
EC204: Networks & Systems
Solutions to Problem Set 9

1. (a) To solve for i(t), t ≥ 0 using Thevenin’s theorem, we first transform the given
network to the Laplace domain, as in figure (1).

We obtain values for the Thevenin impedance Z0(s) and voltage source Voc(s)
as
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Figure 1: (Problem 1(a)) Laplace-transformed network

1



+

Z0(s)

1ΩI(s)Voc(s)

Figure 2: (Problem 1(a)) Thevenin equivalent network

From figure (2) we get

I(s) =
Voc(s)

Z0(s) + 1
=

1/s
s2+2s
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[
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]

=⇒ i(t) = {1 −
1

2

[

e−t + te−t
]

}u(t)

(b) By using the substitution theorem, the Laplace-transformed network can be
expressed as shown in figures (3) and (4). Then, using superposition, we can
treat the network as the sum of two independent networks as shown in figure
(5). As a consequence, we obtain

I(s) =
Voc(s)

Z0(s) + 1
=

s2 + 2s + 2

s(2s2 + 4s + 2)

2. The bridge is balanced when Rx = 600Ω, i.e. Ig = 0. The incremental networks for
Rx = 630Ω and Rx = 570Ω are as shown in figures (6) and (7) respectively. These
resistive networks can be solved for the galvanometer currents to give

Ig1 = −39.2µA, Ig2 = 40.8µA

Therefore, by the linearity of the entire network, we can conclude that the range of
Ig is from −39.2µA to 40.8µA .
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Figure 3: (Problem 1(b)) With switch open
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Figure 4: (Problem 1(b)) With switch closed
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Figure 5: (Problem 1(b)) Applying the superposition principle
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Figure 6: (Problem 2 ) Incremental network for Rx = 630Ω
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Figure 7: (Problem 2 ) Incremental network for Rx = 570Ω
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Figure 8: (Problem 3 ) Original network in the Laplace domain
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Figure 9: (Problem 3 ) Incremental network in the Laplace domain

3. In the original transformed network (figure (8)), we have

IL(s) =
1.5

s
, Ix(s) =

1.5

s

In the incremental network (figure (9)), we account for the inductor’s initial current
at t = 0 and the compensation voltage Vx(s) given by

Vx(s) = sIx(s) = 1.5

We have,
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∆IL(s) =
−0.5

s + 4 + 4
3

×
2

2 + 4

=
−0.5

3s + 16

=⇒ ∆iL(t) =
−0.5

3
e−16t/3u(t)

∴ iL(t) = L−1(
1.5

s
) + ∆iL(t)

= [1.5 −
0.5

3
e−16t/3]u(t)

4. (a) By substitution theorem, the network in case (ii) is equivalent to network (a)
in Figure 10. Now, using superposition theorem, the solution for network (a)
is the same as the superposition of the solutions for networks (b) and (c).
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Figure 10: Problem 4

By linearity (using case (i)), the current entering terminal 1 in network (b) is
i. Similarly, using reciprocity theorem, i1 in network (c) is equal to e−t/2 A.
Using superposition, we have i = i1 − i. Therefore, we have

i = i1/2 = e−t/4 A.

(b) Since z11 = z22, y11 = y22. Also, for this network y12 = y21. Therefore, we can
easily write down the y-parameters (from cases (i) and (ii)) as

Y =

[

0.5 −0.25
−0.25 0.5

]

.
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Finally, we have

Z = Y −1 =

[

8/3 4/3
4/3 8/3

]

.
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