has the PDF p(w[0]) which can be
arbitrary, show that the CRLB for A is
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Evaluate this for the Laplacian PDF

p(w[0]) =
1√
2σ

exp

(

−
√

2|w[0]|
σ

)

and compare the result to the Gaussian case.

3. We observe two samples of a DC level in correlated Gaussian noise

x[0] = A + w[0]

x[1] = A + w[1]

where w = [w[0] w[1]]T is zero mean with covariance matrix

C = σ2

[

1 ρ

ρ 1

]

.

The parameter ρ is the correlation coefficient between w[0] and w[1]. Compute the CRLB
for A and compare it to the case when w[n] is WGN or ρ = 0. Also, explain what happens
when ρ → ±1.

4. For a 2 × 2 Fisher information matrix

I(θ) =
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which is positive definite. Show that
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What does this say about estimating a parameter when a second parameter is either
known or unknown? When does equality hold and why?
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