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ABSTRACT

We study the contention resolution problem for opportunistic scheduling in a cellular

network scenario. We consider a single cell of a cellular wireless network with a fixed

number of users. We assume that time is slotted and the base station schedules a single

user in a slot. The wireless channel between the base station and the users is assumed to

fade randomly. In this setup, the base station aims to resolve the contention and sched-

ule the user with the favourable channel condition in every slot. In this thesis, we study

splitting based contention resolution strategies. In particular, we study a generaliza-

tion of the opportunistic splitting algorithm called the maximal probability allocation

(MPA) scheme for contention resolution. MPA attempts to maximize the probability

of success in contention resolution in every attempt. We characterize the performance

of the greedy MPA strategy and comment on its optimality for a variety of network

scenarios.

Opportunistic contention resolution by splitting involves identifying a channel thresh-

old between the user with best channel and the second best channel. Hence, the problem

of opportunistic splitting permits a formulation as a source coding problem for the ran-

dom threshold and we can relate the average delay (of the contention resolution) with

the entropy (of the threshold). In our work, we study the correlation between the aver-

age delay of a contention resolution strategy and the average entropy of the strategy as

well.

In Chapter 2, we study the performance of MPA for i.i.d. channel of users. We show

that MPA need not be delay optimal or entropy optimal but is a very good approximation

for the i.i.d. case. Further, we observe that the entropy optimal strategy need not be

delay optimal. In Chapter 3, we study the performance of MPA for non-identically

distributed channels and for correlated wireless channels. Here again, we show that

MPA need not be delay optimal or entropy optimal. We characterize the performance

of MPA as a function of the channel characteristics. For example, we show that the

average delay of contention resolution for the non-identically distributed channel is

always lesser than the average delay of contention resolution for the i.i.d. case. Also, we
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show that MPA can be a severely suboptimal strategy especially for correlated wireless

channel distributions. In all the cases, we compare the average delay of the contention

resolution with the entropy of the strategy to understand the applicability of the entropy

minimization framework for the contention resolution problem. We observe that there is

a good correlation between the average delay of a strategy and its entropy and we obtain

a bound between them as well. We also study a formulation of the entropy minimization

problem and comment on the feasibility of identifying delay minimizing solutions.

In Chapter 4, we extend the study to different network scenarios including different

thresholds and multiple feedback case and study generalizations of the maximal proba-

bility allocation strategy. Using simulations, we also report the performance of the MPA

strategy for a variety of network scenarios and compare it with other popular contention

resolution strategies such as polling and channel gain based random access as well.

Finally, in Chapter 5, we study general utility maximization in a cellular setup using

an estimate of the rate region. We generalize the applicability of a rate region based

scheduler RRS and propose its use for a number of interesting network scenarios like

utility maximization for extended arrival rates, for feedback controlled arrival process

and for the energy minimization problem.
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CHAPTER 1

Introduction

The rise in popularity of 3G/4G cellular wireless standards such as WiMAX IEEE802.16

(2006) and LTE 3GPP (2012) and the widespread deployment of IEEE 802.11 WLANs

IEEE802.11 (2012) has led to easy and convenient broadband wireless data access for

the users. The increasing demand in wireless access due to the ever increasing number

of wireless users and applications coupled with the limitations of the wireless chan-

nel necessitates judicious and optimal use of the available wireless resources. Unlike

wireline systems, the capacity of the wireless channel cannot be increased arbitrarily.

Further, the wireless channel exhibits temporal variations in the channel capacity. The

fading statistics seen by users need not be identically distributed and can be time varying

as well. These unique characteristics of wireless channel makes the resource allocation

problem challenging.

One of the popular and an optimal scheduling strategy for data traffic in wireless

networks is the opportunistic scheduling strategy. Opportunistic scheduling (see Knopp

and Humblet (1995)) involves scheduling a user when the channel condition of the user

is the most favorable among the other users. This scheme exploits the time varying

nature of the channel, and improves system throughput using multiuser diversity. Gen-

eralizations to opportunistic scheduling attempts to provide fairness to channel access

while opportunistically scheduling the users (e.g., Jalali et al. (2000)).

Implementation of an opportunistic scheduler involves identifying a user with the

highest metric. The metric usually depends on the application, the quality of service re-

quirement or the network utility function. In opportunistic scheduling, the metric is the

instantaneous channel rate. i.e., in every slot, the user with the highest supported rate is

scheduled. The time overhead in finding the user with best channel increases linearly

with the number of users in the network. Feedback overhead can be reduced by polling

a subset of users in the network, and allocating resources opportunistically among the

users in the subset (e.g., Gopalan et al. (2012)). In such schemes, opportunism is ex-

ploited partially, and hence it degrades the achievable rate region. Contention based



feedback mechanism is an alternate strategy to reduce feedback overhead, where users

contend for a common resource opportunistically. In contention based schemes, there

is a possibility of not resolving contention over the duration of a time slot (especially

when channel state values are correlated). But in polling, some degree of opportunism

is always exploited.

In Qin and Berry (2004), Qin and Berry propose a contention based splitting algo-

rithm for opportunistic scheduling where users transmit its channel state information to

the base station if its instantaneous rate is above a certain threshold. For i.i.d. channels

and for any number of users, they showed that opportunistic contention resolution can

be resolved on an average in 2.5 minislots with feedback from the base station; this is a

considerable improvement in feedback overhead compared to the polling scheme. In re-

ality, the channel states of users need not be identically distributed or independent. The

distributions are usually asymmetric due to the difference in users’ location, mobility

pattern, shadowing etc. Users near the base station generally experience a better chan-

nel compared to the users near the cell edge. For this reason, we study the performance

of splitting algorithms for generalized channel states including correlated channels. We

also propose generalizations of splitting algorithms and discuss an entropy based ap-

proach to identify thresholds to minimize average delay.

Most implementations of opportunistic schedulers involves a gradient scheduler that

seeks to maximize a given concave network utility in the long term average sense,

e.g., Stolyar (2005). However, the gradient based schedulers fails to maximize non-

differentiable or non-concave utilities and their applicability is limited. In Naveen and

Ramaiyan (2013), Naveen and Ramaiyan propose a scheduling algorithm RRS, based

on the estimated rate region, which can maximize general network utilities. The algo-

rithm is proposed for saturated traffic of a fixed number of users. Using simulations,

we show that RRS can be used in unsaturated network scenarios as well. In this work,

we study the application of RRS for network utility maximization for extended arrival

rates (outside the rate region), for feedback controlled arrival process and for the energy

minimization problem.
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1.1 Related Literature

A lot of research has been carried out in the area of scheduling under fading channel.

The capacity of a single link of a fading wireless channel with average power constraint

was studied in Goldsmith and Varaiya (1997), under different channel side information.

For a multiuser network, Knopp and Humblet (1995) proposed a power control scheme

to improve the system capacity. The scheduling scheme, known as max-rate, suffered

from being unfair to users with poorer channel conditions. The issue of fairness was

addressed in Jalali et al. (2000), where an implementation of proportional fairness was

studied. Implementation of other fairness notions like minimum throughput guarantee,

temporal fairness are discussed in Liu et al. (2003); Andrews et al. (2005), etc. In Liu

et al. (2003), Liu et al discuss a framework for opportunistic scheduling and propose op-

portunistic scheduling strategies that guarantee minimum throughput and time fairness.

Algorithm for optimizing concave utilities with lower and upper throughout bounds is

studied in Andrews et al. (2005). In Stolyar (2005), Stolyar discusses the asymptotic

optimality of gradient scheduling algorithms for multiuser networks using fluid sample

path techniques.

The use of channel state information for stabilizing the queues in a network has also

attracted considerable attention. In Tassiulas and Ephremides (1992), Tassiulas and

Ephremides propose a max-weight scheduling policy that can stabilize all arrival rates

within the rate region of the wireless network. In Neely et al. (2005), Neely et al studied

a dynamic power allocation and routing strategy for multihop wireless network that gen-

eralized the network model studied in Tassiulas and Ephremides (1992). In Shakkottai

and Stolyar (2002), Shakkottai and Stolyar proposed a delay optimal stabilizing strat-

egy called the Exponential rule for a multiuser wireless network. An energy optimal

policy for a time varying wireless newtork was studied in Neely (2006). In Neely et al.

(2008), Neely proposed a method of dynamic resource allocation for all traffic when-

ever possible, maximizing a concave utility function on the rate region. A work on

utility maximization for feedback controlled arrival process is studied in Eryilmaz and

Srikant (2005). The feedback is a function of the queue length, and the scheduler allo-

cates resources depending on the instantaneous channel rate. In Chapter 5, we discuss

an implementation based on RRS (see Naveen and Ramaiyan (2013)) for maximizing

general network utilities in a variety of such network scenarios.

3



Schedulers that use channel state information may require a complete feedback of

the information from all the users to the base station at the beginning of every slot.

Polling or piggy-backing is a simple technique that can permit such feedback from the

users. While polling is an effective strategy to feed back CSI, the feedback load may

limit the performance of the system especially for large N . In Gesbert and Alouini

(2004), authors provided a theoretical analysis of feedback load and proposed a scheme

to reduce the feedback overhead. In the scheme discussed in Gesbert and Alouini

(2004), only the users with channel quality above a threshold are allowed to trans-

mit. Thresholds are optimized to achieve some outage probability. If no user is above

threshold, a random user is selected. In Sanayei and Nosratinia (2005), the effect of

1 bit feedback was studied. The authors showed that the same capacity growth can be

achieved with 1 bit feedback. The effect of the 1 bit feedback with possibilities of error

was studied in Xue and Kaiser (2007).

A random access feedback protocol is proposed in Tang and Heath (2005) for con-

tention resolution. Users send a feedback message in a minislot with some fixed prob-

ability. The total number of feedback slot is fixed. A successful transmission happens

if exactly one user transmits. Otherwise the scheduler polls a user randomly. The

model was extended to include multiple access in So (2009). The model of channel

state dependent random access was originally studied in Aloha networks. In Jahn and

Bottcher (1993), the authors used a channel state dependent access probability for slot-

ted ALOHA protocol. The channel access probabilities were chosen in a heuristic man-

ner. Qin and Berry, in Qin and Berry (2001), proposed a channel state dependent slotted

ALOHA protocol with transmission power constraint. A modified slotted ALOHA pro-

tocol with a CSI dependent channel access probability was studied in Adireddy and

Tong (2005). Asymptotic throughput is evaluated by considering both population de-

pendent and population independent channel access functions. In Kim et al. (2011),

Kim et al proposed and analyzed two variants of channel aware slotted CSMA, Oppor-

tunistic CSMA(O-CSMA) and Quantile-based CSMA(Q-CSMA).

Timer based scheme is another method to reduce the feedback load for contention

resolution. In timer based schemes, each node selects a timer depending on its metric

and will attempt after the expiry of the timer. A single node transmitting in a slot

is considered to have won the contention. In Bletsas et al. (2006), an inverse timer

mapping is proposed for opportunistic relaying. An optimal scheme in this scenario

4



was studied in Shah et al. (2010). It is shown that the optimal mapping maps the metric

to discrete timer values.

Splitting is a popular contention resolution strategy originally proposed for schedul-

ing random arrivals in a network. The idea of splitting was first proposed in the context

of ALOHA networks by Gallager in Gallager (1978). In Arrow et al. (1981), Arrow

et al, studied the problem of resolving the user with highest value in a sample using

binary type questions. The nature of the optimal sequence of questions for i.i.d. sample

values was characterized in Anantharam and Varaiya (1986). In Qin and Berry (2004),

Qin and Berry used the idea of splitting for opportunistic contention resolution. They

proposed the opportunistic splitting algorithm for i.i.d. wireless channel and character-

ized the average delay performance of the algorithm. The performance of splitting for

a heterogeneous wireless channel with fairness constraint is studied in Qin and Berry

(2006). Unlike the work in Arrow et al. (1981) which assumed the knowledge of the

exact number of users contending at a time, Qin and Berry (2004) assumed a ternary

feedback model and studied the performance of the greedy strategy.

In Ramaiyan (2013), Ramaiyan proposes a generalization of the opportunistic split-

ting algorithm called the maximal probability allocation (MPA) scheme. In this thesis,

we study the delay performance of MPA strategy for a variety of network scenarios and

comment on its optimality. The work Ramaiyan (2013) also discusses a source coding

framework relevant to the opportunistic contention resolution problem. The average

delay to resolve contention is related to the entropy of the contention resolution strat-

egy. In this thesis, we characterize the correlation between the average delay and the

entropy. We also formulate a entropy minimization framework and characterize MPA

as a local minima of the optimization problem.

In Gopalan et al. (2012), Aditya et al studied the effect of partial feedback scheme

and proposed an algorithm which can stabilize the arrivals in the achievable rate region.

The degradation in the capacity region due to lack of full feedback was also charac-

terised. Another work on joint scheduling and channel probing algorithm is reported

in Karaca et al. (2012). In this thesis, we assume that the contention resolution is per-

fect. In a chapter on performance evaluation, using simulations, we report the impact

of partial resolution on the throughput performance.

5



1.2 Outline of the Thesis

In Chapter 2, we describe the maximal probability allocation strategy and the source

coding framework for the contention resolution problem (from Ramaiyan (2013)). We

study the optimality of MPA for i.i.d. channel scenario. We characterize the contention

resolution strategy based on the average delay performance as well as the entropy of the

strategy.

In Chapter 3, we study the performance of MPA for non i.i.d. channel scenarios. We

consider independent and non-identically distributed channel as well as correlated wire-

less channel. We characterize the performance of the MPA as a function of the channel

distributions. We study the correlation between the average delay of a strategy and its

entropy and we obtain a bound between them as well. We also propose a formulation of

the entropy minimization problem and comment on the feasibility of identifying delay

minimizing solutions.

In Chapter 4, we extend the study to different network scenarios including multiple

thresholds and multiple feedback cases and propose generalizations of the maximal

probability allocation strategy. Using simulations, we characterize the performance

of MPA for a variety of network scenarios and compare the performance with other

contention resolution strategies such as polling and channel value based random access.

Finally, in Chapter 5, we study general utility maximization problem in a cellular

setup using a rate region based scheduler called RRS. We generalize the applicability

of RRS and propose its use for a number of interesting network scenarios like utility

maximization for extended arrival rates, for feedback controlled arrival process and for

the energy minimization problem.

In Chapter 6, we conclude the thesis.

6



CHAPTER 2

Maximal Probability Allocation for i.i.d. Channel

In this chapter, we will study the performance of the maximal probability allocation

scheme, proposed in Ramaiyan (2013), for the i.i.d. channel. In this thesis, we will

restrict to splitting based algorithms for opportunistic contention resolution. In Sec-

tion 2.2, we will first discuss a popular splitting based contention resolution algorithm

called the opportunistic splitting algorithm (OSA) studied in Qin and Berry (2004).

Then, in Section 2.3, we will consider a generalization of OSA called the maximal

probability allocation (MPA) strategy, and comment on the source coding framework

for opportunistic contention resolution (all from Ramaiyan (2013)). In Section 2.4, we

will study the optimality of the MPA strategy in terms of the average delay to resolve

contention and the entropy of the threshold.

2.1 Network Model

We consider a single cell of a cellular wireless network with a base station or an access

point and a fixed number of users, N , in an infrastructure setup of traffic. We assume

that the wireless channel is slotted and the nodes are synchronized to the slots. The users

time share the slotted wireless channel and the base station seeks to schedule a user with

the favorable channel condition in any slot. We assume that the slots are further divided

into mini-slots and the users contend in such mini-slots for channel access.

Channel Model

We consider a fading wireless channel between the base station and the wireless users.

Let (H1(t), · · · , HN(t)) be the channel vector at time t, where Hi(t) is the channel gain

between the base station and user i at time t. In this chapter, we assume that the channel

gains are i.i.d. over users and time slots with a common continuous distribution F (·). In

Chapters 3 and 4, we will extend our study to correlated and non identical distributions



for the users. We assume that the channel state remains constant in a slot and varies

i.i.d. over time slots for all the users.

We assume that the users have complete information about the channel at the be-

ginning of every slot. For example, the base station can broadcast a pilot signal at the

beginning of every slot. Users estimate their channel gain Hi in that slot using the pilot

signal. The base station seeks to schedule the user with highest channel gain, i.e.,

arg max{H1, H2, . . . , HN} (2.1)

where the channel information is available only with the users. In this setup, we con-

sider a splitting based contention resolution algorithm during the minislots to identify

the user with the best channel. In this thesis, we assume that the base station and the

users knows the common channel distribution as well as the number of contending users

(N ) in the network.

Define Xi := F (Hi), the cumulative distribution value of ith user in a slot. Then,

the vector (X1, X2, . . . , XN) is i.i.d. Uniform in [0, 1] for any channel (continuous)

distribution F (·). Therefore, finding the user with highest channel rate is equivalent to

finding,

arg max{X1, X2, . . . , XN} (2.2)

Hence, without loss of generality, we will assume that the channel gain is distributed as

i.i.d. Uniform in [0, 1], and we will consider (X1, X2, . . . , XN) as the channel vector

in a slot.

Contention Model

Each time slot is divided into smaller time units called minislots (e.g., there can be K

minislots in a slot). Users contend for the channel in the minislots aided by feedback

from the base station. We assume that the duration of a minislot is of the order of

the round trip time. Users can transmit MAC packets to the base station and receive

feedback from the base station within the minislot. We further assume that the feedback

is received by all nodes at the end of a minislot without any error. The contention

process can take a random number of minislots (k) to find the user with the best channel.

The selected user is allowed to transmit data to the base station in the remaining time

8
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Contention
phase

Transmission phase

Figure 2.1: Structure of a slot and the minislots. We assume that the users contend in
the minislots and the successful user is allocated the remainder of the slot
for data transmission.

of the slot. In Figure 2.1, we have illustrated the structure of the slot and the minislots.

2.2 Opportunistic Splitting

We will now discuss the opportunistic splitting algorithm (OSA), proposed in Qin and

Berry (2004), to resolve contention. We note again that the splitting algorithm for i.i.d.

block fading channel assumes that every user has perfect knowledge of the total number

of users and its channel state at the beginning of every slot.

In every minislot, OSA identifies a continuous range, (ymin, ymax] ⊂ [0, 1] to aid in

contention. User(s) with channel gain values in the range (ymin, ymax] transmit MAC

packets to the base station in that minislot. After receiving any MAC packets from

the user(s), the base station responds with a feedback on the contention status in the

minislot to all the users. The feedback will be either 0, 1 or e, indicating whether the

minislot was idle, success or collision respectively. A feedback of 1 means that a single

MAC packet was received. The contention is considered resolved in this case and the

lone user is allocated the remaining time in the slot to transmit data. If the feedback

is either 0 or e, the continuous range is suitably adjusted depending on the information

gained from the feedback in the previous slots and the contention process continues.

Algorithm 2.1 describes the pseudo-code of OSA for i.i.d. channel statistics with

fixed and known number of users N . In the pseudo-code, f denotes the feedback and k

denotes the number of minislots used for contention resolution.

9



Algorithm 2.1 OSA
Initialize: ylow = 0, ymin = 1− 1

N
, ymax = 1

Initialize: f = 0, k = 1

while f 6= 1 and k ≤ K do
f = (0, 1, e) feedback from (ymin, ymax]
if f = e then
ylow = ymin

ymin = (ymin+ymax

2
)

end if
if f = 0 then
ymax = ymin

if ylow 6= 0 then
ymin = (ylow+ymax)

2

else
ymin = ymax

(
1− 1

N

)
end if

end if
k = k + 1

end while

Remark 2.1.

1. We assume that the base station can identify a single successful transmission, an
idle minislot or a collision and feedback the information to the users. This is the
ternary feedback model studied in detail in this thesis. In Section 2.4.1, we also
discuss a complete feedback model where the base station can identify the exact
number of contending users in a minislot even for a collision channel.

2. OSA aims to chose a continuous range such that the probability of only one user
transmitting a MAC packet in a minislot is maximized. In the event of a collision
in the previous minislot, the algorithm acknowledges the fact that the chance of
two users involved in a collision is high and suggests the optimal strategy for the
two users.

3. The average delay of the OSA was characterized in Qin and Berry (2004) and it
was shown that the average delay is less than 2.5017 mini slots, independent of
the number of users and the channel distribution.

2.2.1 Maximal Probability Allocation

OSA approximated the choice of the contention range in the event of a collision. In

Ramaiyan (2013), the authors chose to identify the optimal range for contention that

maximizes the probability of success in the event of collision as well as an idle minis-

lot. The following theorem from Ramaiyan (2013), identifies the optimal range for the

following minislot.

10



Theorem 2.1. Given N users and thresholds (ymin, ymax], the contention range that

maximizes the probability of success is (y, ymax], where y is the unique stationary point

of (ymax − y)(yN−1 − yN−1
min ).

Using numerical results, it was shown in Ramaiyan (2013), that MPA improves the

performance with the optimal choice of the contention range and that OSA is nearly

optimal in its choice of contention range for the i.i.d. channel.

2.3 A Source Coding Framework

We will now discuss the source coding framework for the opportunistic contention res-

olution problem, originally proposed in Ramaiyan (2013). Let (X1, X2, . . . , XN) corre-

spond to the vector of i.i.d. channel gain values of users in a slot, and let (Y1, Y2, . . . , YN)

be the ordered N tuple such that Y1 ≤ · · · ≤ YN−1 ≤ YN . The contention resolution

algorithm seeks to identify the user with the highest channel gain by identifying a con-

tinuous range (y, ymax] in every minislot such that a single user is in the continuous

range. We note here that ymax is essentially 1 for opportunistic scheduling and hence,

the algorithm seeks to identify a threshold y ∈ [0, 1] such that a single user has a channel

gain greater than y. In other words, the scheduler resolves the contention by identifying

a threshold y between YN−1 and YN , i.e., YN−1 < y ≤ YN . As YN−1 and YN are ran-

dom variables, we note that the threshold Y (such that YN−1 ≤ Y ≤ YN ) that resolves

contention is random as well.

Define ΩY = {y1, y2, . . . } as the set of thresholds that resolve contention (i.e.,

sample space of Y ) and let PY = {p1, p2, . . . } be a probability assignment, where

pi := Pr(Y = yi) is the probability that the threshold yi resolves contention in a slot.

We expect that the probabilities sum up to one, i.e.,
∑

i pi = 1, or else the average

delay to resolve contention will be infinity. We note here that it is sufficient to describe

a probability mass function for Y as the set of thresholds possible in this network model

is discrete.

The thresholds are fed back by the base station using ternary alphabet of (0, 1, e).

Every threshold is uniquely identified by a finite sequence of (0, 1, e). The random

sequence fed back to the users corresponds to the random threshold Y that resolves the

11
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Figure 2.2: The set of MPA thresholds {yi}, their probabilities {pyi} and the corre-
sponding feedback from the base station for a wireless network with N = 2
users and i.i.d. channel.

contention in the slot. In Figure 2.2, we illustrate the source coding framework for the

contention resolution problem for N = 2 users and for i.i.d. channel. For N = 2, the

MPA thresholds are ΩY = {1
2
, 3

4
, 1

4
, 7

8
, 5

8
, 3

8
, 1

8
, . . . } and the corresponding probabilities

are PY = {1
2
, 1

8
, 1

8
, 1

32
, 1

32
, 1

32
, 1

32
, . . . } respectively. Note that the probabilities sum up to

one. In the Figure 2.2, we have also shown the feedback corresponding to the thresholds

as {1, e1, 01, ee1, e01, 0e1, 001}. Notice that the feedback from the base station can be

interpreted as the binary representation of the threshold (interpreting e = 1) separating

the highest channel gain from the second highest value. For N > 2, the feedback

from the base station will be a weighted binary (actually ternary) sequence uniquely

identifying the random threshold.

Clearly, the uncertainty in Y should be a measure of the description length of the

random variable Y and hence, the average number of minislots required to resolve

contention (the number of symbols required to describe a threshold Y is the same as

the number of minislots required to resolve contention with the threshold Y ). Hence,

the entropy of the random variable Y (in appropriate alphabets) should approximate the

average number of minislots required to resolve contention. The entropy of the random

variable Y is defined as

H({pi}) = −
∑
i

pi log2(pi) (2.3)

We would expect that minimizing the entropy of a strategy should seek to minimize

the average delay to resolve contention as well. In this thesis, we will bound the differ-

ence between the expected delay to resolve contention for a strategy and its entropy. In

Chapter 3, we will formulate the entropy minimization problem and characterize MPA

strategy as a solution to the optimization problem.
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2.4 Optimality of MPA

We will now study the optimality of the greedy contention resolution strategy MPA.

We will study both the delay optimality as well as the entropy optimality of the MPA

strategy for the i.i.d. channel.

Lemma 2.1. Consider N = 2. MPA is average delay optimal and entropy optimal for

the ternary collision feedback model.

Proof. Let D∗ be the optimal average delay for the contention resolution problem. Let

(y∗, 1] be the contention range in the first minislot for the delay minimizing strategy.

Conditioned on the first minislot, the optimal average delay for the two user network,

D∗, can be written as

D∗ = 2y∗(1− y∗) + (1 +D∗)((y∗)2 + (1− y∗)2) (2.4)

Rewriting the above equation, we have,

D∗ =
1

2y∗(1− y∗)
(2.5)

The above expression is minimized at y∗ = 1
2

(see Figure 2.3) and the optimal value

D∗ is 2 minislots. MPA seeks the threshold y ∈ [0, 1] maximizing the probability of

success 2y(1 − y) in the first minislot. Hence, the threshold for MPA is also 1
2

and we

know that the average delay for MPA scheme is also 2 minislots. Therefore, MPA is an

average delay optimal strategy for N = 2 users and for i.i.d. channel.

We will now prove the entropy optimality of the MPA strategy for N = 2 users and

for i.i.d. channel. Let E∗ be the minimum entropy with a contention resolution strategy

and let {y∗i } be the thresholds with the corresponding probabilities {p∗i } (where we

assume that
∑

i p
∗
i = 1). Without loss of generality, let y∗1 be the first threshold and

0 < p∗1 < 1 be the corresponding probability, where p∗1 = 2y∗1(1 − y∗1). We can write

E∗ as

E∗ = H({p∗i }) = −p∗1 log2(p∗1)−
∑

{i:y∗i <y∗1}

p∗i log2(p∗i )−
∑

{i:y∗i >y∗1}

p∗i log2(p∗i ) (2.6)

13
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Figure 2.3: Average delay D (see equation 2.5) as a function of the first threshold y for
N = 2 users and i.i.d channel.

Consider the set of thresholds on the left of y∗1 , {y∗i : y∗i < y∗1}; we will re-label them

as {l∗i } with the corresponding probabilities {q∗i }. We know that the set of thresholds

{l∗i } is countable. Further, we know that
∑

i q
∗
i = (y∗1)2 and their contribution to the

entropy E∗ is −
∑

i q
∗
i log2(q∗i ).

Multiplying 1
y∗1

to the thresholds {l∗i } would give us a sequence of thresholds { l∗i
y∗1
}

corresponding to a contention resolution strategy for the interval [0, 1]. This is possible

due to the fact that both idle and collision involves exactly 2 users. The probability

associated with the new set of thresholds { l∗i
y∗1
} would now be { q∗i

(y∗1)2
} (which sum up to

one). We can now compute the entropy of the strategy as

H({ q∗i
(y∗1)2

}) = −
∑
i

q∗i
(y∗1)2

log2

(
q∗i

(y∗1)2

)
= − 1

(y∗1)2
(
∑
i

q∗i log2(q∗i ) +
∑
i

q∗i log2

(
1

(y∗1)2

)
)

= − 1

(y∗1)2
(
∑
i

q∗i log2(q∗i ) + log2

(
1

(y∗1)2

)
(y∗1)2)

Suppose that the new set of thresholds are not the same as the original set of thresholds

{y∗i }. Then, from the optimality of the original thresholds {y∗i } for the contention

resolution problem, we have,

−
∑
i

p∗i log2(p∗i ) ≤ −
1

(y∗1)2
(
∑
i

q∗i log2(q∗i ) + log2

(
1

(y∗1)2

)
(y∗1)2)
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Rewriting the equations and with a little rearrangement, we get,

−
∑
i

(y∗1)2p∗i log2(p∗i ) + log2

(
1

(y∗1)2

)
(y∗1)2 ≤ −

∑
i

q∗i log2(q∗i )

−
∑
i

(y∗1)2p∗i log2(p∗i ) + (y∗1)2 log2

(
1

(y∗1)2

)∑
i

p∗i ≤ −
∑
i

q∗i log2(q∗i )

−
∑
i

(y∗1)2p∗i log2(p∗i (y
∗
1)2) ≤ −

∑
i

q∗i log2(q∗i )

Note that the left hand side of the above expression can be viewed as a valid strategy

for the left side of the threshold y∗1 different from the threshold {l∗i } that contributes to

the optimal entropy E∗. The threshold points would be {y∗i y∗1} and their corresponding

probabilities would be {p∗i (y∗1)2} (which sums up to (y∗1)2). The last expression implies

that there exists an optimal strategy for the left hand side (of y∗1) that can minimize

the entropy further than E∗ which is a contradiction. Hence, we need that the strategy

on the left side of the threshold y∗1 is symmetrical to the strategy considered for the

original problem. Hence, {l∗i } is the same as {y∗i y∗1}. A similar argument holds for the

right hand side as well.

Now, the expression for the optimal E∗ can be written as follows.

E∗ = −p∗1 log2(p∗1)−
∑

{i:y∗i <y∗1}

p∗i log2(p∗i )−
∑

{i:y∗i >y∗1}

p∗i log2(p∗i )

= −p∗1 log2(p∗1)−
∑
i

p∗i (y
∗
1)2 log2(p∗i (y

∗
1)2)−

∑
i

p∗i (1− y∗1)2 log2(p∗i (1− y∗1)2)

Using the definition H({pi}) := −
∑

i pi log2(pi) for any probability distribution {pi},

the optimal expression for the entropy E∗ can be written as

E∗ = H({p∗i }) = −p∗1 log2(p∗1) +H({p∗i (y∗1)2}) +H({p∗i (1− y∗1)2})

Expanding the above expression in terms of the threshold y∗1 , we have,

H({p∗i }) = −2y∗1(1−y∗1) log2(2y∗1(1−y∗1))+H({p∗i (y∗1)2})+H({p∗i (1−y∗1)2}) (2.7)
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Figure 2.4: EntropyE (see equation 2.8) as a function of the first threshold y1 forN = 2
users and i.i.d channel.

From the definition of H(·), we have,

H({ap∗i }) = −
∑
i

ap∗i log2(ap∗i )

= −a(
∑
i

p∗i log2(p∗i ) + log2(a)
∑
i

p∗i )

= aH({p∗i })− a log2(a)

Substituting in the above equation (2.7) and with a little rearrangement, we have,

E∗ = H({p∗i }) =
−2y∗1(1− y∗1) log2(2y∗1(1− y∗1))− (y∗1)2 log2((y∗1)2)− (1− y∗1)2 log2(1− y∗1)2

2y∗1(1− y∗1)
(2.8)

Figure 2.4 shows the variation of the optimal entropy with first threshold y∗i . Equation

(2.8) is minimized at y∗1 = 1
2
, and value of E∗ is 3. MPA also partitions the continuous

range at 1
2

and has an entropy of 3, i.e., MPA is an entropy optimal strategy as well.

For general N , we conjecture using simulations that MPA may not be an optimal

strategy.

Proposition 2.1. Suppose N > 2. MPA is neither delay optimal nor entropy optimal

for the ternary feedback collision model.

Remark 2.2.
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Figure 2.5: Plot of the average delay for a contention resolution strategy as a function
of the first threshold. The contention resolution strategy uses MPA for the
remaining minislots. We assume that N = 3 users and the channel is i.i.d.

1. Through numerical evaluation reported in Figure 2.5 and 2.6 for N = 3 users
and i.i.d. channel, we tend to believe that the above proposition is true. In the
figures, we plot the performance of a strategy with a choice for the first threshold
and MPA for the remainder of the minislots. We note that MPA is neither delay
optimal nor entropy optimal. Further, we also observe that the entropy optimal
strategy is not delay optimal as well.

2. We have observed from a number of simulations that the performance of MPA
is approximately optimal for the i.i.d. channel scenario with ternary feedback.
In Qin and Berry (2004), the authors show that the performance of OSA/MPA is
nearly optimal for i.i.d. channel by obtaining tight lower and upper bounds for
the contention resolution problem.

3. In Chapter 3, we show that the performance of MPA for the non-i.i.d. channel
case with ternary feedback can be arbitrarily bad with respect to an optimal algo-
rithm.

2.4.1 Complete Feedback Case

We will now study the optimality of MPA for the complete feedback model. Suppose

that the base station can feedback the exact number of users k involved in a collision.

Here, k = 0 would correspond to an idle minislot and k = 1 would correspond to a

success and k > 1 (where k > 1) would mean a collision. When there is a collision

involving k users, the threshold would be chosen by the MPA with the knowledge of

17
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Figure 2.6: Plot of the entropy for a contention resolution strategy as a function of the
first threshold. The contention resolution strategy uses MPA for the remain-
ing slots. We assume that N = 3 users and the user channel is i.i.d.

k. The MPA contention range for an interval (ymin, ymax] would be (ymin + (ymax −

ymin)(1− 1
k
), ymax]. For N = 2 users, the ternary feedback collision model is the same

as the complete feedback collision model as every collision involves exactly two users.

The following lemma characterizes the performance of MPA for the complete feedback

case.

Lemma 2.2. Suppose N > 2. MPA is neither delay optimal nor entropy optimal for the

complete feedback collision model.

Proof. Let N be the number of users in the network. The average delay to resolve

contention, D∗N , can be expressed in terms of the first threshold y, 0 ≤ y ≤ 1, as

follows.

D∗N = min
y∈[0,1]

{
pI(y)(1 +D∗N) + pS(y) + pC(y)(1 +

N∑
k=2

pkc (y)D∗k)

}
= min

y∈[0,1]

{
yN(1 +D∗N) +Ny(1− y)N−1 + (1− yN −Ny(1− y)N−1)×

(1 +
N∑
k=2

NCk(1− y)kyN−k

1− yN −Ny(1− y)N−1
D∗k)

} (2.9)

where pI(y) = yN is the probability that the channel was idle with the threshold y ∈
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Figure 2.7: Plot of DN as a function of the first threshold y for three different set of
users N = 3, N = 4, N = 5 and for i.i.d. channel.

[0, 1], pS(y) = Ny(1 − y)(N−1) is the probability that the minislot had a success and

pC(y) is the probability that the minislot involved a collision. Further, pkc (y) is the

probability that the minislot involved a collision with k users given that the minislot

was a collision and D∗k is the optimal average delay to resolve collision with k users.

In the Figure 2.7, we plot DN as a function of the first threshold for three different

values of N . We note that the strategy maximizing the probability of success in the first

minislot (marked as MPA solution in the figure) does not minimize the overall average

delay of contention resolution. We made a similar observation for the entropy of the

strategies as well.

2.5 Conclusion

In this chapter, we have studied the performance of the greedy MPA strategy and dis-

cussed its optimality for the i.i.d. channel case. We note that MPA is entropy optimal as

well as delay optimal forN = 2 users. However, the strategy is neither delay or entropy

optimal for general N especially for the complete feedback case. Further, we note that

the entropy optimal strategy need not be the same as the delay optimal strategy.
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CHAPTER 3

Maximal Probability Allocation for General Channel

In Chapter 2, we studied the performance of the maximal probability allocation strategy

for i.i.d. channel. In practice, the users channel state distributions can be non-identically

distributed and even correlated. The asymmetry in channel distribution can arise due

to the difference in users location, shadowing, mobility pattern etc, and the presence

of strong inter-cell interference may induce correlation among the users. Further, the

utility of a user may be different from other users. This will also create asymmetry

in the metric maximized by the base station in a slot. In this chapter, we will study

the performance of MPA for non-i.i.d. channel and comment on its optimality. In

Section 3.1, we will study the performance of MPA and other contention resolution

strategies for independent and non-identically distributed channel and for correlated

channel. In Section 3.2, we will discuss a entropy minimization problem for the source

coding framework.

3.1 Contention Resolution for Non-i.i.d. Channel

We will first study the performance of MPA for a two user network. We consider two

users with independent channel statistics communicating with the base station. We

will assume arbitrary continuous channel distributions for the two users. We will also

assume that the base station and the users have perfect knowledge of the distribution

of all the users. In this setup, we can use MPA to find the user with highest channel

rate. Let (X1, X2) be the vector of channel gain of the two users. MPA attempts to

identify a threshold Y such that min(X1, X2) < Y ≤ max(X1.X2). The following

lemma characterizes the delay of MPA for the network scenario.

Lemma 3.1. Let N = 2. The expected delay to resolve contention using MPA for

independent and non-identically distributed channel is upper bounded by 2 minislots.

Also, the minimum entropy of a strategy is upper bounded by 3.



Proof. Let F1(·) and F2(·) be the CDF of the wireless channel of the two users. Let y

be a threshold in (0, 1]. The probability of success in a minislot for a given threshold y

is then given by

ps(y) = F1(y)(1− F2(y)) + (1− F1(y))F2(y)

due to independence of the channel of the two users. Consider a y ∈ (0, 1] such that

F1(y) = 1
2
. Then, the probability of success is given by

ps(y) =
1

2
(1− F2(y)) +

1

2
F2(y) =

1

2

Hence, max{y∈(0,1]} ps(y) ≥ 1
2
. The argument can be extended to arbitrary intervals

(ymin, ymax] with the corresponding conditional CDFs. Thus, the conditional probabil-

ity of success in any minislot is at least 1
2
. Hence, the average delay to resolve contention

for the independent and non-identically distributed channel is at most 2 minislots.

We will now show that the entropy of the above strategy is upper bounded by 3. Let

{y(d,f)} be the set of thresholds for the contention resolution strategy and let {p(d,f)}

be the corresponding probabilities. Threshold y(d,f) corresponds to a threshold used

in minislot d with the past feedback of f . Hence, if the threshold y(d,f) resolves the

contention, then, the random delay for the contention is d minislots. The entropy of the

contention resolution strategy is a function of the probability distribution {p(d,f)} and is

given as

H({p(d,f)}) = p(1,−) log2

(
1

p(1,−)

)
+ p(2,0) log2

(
1

p(2,0)

)
+ p(2,e) log2

(
1

p(2,e)

)
+

p(3,00) log2

(
1

p(3,00)

)
+ · · · p(3,0e) log2

(
1

p(3,0e)

)
+

(3.1)

Define

P1 =p(1,−)

P2 =p(2,0) + p(2,e)

P3 =p(3,00) + p(3,0e) + p(3,e0) + p(3,ee)

. . .
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Figure 3.1: Thresholds {y(d,f)} of a contention resolution strategy where threshold
y(d,f) is used in minislot d for a past feedback of f .

i.e. Pi is the probability that contention is resolved in the ith minislot with the strategy.

The following inequality holds because −P log2(P ) is a concave function in P .

H({p(d,f)}) ≤ P1 log2

(
1

P1

)
+ 2

(
P2

2

)
log2

(
2

P2

)
+ 4

(
P3

4

)
log2

(
4

P3

)
+ · · ·

Further, for the above strategy, we have, P1 ≥ 1
2
, P2 ≥ (1− P1)1

2
, P3 ≥ (1− P1)(1−

P2)1
2
, · · · (since the conditional probability of success is at least 1

2
for any feedback in

a minislot). Hence, the entropy of the strategy is upper bounded by

H({p(d,f)}) ≤
1

2
log2

(
1
1
2

)
+ 2

( 1
4

2

)
log2

(
2
1
4

)
+ 4

( 1
8

4

)
log2

(
4
1
8

)
+ · · · = 3

In Table 3.1, we show the performance of MPA for few cases of independent chan-

nel distributions. We note that the average delay is less than 2 for all non-identically

distributed channel scenarios.

User1 distribution User2 distribution Delay Entropy
Rayleigh with σ = 1 Rayleigh with σ = 2 1.745 2.442
Rayleigh with σ = 1 Rayleigh with σ = 4 1.364 1.417
Rayleigh with σ = 1 Uniform in [0, 1] 1.629 2.099

Uniform in [0, 1] Uniform in [0, 0.5] 1.780 2.448

Table 3.1: Average delay and entropy of MPA for N = 2 users with independent and
non-identically distributed channel.
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3.1.1 Additive and Multiplicative Scaling

As a special case, for N = 2, we numerically evaluate the average delay and entropy

of MPA when users take the same distribution with different scaling - multiplicative

scaling and additive scaling. The use of multiplicative scaling is motivated by the im-

plementation of fairness metrics such as proportional fairness Jalali et al. (2000), and

additive scaling factor is motivated from implementations like in Liu et al. (2003).
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Figure 3.2: Variation of average delay and entropy for MPA with multiplicative scaling
for three different distributions and N = 2 users.

In Figure 3.2, we plot the average delay and entropy respectively for three different

distributions (exponential, Rayleigh and Uniform) as a function of the multiplicative

scaling parameter. For example, if the channel of users 1 is Exponential with mean

λ, a scaling of 0.5 implies that the channel of user 2 is Exponential with mean 0.5λ

independent of the user 1. Note that the average delay (and entropy) is a monotone

function of the scaling parameter with the average delay being the highest for identically

distributed channel. Also, notice that the entropy and delay of the MPA strategy has

similar behaviour as a function of the scaling parameter.

In Figure 3.3, we plot the average delay and entropy respectively for three different

distributions (exponential, Rayleigh and Uniform) as a function of the additive scaling

parameter. For example, if the channel of users 1 is Exponential with mean λ, an

additive scaling of 0.5 implies that the channel of user 2 is Exponential with mean

0.5 + λ independent of the user 1. We note that the performance with additive scaling

is also monotone (the average delay is maximum for identically distributed channel).

Further, the average delay and entropy of the MPA strategy has similar behaviour with

the scaling parameter.
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Figure 3.3: Variation of average delay and entropy with additive scaling for three dif-
ferent distributions and N = 2 users.

The average delay and entropy are not necessarily monotone functions of scaling

parameters in general. The following example illustrates the case. Let the probability

density function of user 1 be as described below.

fX1(x) =


1
4

if x ∈ [2, 4) ∪ [8, 10),

0 otherwise.
(3.2)

Let the distribution of user 2 be identical to that of aX1 (or a+X1) but independent of

the actual distribution of X1. Consider a multiplicative scaling of a = 0.5. Contention

can be resolved in one minislot by setting the threshold 4. In this case the user with the

highest channel can be determined even if the minislot is a collision or success. If the

first minislot is a collision, user 1 has the best value. If the first minislot is idle, then

again, user 1 has the best channel (in [2, 4) where as the rate of user 2 is in [1, 2)). In the

case of a single user transmission, the lone user is declared the winner of the contention.

However, for a multiplicative scaling of a = 1
4

or a = 1, contention resolution requires

more than a single minislot as the support of the two user distributions has overlap.

A similar observation can be made with additive scaling of 0, 2 and 6 for the user

distributions. The delay and entropy in the case of additive scaling is illustrated in

figure 3.4.
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Figure 3.4: Variation of average delay and entropy with additive scaling for the proba-
bility density function described in equation 3.2 for N = 2 users.

3.1.2 Performance of MPA for N > 2

In Lemma 3.1, we showed that, for N = 2 users, the average delay/entropy of MPA to

resolve contention for independent and non-identical channel distribution is less than

the average delay/entropy for i.i.d. channel. For N > 2, we conjecture that the de-

lay/entropy of MPA is maximum when the users channel states are distributed indepen-

dently with identical distribution. Intuitively, we would expect that, for independent

distributions, uncertainty (entropy) should increase with symmetry in the distribution.

We make the observation through numerical verification for a variety of independent

and non-identically distributed channel distributions for different values of N . In Ta-

bles 3.2 and 3.3, we have given the average delay of MPA for N = 3 users and N = 4

users for few cases. Notice that the average delay is maximum when the channel distri-

butions are identically distributed.

User1 User2 User3 Delay Entropy
Rayleigh, σ = 1 Rayleigh, σ = 1 Rayleigh, σ = 1 2.174 3.332
Rayleigh, σ = 1 Rayleigh, σ = 1 Exponential, λ = 1 2.144 3.277
Rayleigh, σ = 1 Exponential, λ = 1 Exponential, λ = 1 2.119 3.230
Rayleigh, σ = 1 Exponential, λ = 1 Uniform in [2, 4] 1.440 1.568

Table 3.2: Average delay and entropy of MPA for independent and non-identically dis-
tributed channel and N = 3 users.
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User 1 User 2 User 3 User4 Delay Entropy
Rayleigh,
σ = 1

Rayleigh,
σ = 1

Rayleigh,
σ = 1

Rayleigh,
σ = 1

2.250 3.469

Rayleigh,
σ = 1

Rayleigh,
σ = 1

Rayleigh,
σ = 1

Exponential,
λ =1

2.235 3.442

Rayleigh,
σ = 1

Rayleigh,
σ = 1

Uniform in
[2, 4]

Exponential,
λ =1

1.528 1.867

Rayleigh,
σ = 1

Uniform in
[2, 4]

Uniform in
[2, 4]

Exponential,
λ =1

2.042 3.083

Table 3.3: Average delay and entropy of MPA for independent and non-identically dis-
tributed channel and N = 4 users.

3.1.3 Optimality of MPA

In the earlier sections, we characterized the performance of MPA in comparison with the

i.i.d. channel. In this section, we will study the optimality of MPA using an example.

We will consider a two user wireless network with Uniform distribution and with a

multiplicative scaling. Let (X1, X2) be the user channel gains where the distribution of

X1 is U(0, 1] and the distribution of X2 is U(0, a] for 0 ≤ a ≤ 1.

Suppose 0 ≤ a ≤ 1
3
. The first MPA threshold will then be a and the probability of

success in the first minislot will be (1 − a); the probability of the minislot being idle

is a and there cannot be a collision in the first minislot with threshold a. If the first

minislot is idle, then, the system is i.i.d. after the idle slot, and it will take 2 minislots

on an average to resolve contention. Therefore, the expected delay for MPA is equal to

1× (1− a) + (1 + 2)× a = 1 + 2a for a ≤ 1
3
.

Consider a scaling of a such that 1
3
≤ a ≤ 1. Let y1 be the threshold that maximizes

the probability of success in the first minislot. Then,

y1 = arg max
y∈(0,a]

(y
a

)
(1− y) + y

(
1− y

a

)
Differentiating the right hand side expression, we get,

y1 =
1 + a

4

Now, we will find a range of scaling for a, 1
3
≤ a ≤ 1, such that conditioned on the

event of collision in the first minislot with threshold y1, the contention resolution prob-
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lem has the form with distributions (X, aX) where 0 ≤ a ≤ 1
3

in the future minislots.

To find the maximum value of a for such a case, we require,

a− y1

1− y1

=
1

3

Therefore, a =
1 + 2y1

3

(3.3)

Substituting y1 = 1+a
4

, in equation (3.3), we get

a = 0.6 (3.4)

Therefore, for any a ∈ (1
3
, 0.6], the expression for delay of MPA can be written as,

D = y1

(
1− y1

a

)
+(1−y1)

y1

a
+(1+2)

y2
1

a
+

[
1 + 1 + 2

(
a− y1

1− y1

)](
1− y1

a

)
(1−y1)

(3.5)

Substituting y1 = (1 + a)/4 in equation (3.5), we get the delay associated with MPA

scheme.

We will now provide a counter example to show the sub-optimality of MPA strategy.

Consider the two user example with multiplicative scaling of a = 0.5 with the Uniform

distribution (i.e., X1 ≈ U(0, 1] and X2 ≈ U(0, 0.5] and X1 is independent of X2).

In the first mini slot, we use threshold y1, and if the first minislot is idle or collision,

we follow MPA splitting strategy in the future minislots. The delay in finding the user

with highest metric is now a function of the first threshold, y1 , and we can minimize

the delay by choosing an optimal y1. Note that MPA is a strategy at y1 = 1+0.5
4

(for

a = 0.5). The average delay to resolve contention can now be written as

D(y1) = y1 (1− 2y1) + (1− y1)(2y1) + 6y2
1

+

(
1 + 1 + 2

( 1
2
− y1

1− y1

))
(1− 2y1)(1− y1)

= 3y1 + 2y2
1 + (3− 4y1)(1− 2y1)

= 3− 7y1 + 10y2
1

The delay expression thus simplifies to 10y2
1 − 7y1 + 3 and the optimal y1 = 0.35 and

the average delay of the strategy with the modified MPA strategy is 1.775, whereas the

delay corresponding to MPA scheme is 1.781 with the MPA threshold 0.375.

27



The entropy expression for this example conditioned on the first threshold, y1, can

be simplified to

H(y1) =−
(
y1(0.5− y1)

0.5
+
y1(1− y1)

0.5

)
log2

(
y1(0.5− y1)

0.5
+
y1(1− y1)

0.5

)
−
(
y2

1

0.5

)
log2

(
y2

1

0.5

)
+ 3

(
y2

1

0.5

)
−
(

0.5(0.5− y1)(1− y1)

0.5(1− y1)

)
log2

(
0.5(0.5− y1)(1− y1)

0.5(1− y1)

)
−
(

(0.5− y1)2

0.5

)
log2

(
(0.5− y1)2

0.5

)
+ 3

(
(0.5− y1)2

0.5

)
(3.6)

The expression in 3.6 is minimized at y1 = 0.352. This shows that MPA is neither

delay optimal nor entropy optimal in this case. Also note that entropy optimal solution

is different from delay optimal solution.

3.1.4 Correlated Wireless Channel

In Lemma 3.1, we proved that the delay of MPA for independent channel distribu-

tions is upper bounded by the average delay performance of i.i.d. channel. In Ra-

maiyan (2013), an example was presented to show the poor performance of MPA when

the channel distributions are correlated. The example considers 2 users having a dis-

crete distribution with correlation among them. The distribution has a sample space

ΩH = {(4, 2), (4, 6), (8, 6), (8, 10), (12, 10), (12, 14), (16, 14)} and joint probabilities

pH = {1
7
− 6ε, 1

7
− 5ε, 1

7
− 4ε, 1

7
− 3ε, 1

7
− 2ε, 1

7
− ε, 1

7
+ 21ε}, 0 < ε << 1. If we restrict

to integer thresholds, MPA thresholds form the sequence 15, 13, 11, 9, 7, 5 and 3, with

an average delay of 27
4
≈ 4. If there are k channel states, the average delay to resolve

contention will be k
2

approximately. The average delay associated with this scheme

scales linearly with the number of channel states in the channel distribution. However,

in this scenario, there exist a strategy which can resolve contention of the order of time

which is logarithmic in number of intervals in the channel distribution. In this example,

consider the threshold value 9 in the first minislot. If it is a collision, use 13 as the next

threshold, and use 7 if the first minislot is idle. If the first two minislot is a collision, use

15 as the threshold, and continue this strategy until a single user transmits. The associ-

ated delay of this scheme is approximately 3. In general, the delay of this scheme is of

the order of log2(k). Thus, MPA can be arbitrarily bad when the user channel distribu-
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tion is correlated. In the next section, we discuss an entropy minimization formulation

which gives alternate solutions other than MPA. We formulate the entropy minimization

problem as a concave minimization problem. The MPA solution is identified as a local

minimizer to the optimization problem.

3.2 Average Delay and Entropy

We will now relate the average delay of a strategy and its entropy. Consider a contention

resolution strategy such that the set of threshold are {y(d,f)} and the corresponding

probabilities are {p(d,f)}. Threshold y(d,f) corresponds to a threshold used in minislot d

with the past feedback of f . Hence, if the threshold y(d,f) resolves the contention, then,

the random delay for the contention is d minislots. In Figure 3.1, we have illustrated a

set of thresholds {y(d,f)} for a contention resolution strategy. The average delay of the

contention resolution strategy, D, is then given by,

D = p(1,−) + 2p(2,e) + 2p(2,0) + 3p(3,ee) + 3p(3,e0) + 3p(3,0e) + 3p(3,00) + · · ·

The entropy of the contention resolution strategy is a function of the probability distri-

bution {p(d,f)} and is given as

H({p(d,f)}) = p(1,−) log2

(
1

p(1,−)

)
+ p(2,0) log2

(
1

p(2,0)

)
+ p(2,e) log2

(
1

p(2,e)

)
+

p(3,00) log2

(
1

p(3,00)

)
+ · · · p(3,0e) log2

(
1

p(3,0e)

)
+

(3.7)

Define

P1 =p(1,−)

P2 =p(2,0) + p(2,e)

P3 =p(3,00) + p(3,0e) + p(3,e0) + p(3,ee)

. . .
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i.e. Pi is the probability that contention is resolved in the ith minislot with the strategy.

The following inequality holds because −P log2(P ) is a concave function in P .

H({p(d,f)}) ≤ P1 log2

(
1

P1

)
+ 2

(
P2

2

)
log2

(
2

P2

)
+ 4

(
P3

4

)
log2

(
4

P3

)
+ · · ·

Simplifying the right hand side expression, we get,

H({p(d,f)}) ≤ P1 log2

(
1

P1

)
+ P2 log2

(
2

P2

)
+ P3 log2

(
4

P3

)
+ · · ·

= P1 log2

(
1

P1

)
+ P2 log2

(
1

P2

)
+ P3 log2

(
1

P3

)
+ · · ·

+ P2 log2(2) + P3 log2(4) + · · ·

(3.8)

By the definition of entropy,
∑

i Pi log2(1/Pi) is the entropy of the probability distribu-

tion {Pi}. Then,

H({p(d,f)}) ≤ H({Pi}) + P2 + 2P3 + 3P4 + · · · (3.9)

We know that the average code word length of a prefix code is lower bounded by its

entropy (see Cover and Thomas (2012)). We show that H({Pi}) is a lower bound on

delay of the scheme using this result. By mapping success to 1, both collision and idle

to 0, we can form a prefix code with probability distribution {Pi}. The possible code

words are {1, 01, 001, 0001, . . . } with probability {P1, P2, P3, . . . } Average code word

length of this code is same as the average delay of MPA scheme. So,

H({Pi}) ≤ D (3.10)

Using 3.9 and 3.10, we get

H({p(d,f)}) ≤ D + P2 + 2P3 + 3P4 + · · ·

= D + P1 + 2P2 + 3P3 + · · · − (P1 + P2 + P3 + · · · )

= D +D − 1

= 2D − 1

(3.11)

where, D is the average number of minislots required to resolve contention. Thus, the

entropy of the threshold random variable and the average delay to resolve contention

are bounded and hence, they showed similar characteristics in a variety of network
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scenarios. Also, for N = 2 users with i.i.d. channel, we note that the inequality for the

MPA strategy is exact with the average delay being 2 and the entropy of the strategy

being 3.

3.2.1 Entropy Minimization

We will now discuss a entropy minimization framework for the wireless network. We

will restrict the formulation to a discrete finite state channel (so that the set of thresholds

are also finite). Suppose that there are N users and M discrete channel rates, ΩR =

{r1, r2, . . . , rM}, i.e., the channel of every user is restricted to one of the M states.

Without loss of generality, let us assume that r1 < r2 < · · · < rM . For an arbitrary

distribution of the vector channel, let (X1, · · · , XN−1, XN) be the channel state vector

in a slot and let (Y1, · · · , YN−1, YN) be the ordered channel state vector in the slot. The

contention resolution algorithm seeks to find a threshold Y such that YN−1 < Y ≤ YN .

Consider the set of all possible two-tuples for (YN−1, YN)

Ω = {(r1, r1), (r1, r2), (r1, r3), · · · , (r1, rM ), (r2, r2)(r2, r3), · · · , (rM−1, rM ), (rM , rM )}

Let the probability associated with a two-tuple be P(ri, rj) such that
∑

i,j:j≥i P(ri, rj) =

1.

Without loss of generality, we will assume that P(YN = YN−1) = 0 in the above

framework and we will restrict to two-tuples such that YN−1 < YN . Then, a two-

tuple (ri, rj) for (YN−1, YN) can be resolved by any threshold y such that ri < y ≤

rj . Hence, the set of thresholds that can resolve the two-tuple (ri, rj) is given by

{ri+1, ri+2, · · · , rj}. Let Iy(ri, rj) be the event that the two-tuple (ri, rj) is resolved

by the threshold y. Then, we require that

rj∑
y=ri+1

Iy(ri, rj) = 1

and Iy(ri, rj) ∈ {0, 1}. Define Py as the probability that the threshold y ∈ ΩR resolves

contention.

Py =
∑

(ri,rj)∈Ω

P(ri, rj)Iy(ri, rj)

Then, the entropy of the assignment is defined as
∑

y∈ΩR
Py log2

(
1
Py

)
Our objective is
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to find an integer threshold arrangement for the two-tuple such that the entropy of the

random threshold is minimized. The entropy minimization problem can be formulated

as follows.
min −

∑
y∈ΩR

Py log2(Py)

s.t. Py =
∑

(ri,rj)∈Ω

P(ri, rj)Iy(ri, rj)

Iy(ri, rj) ≥ 0 ∀ (ri, rj) ∈ Ω, y ∈ (ri, rj]

rj∑
y=ri+1

Iy(ri, rj) = 1

(3.12)

We can relax the integer assumption on Iy(·, ·) and let random assignment of the two-

tuple to a threshold. −Py log2(Py) is a concave function of Py and hence, the objective

−
∑

y Py log2(Py) is a concave function of the set of Py. By definition, Py is a linear

combination of Iy(ri, rj), and therefore the objective function is concave in Iy(ri, rj)

(see Luenberger and Ye (2008)). Thus, we have a concave minimization problem for

the entropy minimization formulation. Thus, starting at some random initial point can

give a solution which is a local minima for the formulation (3.12). Note that the integer

relaxation is not an issue as there exists integer solutions for the problem, i.e., Iy(·, ·) ∈

{0, 1} because (3.12) is a concave minimization over a convex set, which gives an

extreme point as solution (Luenberger and Ye (2008)).

Example 3.1. We will now discuss the formulation using an example. Consider a three

user wireless network N = 3 with four channel states M = 4. Without loss of gen-

erality, we will assume that ΩR = {0, 1, 2, 3} and the sample space of the two-tuple

as Ω = {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)} with the corresponding probabilities

{0.0714, 0.0714, 0.0714, 0.2143, 0.2143, 0.3571}. We solve the optimization problem

(3.14) to get the thresholds with

P1 = P (0, 1)I1(0, 1) + P (0, 2)I1(0, 2) + P (0, 3)I1(0, 3)

P2 = P (0, 2)I2(0, 2) + P (0, 3)I2(0, 3) + P (1, 2)I2(1, 2) + P (1, 3)I2(1, 3)

P3 = P (0, 3)I3(0, 3) + P (1, 3)I3(1, 3) + P (2, 3)I3(2, 3)

(3.13)
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The entropy minimization problem is then given as

min − P1 log2(P1)− P2 log2(P2)− P3 log2(P3)

s.t. Iy(·, ·) ≥ 0

I1(0, 1) = 1

I1(0, 2) + I2(0, 2) = 1

I1(0, 3) + I2(0, 3) + I3(0, 3) = 1

I2(1, 2) = 1

I2(1, 3) + I3(1, 3) = 1

I3(2, 3) = 1

(3.14)

A local minimum solution (the MPA solution) to the problem is given by the strategy

I1(0, 1) = I2(0, 2) = I3(0, 3) = I2(1, 2) = I3(1, 3) = I3(2, 3) = 1 and the other

variables are zero. The entropy of the strategy is 1.1981. The average delay associated

with this (MPA) strategy is 20
14

minislots. The formulation permits other solutions as

well. For example, another strategy that is a local minima of the optimization problem

is I1(0, 1) = I2(0, 2) = I2(0, 3) = I2(1, 2) = I2(1, 3) = I3(2, 3) = 1 and the other

variables are zero. The entropy of the strategy is 1.2638 and the average delay of the

strategy is 20
14

as well. Thus, we note that the entropy minimization problem helps us

identify many solutions for the contention resolution problem. Further, we note that the

MPA is a local minima of the concave minimization problem and hence, we may only

expect to develop bounded-error or suboptimal strategies for the contention resolution

problem.

3.3 Conclusion

We have studied the delay and entropy performance of MPA for general channel sce-

nario. We showed that the delay and entropy of MPA is maximum when channel states

are independent and identically distributed. For correlated wireless channel, we observe

that MPA can perform arbitrarily bad. We present a relation between the average delay

of a strategy and its entropy. We have also proposed an entropy minimization frame-

work for discrete channel distributions, which can be used to obtain solutions other than
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MPA for the contention resolution problem.
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CHAPTER 4

Performance Evaluation of MPA

In this chapter, we will discuss generalizations of the maximal probability allocation

scheme and also compare the performance of MPA with other contention resolution

strategies. We first discuss generalizations of MPA such as those that permits different

thresholds for different users and allows aggregating contention feedback. In the later

part of this chapter, we report simulation results evaluating the performance of MPA

and comparing them with other popular contention resolution strategies such as polling

and timer-based contention resolution schemes. We also study the performance of MPA

when there is an error in estimating the number of users, N , and distribution of users’

channel SNR.

4.1 Generalizations of MPA

We will now discuss generalizations of MPA strategy that permit different thresholds

for users and aggregates user feedback.

4.1.1 Unequal thresholds

In a minislot, MPA uses the same threshold for all users. We will now discuss the need

to permit different thresholds for users depending on their channel distribution. With

the help of an example, we will show the improvement achieved in the average delay

by using different threshold for users depending on their distribution.

Consider a two user wireless network with user 1 and user 2 distributed Uniformly in

[0, 1] and [0.5, 1.5] respectively as shown in Figure 4.1. Suppose that in the first minislot,

user 1 uses 0.5 as the threshold and user 2 uses 1 as the threshold (i.e., the users transmit

a contention packet if their channel realization is higher than their individual threshold).

Notice that, in this scenario, the user with highest channel rate can be determined if the

feedback in the first minislot is a collision (user 2 wins the contention), idle (user 2 wins



Figure 4.1: Plot of the probability density function of channel state of two users. We
assume that the channel realizations of the two users are independent of
each other. The dotted lines mark the first thresholds for the two users that
minimizes the average delay to resolve contention.

the contention) or a successful transmission by user 2 (user 2 wins the contention). In

the case when user 1 transmits a contention packet and user 2 stays idle in the first

minislot, the contention can further be resolved using MPA in the interval [0.5, 1), and

it takes additional two minislots on an average to resolve the contention. The proposed

algorithm, thus, has an average delay of 3
4
× 1 + 1

4
× (1 + 2) = 1.5 minislots. Here, we

note that the average delay of MPA (from the first minislot) with identical thresholds

has a larger average delay of 1.625 minislots. Even in terms of entropy, the algorithm

with unequal thresholds has a significant improvement with an entropy of 1.3113 in

comparison to 2.048 in the case of MPA.

4.1.2 Multiple feedback

In this section, we will show for a correlated channel that the feedback from different

thresholds can be aggregated to improve the delay performance of MPA. We provide

an example to illustrate this, where we consider identical distribution with correlation

among users (see Figure 4.2). We assume that N = 2 and the channel values of the

two user’s occur together in the intervals {[0, 1), [1, 2), [2, 3), [3, 4)} with probability

{(0.25−2ε), (0.25−ε), (0.25+ε), (0.25+2ε)} respectively, for 0 < ε << 1. Users are

correlated in such a way that both users are present only in one interval. In an interval,

the channel values are assumed to be independent of each other.

The first MPA threshold for this example will be at channel value 3.5. If the minislot
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Figure 4.2: Correlated wireless channel for two users. The channel values of the two
users occur together in [0, 1) or [1, 2) or [2, 3) or [3, 4) with probability
0.25− 2ε, 0.25− ε, 0.25 + ε and 0.25 + 2ε respectively. In an interval, the
channel values are assumed to be independent of each other.

is a collision, it would take an average of 2 minislots to resolve contention further. If

the first minislot is idle, MPA sets 2.5 as next threshold and so on until the contention is

resolved. The average delay associated with MPA can be shown to scale linearly with

the number of intervals in the channel distribution. However, in this scenario, there

exist strategies which can resolve contention with a fixed duration (on an average). We

note that the users channel are correlated to intervals and are indepedent and identically

distributed in an interval. So, we propose to consider multiple contention ranges simul-

taneously in the first minislot, [0.5, 1), [1.5, 2), [2.5, 3) and [3.5, 4). Note that the users

are in only one of the intervals and in any interval, the above thresholds correspond to

the optimal threshold for MPA with two users. The proposed strategy initiates a MPA

in every threshold. Since the users are correlated to an interval, only one MPA will be

effective and hence, the average delay to resolve contention is 2 minislots independent

of the number of intervals.

4.1.3 No feedback to indicate collision

The duration of a minislot for the contention resolution scheme with triple feedback can

be computed as, tpkt + tack + 2tpd+ taRxTxTurnaroundTime, where tpkt is the MAC

contention packet transmission duration, tack is the ACK transmission delay and tpd is

the maximum propagation delay in the network. In this example, we use the term ACK

for the packet transmitted by the base station containing the triple feedback information.

Also, we assume that ACK is transmitted immediately after receiving MAC packets

from users and no additional duration is assumed. Assuming 20 byte length for the

MAC and the ACK packet, for a 1 Mbps link with users located 1 Km away from the

AP, we have, tpkt = tack = 160µs, and tpd = 3.3µs. taRxTxturnaroundTime is

37



typically 5µs.

Taking this into account, we propose a strategy for contention resolution, which uses

no ACK to indicate collision, and thereby saving the time required to resolve contention.

The algorithm works as follows. If the transmission is idle or success AP broadcasts an

ACK packet indicating whether the minislot was idle or collision. After receiving the

feedback from AP, users adjust their new threshold and transmit in the next slot. For the

event of collision, no feedback is given by AP. Mobile hosts wait for a tPhyRxIndication
for tpd + taRxTxTurnaroundTime + δ after tpkt + tp seconds (where δ < tACK. We

assume δ = 20µs). If PHY did not indicate any reception during that time, users

assume that the current minislot is a collision and adjust the new threshold accordingly.

Thus, the duration of the minislot in which collision happens reduces to tpkt + 2tpd +

taRxTXturnaroundtime + δ(160µs + 6.6µs + 5µs + 20µs = 191.6µs). The duration

of regular minislot is 331.6µs. Thus, for the modified scheme an i.i.d. 2 user system

takes 593.2µs(2 × (3
4
× 331.6µs + 1

4
× 191.6µs)) on average to select the best user.

Without the modified algorithm, the average time required for contention resolution is

663.2µs(2× 331.6µs).

4.2 Simulation Results

In this section, we will now report the performance of MPA using simulations for a

variety of network scenarios. We will also compare the performance of MPA with other

contention resolution strategies such as polling and channel-gain based timer schemes.

In all our simulations in this section, we will consider N users in the network. For split-

ting, we assume that a slot is divided into K minislots and the first set of k minislots are

used for splitting. If contention is not resolved in the first k minislots, a user is sched-

uled randomly for the remainder of the slots. We have considered the CDMA/HDR

channel model reported in Bender et al. (2000) for all our simulations. We use three

different probability assignment ({p1}, {p2} and {p3}) for the AMC levels as shown in

table 4.1. For example, if a user takes channel distribution {p1}, its supported data rate

(in Kbps) in a slot is 1228.8 with probability 3
11

, 1843.2 with probability 3
11

, and 2457.7

with probability 5
11

.
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Data Rate {p1} {p2} {p3}
38.4 0 1/11 5/11
76.8 0 1/11 3/11

102.6 0 1/11 3/11
153.6 0 1/11 0
204.8 0 1/11 0
307.2 0 1/11 0
614.4 0 1/11 0
921.6 0 1/11 0

1228.8 3/11 1/11 0
1843.2 3/11 1/11 0
2457.7 5/11 1/11 0

Table 4.1: Supported data rates (in Kbps) and probability assignment for the simula-
tions reported in this section (from Bender et al. (2000)).

4.2.1 Average Delay

We will now report the delay performance of MPA for identically distributed and non-

identically distributed user channels. In Figure 4.3, we plot the CDF of the number

of the minislots required to resolve contention for the i.i.d. and non-i.i.d. case. We

consider a wireless network with N = 20 users, with a slot length of K = 50 minislots

where the first set of k = 20 minislots are used for contention. We assume that if

the contention is not resolved within the k minislots, a random user is scheduled for the

reminder of the slots. For the i.i.d. case, we assume that the users’ channel is distributed

as {p2} (see Table 4.1). For non identically distributed channel (channel distributions

are still independent across users and time) case, N1 = 1 channel is distributed as

{p1}, N2 = 9 channels are distributed as {p2} and N3 = 10 channels are distributed as

{p3}. From the Figure 4.3, we observe that the i.i.d. case takes longer time to resolve

contention. Also note that contention is resolved in few minislots with high probability

in either case.

4.2.2 Average Throughput

We will now study the average throughput performance of MPA and compare it with

other contention resolution strategies. In Figure 4.4, we plot the long run average

throughput of the splitting strategy as a function of k, for different values ofN . Also, in

the plot, we have shown the optimal performance of the polling strategy for the number
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Figure 4.3: CDF of number of minislots required for resolving contention with i.i.d.
and non identical channel state distribution.

of users N . From the figure, we observe that the average throughput increases with

increase with k and N . Note that the improvement in throughput decreases with in-

creasing value of k implying that the splitting algorithm resolves contention well within

few minislots with high probability. The increase in throughput with N is attributed to

the multiuser diversity gain. In Figure 4.4, we have compared the average throughput

achieved by the splitting strategy with the optimal polling scheme; the number of users

to be polled in a slot is adjusted to maximize the system throughput. For example, for

N = 20 users, with distribution {p2}, polling 8 users achieves maximum throughput

(the optimal value is computed numerically). From the figure, we note that splitting can

significantly improve the network performance as compared to the best polling strategy.

4.2.3 Imperfect Information

In Figure 4.5, we compare the average throughput performance of the different con-

tention resolution strategies under imperfect channel knowledge scenarios. We assume

that the users have perfect knowledge of the number of users N but have imperfect

information about the channel distribution of the users. In this scenario, we study the

performance of the splitting strategy with triple feedback and compare it with polling

and a timer-based random access scheme (see Shah et al. (2010)). There are N = 20
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Figure 4.4: Plots of the average throughput of the users with a splitting strategy as a
function of k (number of minislots used for contention resolution) for dif-
ferent values of N . The straight lines in the plot correspond to the average
throughput performance of the optimal polling strategy for different values
of N .

users connected to the access point and the users has the perfect knowledge of N . We

assume that scheduler assumes independent channel realizations from the distribution

{p2} for all the users while the actual channel is independent realizations from the dis-

tribution {p3}. In this case, splitting takes a longer time to resolve contention, and

therefore the throughput achieved is less in comparison to the perfect channel case. In

Figure 4.5 we also plot the average throughput achieved by splitting and other selec-

tion schemes for the network scenario. The random selection strategy reported in the

figure randomly selects one of the 20 users and schedules in the slot. We note that the

simple random selection strategy performs better than the other strategies as it has less

overhead. We also compare with the performance of the timer based selection scheme

studied in Shah et al. (2010). The average throughput obtained using the timer-based

scheme is similar to splitting for the network scenario. This is due to fact that both

splitting and timer based scheme fails to resolve the best user in the allotted time inter-

val (k = 20 for splitting, Tmax

∆
= 40 for timer based selection scheme. See Shah et al.

(2010) for details).

In Figure 4.6, we report the average delay performance of MPA for i.i.d. case with

imperfect knowledge of the number of users (N ) in the network. Suppose that the

number of users in the network is random and Uniformly distributed in {1, 2, . . . , 40}.
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Figure 4.5: Average throughput of splitting, polling, timer-based scheme and random
selection for a network with 20 users and with imperfect channel informa-
tion.

We assume that the user channel distributions are i.i.d. with the distribution {p2} and

that the user channel distributions are known at the schedulers. In Figure 4.6, we plot the

CDF of the number of minislots required to resolve contention with splitting algorithm

with an estimate of N = 20 (floor of the average value of N ). We observe from the

plot that the average delay of splitting algorithm increases significantly with imperfect

knowledge of N .

4.3 Conclusion

We have discussed generalizations of the greedy MPA strategy by allowing different

thresholds and by aggregating feedback of the users. We note that the optimal greedy

strategy for contention resolution depends not only on the channel distribution but also

on the network parameters and the metric of interest. Using simulations, we also eval-

uated the performance of MPA for a variety of network scenarios including networks

with imperfect estimates of N and channel distribution. We observed that the MPA

is effective even with few minislots dedicated for contention resolution. We also com-

pared the performance of MPA with other contention resolution strategies and identified

network scenarios when MPA was optimal.
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CHAPTER 5

A Rate Region based Scheduler for Unsaturated Traffic

In Chapters 2, 3 and 4, we studied a problem of resolving the user with the favorable

channel condition. In Chapter 2, we studied the problem of opportunistic contention

resolution for i.i.d. channel. In Chapter 3, we studied the problem of opportunistic con-

tention resolution with non-identically distributed channel gains and studied the effect

of additive and multiplicative scaling on the performance of MPA. Such models are rel-

evant when different users have different network utility functions or QoS objectives.

The focus of the earlier chapters was to identify the user with best metric in every slot.

In this chapter, we study the problem of identifying the appropriate metric in every slot

to support a given quality of service.

We consider a single cell of a cellular data network with a base station and N wire-

less users. We assume that the channel is slotted and the channel fades randomly over

the slots. Let R̄(t) = (R1(t), · · · , RN(t)) be the channel state vector in slot t, where

Ri(t) is the rate that can be supported for user i in slot if user i is scheduled in a slot.

We assume that a single user can be scheduled in the slot and the base station seeks

to schedule a user such that the network objective is maximized or the QoS is deliv-

ered. In this setup, we assume that perfect CSI is available at the users and the base

station and we seek to identify a strategy over the slots such that the desired QoS can

be implemented.

We assume that the channel process R̄(t) = (R1(t), · · · , RN(t)) is a discrete time

Markov chain with a discrete state space ΩR = {r̄1, r̄2, · · · , r̄M}where r̄j = (rj,1, rj,2, . . .

, rj,N) is a vector channel state for the network and rj,i is the rate that user i can achieve

(if scheduled) when the channel state is r̄j . Let the corresponding stationary probability

distribution for the wireless channel be PR = {π1, π2, · · · , πM}. The set of long term

average rate vectors feasible in such a network is defined as the rate region of the wire-

less network and is described completely using the channel distribution (see Naveen



and Ramaiyan (2013)). Let C be the rate region of the network. Then,

C =

{
(r1, · · · , rN) : ri =

∑
j

πj × aji × rji; aji ≥ 0;
∑
i

aji = 1

}
(5.1)

where, πi is the stationary distribution of the wireless channel, aji is the fraction of time

channel j (i.e., r̄j) is allocated to user i and rj,i is the rate achieved for user i when

channel j is allocated to user i. If the channel statistics {πi} and the instantaneous

channel rates R̄(t) are known, then, there exist a stationary schedule that can achieve

every rate in the rate region C.

The rate region C is a bounded convex set, and for strictly concave utility functions,

the utility maximizing point on the rate region is unique. Let r̄∗ be a point on the rate

region at which some concave network utility is maximized and let {a∗j,i} be the station-

ary schedule that achieves r̄∗. If the steady state distribution of the channel is known a

priori, schedulers can maximize general network utilities on the rate region. In cellular

data networks, base station does not have the knowledge of the channel distribution.

Base station has the channel state information in every slot only. For concave utilities

we can achieve r̄∗ in the long term using gradient scheduling algorithms, e.g., Stolyar

(2005). But gradient based scheduling algorithms cannot maximize non-concave or

non-differentiable network utilities.

In Naveen and Ramaiyan (2013), Naveen and Venkatesh proposed a rate region

based scheduler that uses the history of the instantaneous channel state information to

make scheduling decision in every slot. In Naveen and Ramaiyan (2013), the authors

studied a rate region based scheduler called RRS for a discrete time Markov wireless

channel. The rate region based scheduler would estimate the distribution of the wireless

channel from the history of the wireless channel as

πj(t) =
1

t

t∑
k=1

I{R̄(t)=r̄j}

Then, RRS would estimate the rate region of the wireless channel as a function of the

estimated channel distribution {π(t)} as given below.

C(t) =

{
(r1, · · · , rN) : ri =

∑
j

πj(t)× aji × rji; aji ≥ 0;
∑
i

aji = 1

}
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For the estimated rate region, the RRS scheduler would now identify the operating rate

vectorR∗(t) corresponding to the desired QoS or the network utility. Then, in every slot

t, RRS would implement the stationary schedule {a∗j,i(t)} corresponding to the desired

operating point R̄∗(t). In Naveen and Ramaiyan (2013), the authors showed that the

RRS scheduler is asymptotically optimal for general network utility and QoS.

In Naveen and Ramaiyan (2013), the authors focussed on the implementation of

RRS for saturated traffic. They showed that RRS could maximize general network

utility functions including non-concave utility functions, provides a parameter-less im-

plementation and has better rate of convergence among other useful properties. In this

thesis, we extend the applicability of the scheduler for unsaturated traffic conditions.

We show that the RRS scheduler can be used to maximize network utility even when

the arrival rate is outside the rate region, or for arrival process controlled using a feed-

back and also for energy optimization problems for unsaturated traffic. Our exercise

demonstrates the general applicability and usefulness of RRS for a variety of network

and channel conditions.

The chapter is organized as follows. In section 5.1, we consider a traffic model

with average arrival rate outside the rate region and we study a general network utility

maximization problem using RRS. In section 5.2, we describe a scheduling strategy

based on RRS for utility maximization in systems with feedback based arrival process.

In section 5.3, we extend RRS for the energy minimization problem.

5.1 Arrival Rate outside the Rate Region

Opportunistic scheduling algorithms in the context of wireless networks perform two

important roles - stabilize an arrival process supported within the rate region and provide

fair throughput to the users. Throughput optimal schedulers attempt to serve every

arrival rate vector inside the capacity region while optimizing the average queue in the

buffer. Fair schedulers seek to achieve utility optimal average throughput vectors within

the rate region and are usually not delay concerned. In this section, we seek to maximize

a general network utility for an arrival process that is outside the capacity region.

In Neely et al. (2008), Neely et al showed that neither throughput optimal schedulers

nor fair schedulers can be used for all possible arrival rates. Many schedulers which use
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queue length information can serve any arrival rate inside the rate region. But when

the arrival rate goes outside the rate region, the operating point shifts to some unfair

point on the capacity region. Also, fair schedulers like proportional fair (PF) scheduler

cannot stabilize all arrival rates inside the capacity region. They proposed a scheduling

strategy that maximizes a concave network utility for an extended arrival process. In

this section, we propose the application of RRS for maximizing a general network utility

for an arrival process outside the rate region. By simulation, we show the usefulness of

RRS in obtaining a fair operating point for the network. Unlike the scheduler described

in Neely et al. (2008), we use a parameter less implementation and can maximize non-

concave utility functions on the rate region.

Consider an average arrival rate vector λ = (λ1, λ2, . . . , λN) strictly outside the

rate region and our objective is to support a fraction of the arrival rate maximizing

some network utility. Let U() be the utility function on the rate region. The network

optimization problem can be formulated as shown below.

Maximize: U(r1, · · · , rN)

Subject to: (r1, · · · , rN) ∈ C

0 ≤ (r1, · · · , rN) ≤ (λ1, · · · , λN)

(5.2)

In every slot, RRS estimates the channel distribution, π(t), and computes the estimated

rate region C(t). Further, we will estimate the time average arrival rate till time t, λ(t),

from the arrival history. We will now solve the following optimization problem in every

slot to identify the optimal rate vector (and the stationary schedule) that maximizes the

network utility subject to constraint imposed by the arrival process.

Maximize: U(r1, · · · , rN)

Subject to: (r1, r2, . . . , rN) ∈ C(t)

0 ≤ (r1, . . . , rN) ≤ (λ1(t), · · · , λN(t))

(5.3)

RRS computes the stationary schedule that solves the above optimization problem and

uses the schedule in the slot for the channel. By simulation, we show that as t → ∞,

the average allocated rate converges to the optimal allocation vector, r̄∗, which is the

solution to the optimization problem 5.2. We illustrate our implementation with the

help of the following example.
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Figure 5.1: Plot of the rate region for the wireless network with R(t) ∈ {(1, 2), (2, 1)}
Mbps with probability {1

2
, 1

2
}. The average arrival rate of the Poisson pro-

cess to the two queues and the utility optimizing rate vector is also indicated
in the figure.

Example 5.1. Consider a base station communicating with two mobile hosts through a

shared wireless channel with time varying capacity . Assume that the channel state in

each slot is i.i.d. across time and correlated across users. In any time slot, the channel

state vector is in {(1, 2), (2, 1)}Mbps with probability {1
2
, 1

2
}. We consider two Poisson

arrivals with mean arrival rate 0.5 Mbps and 1.45 Mbps to queues corresponding to user

1 and user 2 respectively. The throughput utility function of user 1 and user 2 is defined

as U(r1, r2) = U1(r1) + U2(r2), where,

U1(r1) =

1 if r1 ≥ 0.4,

0 else
(5.4)

U2(r2) =

1 if r2 ≥ 1.2,

0 else
(5.5)

Where, r1 and r2 are the allocated rates to user 1 and user 2.

In Figure 5.1), we show the rate region for the wireless network, the average arrival

rate vector and the optimal operating point r̄∗ that maximizes the network utility. Note

that the arrival process is strictly outside the rate region. The network utility is maxi-

mized in the region {r1 ≥ 0.4, r2 ≥ 1.2} ∩ C, where C is the rate region for the given
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Figure 5.2: Long term average throughput achieved by RRS for the network model
shown in Figure 5.1.

channel statistics. In Figure 5.2, we report the performance of the RRS for the extended

arrival process. RRS seeks an operating point such that the network utility is maxi-

mized constrained to the arrival process. The choice of discontinuous utility function

was made to show that RRS imposes no restriction on the nature of the utility functions.

5.2 Feedback based arrival process

In this section, we will study the use of RRS for an arrival process controlled by a feed-

back. In Eryilmaz and Srikant (2005), Eryilmaz and Srikant studied a traffic model in

which data arrival rate is controlled by a feedback from the base station. The feedback

is a function of the MAC layer queue length. More the queue length, lesser will be the

arrival rate. In such systems, the authors showed that a local queue length based sched-

uler can achieve fair resource allocation. By controlling parameters in the feedback,

they showed that closeness to the optimal allocation can be achieved with trade-off in

MAC layer queueing delay. In this context, we propose a scheduling algorithm based

on RRS to maximize general utility functions on the rate region. Similar to the section

on the extended arrival rates, in every slot, RRS estimates the rate region of the wire-

less channel and seeks a stationary schedule that maximizes the network utility on the

estimated rate region. Using simulations, we show that RRS is asymptotically optimal
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Figure 5.3: Plot of the rate region (Area under the thick blue line is the rate region) for
a wireless channel with states {(1, 2), (2, 1)}Mbps and probabilities (1

3
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3
).

The optimal operating point for the proportional fair utility is (4
3
, 2

3
) Mbps.

and the allocated rate converges to the optimal operating point.

Example 5.2. Consider a two user downlink with channel rate vector {(1, 2), (2, 1)}

Mbps, which occur with probability (1
3
, 2

3
) in each slot. The base station maintains

separate queues for the two users. Arriving packets are stored in the queue until it is

served. Arrival occurs at the beginning of each slot, which is controlled by the feedback

given in the previous slot. We model arrivals as a random process with mean equal to

the feedback value. In simulations, Poisson arrivals with mean arrival rate ai(t) are

used,

ai(t) = min

(
k

xi(t)
,M

)
, for i ∈ {1, 2} (5.6)

where, xi(t) is the queue length of user i at time t, and k, M are arbitrarily chosen

constants. In Figure 5.3, we plot the rate region for the wireless network and the network

utility function U = log(r1)+ log(r2). The network utility is maximized at (4
3
, 2

3
) in the

rate region of the wireless channel. The long term average rate achieved using RRS is

reported in Figure 5.4, which shows that the allocated rates using RRS converges to the

optimal operating point for the network utility function in the wireless network.

50



0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

No. of slots

A
vg

. d
at

a 
ra

te

 

 

User1

User2

User2 theoretical

User1 theoretical

Figure 5.4: Plot of the time average data rate of users with RRS for the feedback con-
trolled arrival process network illustrated in Figure 5.3.

5.3 Energy optimal schedule

In this section, we develop a throughput optimal scheduling policy based on RRS, which

minimizes the average power expenditure. Consider an average arrival rate within the

capacity region of the wireless channel. From the description of the channel distribution

and power allocation policy, we can compute the minimum power required to support

the given arrival process. In our work, we use RRS to estimate the capacity region based

on the channel history. We will then estimate the average arrival rate and compute the

optimal power allocation policy needed to support the estimated arrival process while

minimizing the power expenditure.

We assume an Ergodic arrival process with mean arrival rate, λ, inside the rate

region. The channel process is assumed to be Ergodic with finite state space. In any slot,

the maximum data rate the channel can support is a function of the current SNR (channel

state), and the transmission power. We assume that the base station can transmit data in

finite number of power levels, which give rise to a discontinuous rate-power curve. A

similar model is considered in Neely (2006), with an objective to minimize the average

power expenditure. We propose a generic solution based on RRS and demonstrate its

applicability using an example.
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Define αj,i,k as the fraction of time channel state r̄j is allocated to user i with a rate

rj,i,k using a power Pk. To minimize the average power consumed, we need to find

the optimal {αj,i,k} (schedules), subject to the stability constraint. This problem can be

formulated as follows.
min

∑
j

πj
∑
i,k

αj,i,kPk

s.t. αj,i,k ≥ 0 ∀ i, j, k,∑
i,k

αj,i,k = 1 ∀ j,

λk(t) ≤
∑
j,i

αj,i,krj,i,k

(5.7)

The last inequality guarantees the stability for the arrival process. Here, we assume

that the transmission rate depends only on the transmission power and channel state of

the user and the allocated power rj,i,k. In our proposed extension to RRS, we solve

the optimization problem in every slot using the estimated channel distribution and the

average arrival rate and implement the optimal strategy in the slot.

Example 5.3. Consider a two user example in cellular downlink. Channel condition

for user 1 and 2 can be in GOOD or BAD state. We assume that the channel condition

is correlated across users with state vector R(t) ∈ {(BAD, GOOD), (GOOD, BAD)}

with probability distribution {0.5, 0.5}. Arrival occur at the beginning of each slot with

mean arrival rate vector λ = (0.75, 0.75). In simulations, we use Poisson random

variable to model the arrival process. The base station uses a binary power control

scheme. i.e. we use an ON/OFF model. If the base station is ON, it transmits at a

power of 1 Watt, and this corresponds to a peak rate of 2 Mbps if the channel state is

GOOD, and 1 Mbps if the channel state is BAD. We do not spend any power when the

power control is OFF, i.e., P1 = 1 and P2 = 0. Note that, for the given channel process

and the power control policy, the average arrival rate vector is inside the rate region.

The average power minimization problem for this particular example can be formulated

as follows. Trivially, α1,1,2 = α1,2,2 = α2,1,2 = α2,2,2 = 0 because P2 = 0. Substituting
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Figure 5.5: Plot of the average power spent by RRS to support an arrival rate. The thin
straight line indicates the minimum power required to support the arrival
process.

for P1, P2 and {rj,i,k}, the optimization problem simplifies as shown below.

min α1,1,1 + α1,2,1 + α2,1,1 + α2,2,1

s.t. α1,1,1 + α1,2,1 ≤ 1,

α2,1,1 + α2,2,1 ≤ 1,

0.75 ≤ α1,1,1 + 2α2,1,1,

0.75 ≤ 2α1,2,1 + α2,2,1

(5.8)

Solution to the optimization problem 5.8 yields a minimum average power vector equal

to Pmin = (0.375W, 0.375W ).

The plot of the average power spent as a function of time, for RRS, is reported

in Figure 5.5. The figure shows that RRS stabilizes and can achieve energy optimal

schedule for an arrival rate within the capacity region. By estimating the rate region

and the average arrival rate in each slot, the RRS algorithm finds the energy optimal

schedule in every slot. Due to randomness in arrival and channel process, in some initial

slots, the estimated average arrival rate need not be inside the estimated rate region. In

this case, we schedule the non-empty queue which maximize the services rate in the

slot.
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5.4 Conclusion

In this chapter, we have discussed the use of RRS scheduler to provide QoS in wireless

networks under unsaturated traffic conditions. We have demonstrated the applicability

of RRS for extended arrival rates, feedback controlled arrival process and for energy

optimal strategies. Our use of RRS exploits the arrival and channel history in making

scheduling decision. The scheme is useful in the sense that it imposes no restrictions

on the nature of QoS. This translates to larger freedom to the network operator for

implementing a variety of services available in modern wireless systems.
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CHAPTER 6

Conclusion

In this thesis, we have studied the performance of a greedy opportunistic contention

resolution strategy, MPA, for a variety of network scenarios. For i.i.d. user channel, we

observed that the performance of MPA is approximately optimal. In particular, for the

N = 2 user case, MPA is both average delay optimal and entropy optimal. For N > 2

and for the complete feedback model, we showed that MPA was slightly suboptimal

with respect to delay. We also observed that the entropy optimal strategy and the delay

optimal strategy were not the same.

The performance of MPA was also studied for non-identically distributed channel

and correlated wireless channel. Using analysis and simulation, we showed that the

average delay to contention resolution decreases with asymmetry of the channel distri-

bution. For N = 2 users and for independent and non-identically distributed channel,

we proved that the average delay is upper bounded by 2 minislots (the average delay

of the optimal scheme for the i.i.d. case). Using numerical work, we noted that the

observation holds for large N as well. For the special case of multiplicative and addi-

tive scaling of distributions, we characterized the average delay of MPA as a function

of the scaling. For a correlated wireless channel, we observed that MPA can be strictly

suboptimal and discussed the need for caution.

The opportunistic splitting strategy attempts to identify a random threshold between

the user with the best channel and the user with the second best channel. This permits

a source coding problem on the random threshold with the entropy of the threshold re-

lated to the average delay to resolve contention. Throughout the thesis, we studied the

entropy of the contention resolution strategy along with the average delay of the strat-

egy. We noted that there is a strong correlation between the entropy and the average

delay. We also obtained a bound between the entropy and the average delay. This mo-

tivated us to study a simple entropy minimization formulation to identify average delay

optimal strategies. We observed that the entropy minimization formulation is a concave

minimization problem. Using an example, we noted that MPA is a local minima and



there can be many solutions to the problem. Thus, the average delay minimization is

a difficult problem to study and we may only aim to obtain bounded-optimal strategies

for a network scenario.

In chapter 4, we studied generalizations of the MPA strategy using examples. We

studied network scenarios that permit different thresholds for users and contention ag-

gregation. The examples illustrated the necessity to model the contention resolution

problem based on the correct network objective. Using simulations, we evaluated the

performance of MPA for a variety of network scenarios and compared it with other con-

tention resolution strategies such as polling and channel gain based random access. We

identified scenarios where splitting based algorithms were a good choice in comparison

with the other strategies.

In Chapter 5, we discussed the applicability of a known opportunistic scheduling

strategy called RRS for the unsaturated traffic model. We studied RRS for a number

of interesting network scenarios such as utility maximization for extended arrival rates,

for feedback controlled arrival process and for the energy minimization problem. Using

simulations, we showed that RRS can be a good choice of a scheduler in a variety of

network and channel scenarios.
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