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1. (a) The sample functions are shown in Figure 1.
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Figure 1:

(b) X0 = 0. X0.5(0) = 1, X0.5(1) = −1, X0.5(2) = 1, and X0.5(3) = −1. X0.25(0) = 1,
X0.25(1) = 0, X0.25(2) = −1, and X0.25(3) = 0. The marginal CDF’s of X0, X0.25,
and X0.5 are shown in Figure 2.

(c) Given that X0.5 = −1, X0.25 = 0 with probability 1.

(d) Given that X0.5 = 1, X0.25 = 1 with probability 0.5 and X0.25 = −1 with proba-
bility 0.5.

2. a) E[Xt] = 0.

E[Xt+τXt] = E[A2 cos (2πfct + Θ) cos (2πfc(t + τ) + Θ)]

= A2

2
[cos 2πfcτ + E[cos (2πfc(2t + τ) + 2Θ)]]

= A2

2
cos 2πfcτ

b) We can choose any pdf for Θ as long as E[cos (2πfc(2t + τ) + 2Θ)] = 0 and
E[cos (2πfct + Θ)] = constant for any t, τ . Θ can be defined as follows:
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Figure 2:

Another possible choice for Θ is:

Θ =


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A more general choice for fΘ(θ) can be made as follows:

(i) Let us assume that the range of Θ is from 0 to 2π.

(ii) The condition for mean to be constant can be obtained as follows:

E[cos (2πfct + Θ)] =
∫ 2π
0 cos (2πfct + θ)fΘ(θ)dθ

=
∫ π
0 cos (2πfct + θ)fΘ(θ)dθ +

∫ 2π
π cos (2πfct + θ)fΘ(θ)dθ

(using θ
′

= θ − π) =
∫ π
0 cos (2πfct + θ)fΘ(θ)dθ +

∫ π
0 cos (2πfct + θ

′

+ π)fΘ(θ
′

+ π)dθ
′

=
∫ π
0 cos (2πfct + θ)fΘ(θ)dθ +

∫ π
0 [− cos (2πfct + θ

′

)]fΘ(θ
′

+ π)dθ
′

=
∫ π
0 cos (2πfct + θ)[fΘ(θ) − fΘ(θ + π)]dθ

Therefore, if fΘ(θ) = fΘ(θ + π) for θ in [0, π], then E[cos (2πfct + Θ)] = 0.
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(iii) The additional condition for the auto-correlation funtion to be a function of τ can
be obtained as follows:

E[cos (2πfc(2t + τ) + 2Θ)] =
∫ 2π
0 cos (2πfc(2t + τ) + 2θ)fΘ(θ)dθ

(using φ = 2θ) = 1
2

∫ 4π
0 cos (2πfc(2t + τ) + φ)fΘ

(

φ

2

)

dφ

= 1
2

∫ 2π
0 cos (2πfc(2t + τ) + φ)fΘ

(

φ

2

)

dφ

+1
2

∫ 4π
2π cos (2πfc(2t + τ) + φ)fΘ

(

φ

2

)

dφ

(using φ
′

= φ − 2π) = 1
2

∫ 2π
0 cos (2πfc(2t + τ) + φ)fΘ

(

φ

2

)

dφ

+1
2

∫ 2π
0 cos (2πfc(2t + τ) + φ

′

)fΘ

(

φ
′

2
+ π

)

dφ
′

= 1
2

∫ 2π
0 cos (2πfc(2t + τ) + φ)

[

fΘ

(

φ

2

)

+ fΘ

(

φ
′

2
+ π

)]

dφ.

Assuming that we satisfy the condition from (ii) above, we get

E[cos (2πfc(2t + τ) + 2Θ)] =
∫ 2π

0
cos (2πfc(2t + τ) + φ)fΘ

(

φ

2

)

dφ.

Now, proceeding as in (ii), we need

fΘ

(

φ

2

)

= fΘ

(

φ + π

2

)

for φ/2 in [0, π]. Equivalently, we need

fΘ(θ) = fΘ

(

θ +
π

2

)

for θ in [0, π/2].

(iv) Combining the conditions from (ii) and (iii), we get

fΘ(θ) = fΘ

(

θ +
kπ

2

)

(1)

for θ in [0, π/2] and k = 1, 2, 3. Therefore, we can choose any arbitrary fΘ(θ) for
θ in [0, π/2] such that

∫ π

2

0
fΘ(θ)dθ =

1

4
.

fΘ(θ) for θ in [π/2, 2π] can be set using (1).

A sample pdf that fives a W.S.S. Xt is shown in Figure 3.

3



θ

(θ)
Θ

f

0 2ππ/4 π/2 3π/4 π 5π/4 3π/2 7π/4

1/3π

2/3π

Figure 3:

3. a) E[Yt] = E[Xt cos (2πfct + Θ)]. Since Θ and Xt are independent, E[Yt] = E[Xt]E[cos (2πfct + Θ)
mXE[cos (2πfct + Θ)] = 0.

RY (t + τ, t) = E[XtXt+τ ]E[cos (2πfct + Θ) cos (2πfc(t + τ) + Θ)]

= 1
2
RX(τ)[cos 2πfcτ + E[cos 2πfc(2t + τ) + 2Θ]]

= 1
2
RX(τ) cos 2πfcτ .

Yt is W.S.S..

b) E[Yt] = E[Xt] cos 2πfct = mX cos 2πfct is a function of time. Yt is not W.S.S.

4. E[Xt] = E[X1] cos 2πfct + E[X2] sin 2πfct. For the mean to be independent of t, we
need

E[X1] = E[X2] = 0.

RX(t, t + τ) = E[(X1 cos 2πfc(t + τ) + X2 sin 2πfc(t + τ))(X1 cos 2πfct + X2 sin 2πfct)]

=

(

E[X2
1 ] + E[X2

2 ]

2

)

cos 2πfcτ

+ 2E[X1X2] sin 2πfc(2t + τ)

+

(

E[X2
1 ] − E[X2

2 ]

2

)

cos 2πfc(2t + τ).

For RX(t, t + τ) to be independent of t, we need

E[X1X2] = 0 and E[X2
1 ] = E[X2

2 ].

The conditions derived above are both necessary and sufficient.
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5.

E [|Xt+τ − Xt|
2] = E

[

Xt+τX
∗

t+τ

]

− E [Xt+τX
∗

t ] − E
[

XtX
∗

t+τ

]

+ E [XtX
∗

t ]

(Since Xt is W. S. S.) = RX(0) − RX(τ) − R∗

X(τ) + RX(0)

= 2RX(0) − 2Re(RX(τ))

(Since RX(0) is real) = 2Re(RX(0) − RX(τ)).

6. (a)

X0 = 0
ρn−1(X1 = W1)
ρn−2(X2 = ρX1 + W2)

...
...

ρ0(Xn = ρXn−1 + Wn).

Adding the above equations, we get

Xn = Wn + ρWn−1 + · · · + ρn−1W1.

Therefore, E[Xn] = 0 and V ar(Xn) = 1 + ρ2 + · · · + ρ2n−2.

(b) E[XnXn+k] = E[Xn(ρXn+k−1 + Wn+k)] = ρE[XnXn+k−1]. Therefore, we have
E[XnXn+k] = ρkE[X2

n] = ρk(1 + ρ2 + · · · + ρ2n−2).

(c) No. E[XnXn+k] is dependent on n.

7. Using Cauchy-Schwartz inequality and (geometric mean ≤ arithmetic mean), we have

|RXY (τ)| ≤
√

RX(0)RY (0) ≤ 0.5[RX(0) + RY (0)].

8. RX(t+ τ, t) = E[Xt+τXt] = E[Yt+τZt+τYtZt]. Since Yt and Zt are independent random
processes, RX(t + τ, t) = E[Yt+τYt]E[Zt+τZt] = RY (τ)RZ(τ). Xt is also W.S.S..

9. a) The transfer function of the filter (whose input is Xt and output is Yt) is

H(f) = 1 − e−j2πfT = 1 − cos 2πfT + j sin 2πfT .

SY (f) = SX(f)|H(f)|2

= SX(f) [(1 − cos 2πfT )2 + (sin 2πfT )2]

= 2SX(f)[1 − cos 2πfT )] = 4SX(f)(sin πfT )2

b) If f ≪ 1/T such that πfT is very small, then sin πfT is approximately equal to
πfT . Therefore, SY (f) = 4π2f 2T 2SX(f). A scaled version of the same power spectral
density would be obtained if Yt is obtained from Xt using a differentiator, i.e., we will
get SY (f) = 4π2f 2SX(f).
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10. a) E[Zt] = E[Xt] + E[Yt] = mX + mY .

RZ(t, s) = E[(Xt + Yt)(Xs + Ys)]
= RX(t, s) + RXY (t, s) + RY X(t, s) + RY (t, s)

(using τ = t − s) = RX(τ) + RXY (τ) + RY X(τ) + RY (τ)

Zt is W.S.S..

b) SZ(f) = SX(f) + SXY (f) + SY X(f) + SY (f).

c) If Xt and Yt are uncorrelated and zero-mean, then SZ(f) = SX(f) + SY (f). If they
are non-zero mean random processes and uncorrelated, then SZ(f) = SX(f)+SY (f)+
2mXmY δ(f).

11. (a) RS(t, s) = E[StSs] = E[(Xt + Yt)(Xs + Ys)] = RX(t, s) + RXY (t, s) + RY X(t, s) +
RY (t, s). Since, Xt and Yt are jointly W. S. S., we have

RS(τ) = RX(τ) + RXY (τ) + RXY (−τ) + RY (τ).

Similarly, we can show

RD(τ) = RX(τ) − RXY (τ) − RXY (−τ) + RY (τ).

(b) RXS(t, s) = E[Xt(Xs +Ys)] = RX(t, s)+RXY (t, s). Therefore, we have RXS(τ) =
RX(τ) + RXY (τ).

(c) RSD(t, s) = E[(Xt + Yt)(Xs − Ys)] = RX(t, s) − RXY (t, s) + RY X(t, s) − RY (t, s).
Therefore, we have RSD(τ) = RX(τ) − RXY (τ) + RXY (−τ) − RY (τ).

12.

RZW (t, s) = E[ZtWs]

= E
[
∫

∞

−∞

h1(τ1)Xt−τ1dτ1

∫

∞

−∞

h2(τ2)Ys−τ2dτ2

]

=
∫

∞

−∞

∫

∞

−∞

h1(τ1)h2(τ2)E[Xt−τ1Ys−τ2 ]dτ1dτ2

=
∫

∞

−∞

∫

∞

−∞

h1(τ1)h2(τ2)RXY (t − s − τ1 + τ2)dτ1dτ2

=
∫

∞

−∞

h1(τ1)
[
∫

∞

−∞

h2(τ2)RXY (t − s − τ1 + τ2)dτ2

]

dτ1

From the above result, we see that RZW (t, s) is a function of τ = t − s and is the
convolution of RXY (τ), h1(τ) and h2(−τ). Therefore, we have

SZW (f) = SXY (f)H1(f)H∗

2 (f).
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13. (a) Yn = Xn + Xn−1 + Xn−2.

φXn
(s) = E[esXn ] =

∞
∑

k=0

e−λλk

k!
esk = e−λ

∞
∑

k=0

λes

k!
= e−λeλes

= e−λ(1−es).

Since Xn, Xn−1, and Xn−2 are independent and identically distributed, we have

φYn
(s) = E[esYn ] = E[esXn ]E[esXn−1 ]E[esXn−2 ] = E[esXn ]3 = e−3λ(1−es).

Therefore, Yn is a Poisson random variable with parameter 3λ, i. e.,

P [Yn = k] = e−3λ (3λ)k

k!
∀k ≥ 0.

(b)

φYn
(s) = E[esYn ] = E[esXn ]E[esXn−1 ]E[esXn−2 ] = e−(λn+λn−1+λn−2)(1−es).

Therefore, Yn is a Poisson random variable with parameter λn + λn−1 + λn−2, i.
e.,

P [Yn = k] = e−(λn+λn−1+λn−2) (λn + λn−1 + λn−2)
k

k!
∀k ≥ 0.
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