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Abstract

We propose a face recognition method that fuses information acquired from global and local features of the face for improving per-
formance. Principle components analysis followed by Fisher analysis is used for dimensionality reduction and construction of individual
feature spaces. Recognition is done by probabilistically fusing the confidence weights derived from each feature space. The performance
of the method is validated on FERET and AR databases.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Enabling computers to recognize faces is quite a chal-
lenging problem. With society becoming more and more
electronically connected, the capability to automatically
establish identity of individuals using face as a biometric
is becoming increasingly important and essential. In the lit-
erature, various algorithms have been proposed for the face
recognition problem. Among the works based on facial fea-
tures is that of Wu and Huang (1990) who used fiducial
marks extracted from face profiles for recognition. Brunelli
and Poggio (1993) advocate the idea of template matching
for face recognition. A popular approach for face recogni-
tion is based on a compact representation of faces using the
Karhunen–Loeve transform. This is also called principal
components analysis (PCA) or the eigenface method (Turk
and Pentland, 1991). Researchers have also proposed a
combination of PCA and Fisher’s linear discriminant
(FLD) for face recognition (Belhumer et al., 1997). While
PCA is optimal for representation of faces, the FLD uses
class-specific information for higher discriminability. Yet
another popular approach is elastic graph bunch matching
(Wiskott et al., 1997) which uses a complex graph matching
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algorithm for recognition. Recently, multi-modal identifi-
cation techniques have been receiving a lot of attention.
The idea is to integrate different biometric cues such as
face, fingerprint, speech, and gait (Hong and Jain, 1998;
Kittler et al., 1998; Shakhnarovich and Darrell, 2002;
Yacoub et al., 1999) for robustness.

We propose a novel method for face recognition that
combines information from multiple facial features for
improving accuracy and robustness. The work described
here is an extension of the work reported in Srinivasa
et al. (2004). The facial features that we consider are the
grayscale image of the face, the edginess image of the face,
and the eyes. The edginess image is robust to variations in
illumination while the eyes are robust to facial expressions
and occlusions. The idea is to use complimentary informa-
tion for improving overall recognition performance. We
assume that the eye locations are given so that the facial
features can be extracted. Before feature extraction, a block
histogram modification technique is applied to compensate
for local changes in illumination. PCA in conjunction with
FLD is then used to encode the facial features in a lower-
dimensional space. The distance in feature space (DIFS) val-
ues are calculated for all the training images in each of the
feature spaces and these values are used to compute the dis-
tributions of the DIFS values. The distributions of the DIFS
values are very useful in characterizing the differences

mailto:raju@ee.iitm.ac.in


336 A.N. Rajagopalan et al. / Pattern Recognition Letters 28 (2007) 335–341
between imposters and true persons. In the recognition
phase, given a test image, the three facial features are
extracted and their DIFS values are computed in each fea-
ture space. Each feature provides an opinion on the claim
in terms of a confidence value which is measured by integrat-
ing the DIFS distributions of each feature space with respect
to the DIFS value computed in that feature space. The
confidence values of all the three features are then probabi-
listically fused for final recognition. The proposed fusion
method works quite well and yields a significant improve-
ment in recognition over that achievable with any single
feature.

In Section 2, we discuss the eigenface technique. Section
3 describes the global and local facial features used in this
work. Section 4 deals with the construction of individual
feature spaces and the issue of illumination compensation.
A novel approach to fuse information from multiple facial
features is discussed in Section 5. Experimental results are
given in Section 6. The paper concludes with Section 7.
2. Principal components analysis

A face image of size N · N pixels can be viewed as a vec-
tor of dimension N2. However, such a high-dimensional
representation is too detailed. Since facial features are sim-
ilar in overall configuration across individuals, it is possible
to describe faces quite compactly using PCA. Let a face
image f(x,y) from the training set be a 2-D N · N array
of intensity values. Let fi,m be the N2 dimensional vector
representing the mth training image of the ith person. If
in the dataset there are I number of people, each having
M number of images, then we have a total of K = I Æ M

training images. The average image for the entire dataset
is given by w ¼ 1

K

PI
i¼1

PM
m¼1fi;m. An estimate of the covari-

ance matrix C of the face dataset can be obtained as

C ¼ 1

K

XI

i¼1

XM

m¼1

/i;m/T
i;m ð1Þ

where /i,m is the mean subtracted image of fi,m and is given
by /i,m = fi,m � w. The weight vector in the PCA (eigen-
face) space corresponding to the mth training image /i,m

of the ith person can be derived as wi;m ¼ ET
pca/i;m. Here,

Epca ¼ ½e1; e2; . . . ; eK 0 � consists of only the first K 0 significant
eigenvectors of C. These are also called eigenfaces (see
Fig. 1). Since K 0 � N2, the weight vector which represents
the face image in the PCA space is of a low-dimension. The
average weight vector wi in the PCA space for the ith per-
son (or class) is given by
Fig. 1. Some typical eigenfaces.
wi ¼
1

M

XM

m¼1

wi;m ð2Þ

When a new test image pattern T is presented to the sys-
tem, its weight vector is computed as w ¼ ET

pcaðT � wÞ.
The pattern is declared to belong to that face class in the
training set for which kw � wjk is the smallest over all j.

PCA yields projection directions that maximize the total
scatter across all faces. It retains unwanted variations due
to lighting and expressions which limits its performance.
For FERET database, the maximum accuracy of the base-
line PCA (Phillips et al., 2000) is only 80% and with varia-
tions in illumination it drops to 22%.

3. Global and local features

Face recognition approaches that consider only the
entire face as a feature do not take into account just what
other aspects of the face stimuli are important for recogni-
tion (Penev and Atick, 1996). We propose to use global as
well as local features. The motivation for incorporating
local features into a recognition system stems from the fact
that it is possible for humans to recognize a face from only
parts of it. In addition to the entire face image, we consider
two other features; namely, the edginess image of the face,
and the eyes. The edginess image is a global facial feature
that is reasonably robust to illumination. It is a measure
of the change in intensity from one pixel to the next. The
eyes are quite robust to facial expressions and occlusions.
Eyes are essentially unaffected by beards and mustaches,
making them invaluable for the face recognition task. Since
each feature contributes differently, the idea is to utilize the
complementary nature of these contributions to get
improved accuracy. Of course, one must have a novel
way of fusing information.

To extract the edginess image, we employ 1-D processing
(Venkatesh et al., 2002) along two orthogonal directions as
follows. To detect the horizontal component of edginess, a
discrete approximation of the 1-D Gaussian filter is first
used to smooth the image horizontally to reduce the effect
of noise. A discrete approximation of the first-order deriva-
tive of the 1-D Gaussian function is next used in the ortho-
gonal direction (i.e., vertically) to find the horizontal
component of edginess. The vertical component of edginess
is computed in a similar manner by carrying out the above
steps in the orthogonal direction. The final edginess image
is a gray-valued image and is obtained by taking the absolute
sum of the horizontal and the vertical components. The edg-
iness at a pixel gives the magnitude of the gradient of the
intensity at that pixel location in the image.

It must be mentioned here that in order to extract the
facial features, one requires automatic and accurate face
detection in cluttered backgrounds. This is a challenging
research problem in itself and various efforts have been
proposed to tackle this (Rajagopalan et al., 2000). Follow-
ing other works (Phillips et al., 2000), we assume that the
face has been cropped out of a scene. Usually, a face is
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cropped with respect to the eye locations since the separa-
tion between the eyes is independent of facial expressions,
up and down movements of the face, etc.
4. Construction of feature spaces

The three facial features described in the previous sec-
tion are quite high-dimensional and cannot be used
directly. For dimensionality reduction, we apply the PCA
technique to each feature. To provide class-specific discrim-
ination for achieving better recognition accuracy, we
employ Fisher’s linear discriminant (FLD). A face recogni-
tion system must recognize a face from its novel image
despite variations in illumination. For this purpose, we
propose a block histogram method which modifies the his-
togram of a test image in accordance with that of a uni-
formly illuminated reference image.

4.1. Linear discriminant analysis

The Fisher’s linear discriminant (FLD) is a classical
technique in pattern recognition first developed by Fisher
(1936) for taxonomic classification. FLD is an example of
a class-specific method in the sense that it tries to shape
the scatter in order to make it more reliable for classifica-
tion. It involves eigenanalysis of a product of two matrices,
one of which is inverted. To ensure that the matrix to be
inverted is not rank-deficient, we first perform dimensional-
ity reduction using the PCA technique discussed in Section
2. The PCA spaces are derived independently for each fea-
ture. The weight vectors in the PCA space are given as
input to FLD. The FLD analysis that follows is equally
applicable to all the three facial features.

For an I class problem, the between-class scatter matrix
for a given feature is defined as Sb ¼

PI
i¼1ðwi � �wÞðwi � �wÞT

where wi is the average weight vector in the PCA space for
the ith class. The quantity �w is the average weight vector of
all the classes in the PCA space of that feature and is given
by �w ¼ 1

I

PI
i¼1wi. The within-class scatter matrix is defined

as Sw ¼
PI

i¼1ð 1
M

PM
m¼1ðwi;m � wiÞðwi;m � wiÞTÞ where wi,m is

as defined in Section 2. Mathematically, FLD selects the
projection matrix Efld so as to maximize the ratio of
the determinant of the between-class scatter matrix to the
within-class scatter matrix of the projected samples, i.e.,
the projection matrix Efld is chosen such that

Efld ¼ argF max jF TSbF j
jF TSwF j

¼ ½f1; f2; . . . ; fk� ð3Þ

Eigenvector fi can be determined by solving the generalized
eigenvalue problem (Belhumer et al., 1997) Sbfi = kiSwfi,
i = 1,2, . . . ,k. Since there are at most I � 1 nonzero gener-
alized eigenvalues, an upper bound on k is I � 1.

The projection matrix Eopt which is a combination of the
eigen and Fisher projections is given by ET

opt ¼ ET
fldET

pca.
Thus, the final feature vector corresponding to the ith per-
son with M training images is computed as
w0i ¼
1

M

XM

m¼1

ET
opt/i;m ¼

1

M

XM

m¼1

ET
fldET

pca/i;m ð4Þ

where /i,m is the mean subtracted training image. These
steps are repeated independently for each of the three facial
features to construct the three feature spaces.
4.2. Block histogram modification

Various approaches have been proposed in the literature
to alleviate the effect of illumination variations for face rec-
ognition (Adnin et al., 1997). However, till to date, a revo-
lutionary solution remains elusive. Among the existing
methods, the illumination cones technique (Georghiades
et al., 2001) outperforms most other methods. But it is
computationally intensive and requires at least seven
images per person. We propose here a simple but effective
block histogram modification (BHM) technique for illumi-
nation compensation.

Assume that a reference image Y taken under well-con-
trolled lighting conditions is available. The goal is to bring
the local illumination levels of an input image X to those of
the reference image Y. Both the images are assumed to be
of the same size (N · N pixels). Consider a block image BI

from X with pixel locations ranging from 1 to M and also a
block image BR from Y at the corresponding pixel loca-
tions. Let px(x) and Fx(x) be the probability density func-
tion and the distribution function, respectively, of the
intensity variable x (P0) belonging to the input block
image BI. Also, let py(y) and Fy(y) be the probability den-
sity function and the distribution function, respectively,
of the intensity variable y (P0) belonging to the reference
block image BR. Note that F xðxÞ ¼

R x
0

pxðuÞdu while
F yðyÞ ¼

R y
0

pyðuÞdu. The final output block image BO with
pixel intensity value z P 0 will have the desired density
py(y) and distribution Fy(y) provided z ¼ F �1

y ½F xðxÞ�.
If histogram modification is done blockwise indepen-

dently, it can lead to artifacts. To smooth out intensity
changes across adjacent blocks, we weight and overlap
the blocks. This prevents edges and patches from appearing
in the illumination compensated image. The histogram
modified block image intensity values are scaled with a
window to yield

BOðn;mÞ ¼ BOðn;mÞUðn;mÞ; 1 6 n;m 6 M ð5Þ

where the windowing filter Uðn;mÞ ¼ 4nm
M2 for 1 6 n;m 6 M

2
;

4mðM�nþ1Þ
M2 for M

2
< n 6 M ; 1 6 m 6 M

2
; 4nðM�mþ1Þ

M2 for 1 6

n 6 M
2
; M

2
< m 6 M ; and 4ðM�nþ1ÞðM�mþ1Þ

M2 for M
2
< n;m 6 M .

Note that the window has been chosen such that the sum
of the weights in the overlapping region is 1. By simulta-
neously shifting the blocks in both the horizontal and the
vertical directions in steps of M

2
þ 1 pixel locations, and

adding pixel intensity values in overlapping regions, we ar-
rive at the final image Z.

In Fig. 2, we give examples of images taken under differ-
ent illumination directions and the corresponding intensity



Fig. 2. Images before and after illumination compensation using BHM.
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normalized images using our method. The reference image
was the same. As can be seen, the method works quite well.

5. The fusion approach

Once the feature spaces are constructed, an important
quantity of interest is the distance in feature space (DIFS).
Consider (say) the face feature space. Given a face image c,
its weight vector in the PCA–FLD feature space can be
derived as w0 ¼ ET

optðc� wÞ where all the terms are as
described earlier. The DIFS value which measures how well
c matches with the ith class is given by kw� w0ik. The con-
cept of DIFS is applicable to all three feature spaces. We
now propose a fusion strategy to integrate information
coming from face, edginess image of the face, and eyes.
The methodology involves computing the distributions of
the DIFS values at different ranks in each feature space.
The distributions are computed empirically from the train-
ing data as explained below.

Let us consider a single feature (say) face. As discussed
in Section 4.1, the face training set is used to construct the
PCA–FLD space for faces. Let �a (a random variable with
density function fa(�a)) represent the DIFS value of all indi-
viduals’ training images with their own classes, i.e., fa(�a)
describes the distribution of the DIFS value for the genuine
case. It is also possible to project every image in the train-
ing set onto the PCA–FLD face space which would yield
DIFS values for that image with respect to all the individ-
uals in the database. Without loss of generality, let us
assume that �1,�2, . . . ,�I are the DIFS values arranged in
an increasing rank order and that these are statistically
independent. Let �i (a random variable with density func-
tion fi(�i)) denote the DIFS value at rank i. Note that both
�a and �i are based on the entire training set and are not
individual-specific. The relative difference in the DIFS
value at rank i is defined as

Di ¼ �i � �a; 1 6 i 6 I ð6Þ
where I is the total number of individuals/identities/classes
in the database. The distribution fi(Di) at rank i is then
given by

fiðDiÞ ¼
Z 1

�1
zið�i;DiÞd�i

where

zið�i;DiÞ¼
I !

ðI� iÞ!ði�1Þ!F ð�iÞi�1½1�F ð�aÞ�I�if ð�iÞf ð�aÞ ð7Þ

Here, zi(�i,Di) describes the joint distribution of the ith rank
DIFS value �i and its distance from the true DIFS value �a.
The term f(�i) is the probability density function of the
absolute DIFS value at rank i and F(�i) is the correspond-
ing distribution function. More details on the distribution
of distances can be found in Gumbel (1958). Since closed
form expressions for f(�i), f(�a), F(�i), and F(�a) are not
available for the problem on hand, we derive fi(Di) and
f(�a) empirically by using the DIFS values for �i and �a from
the images in the training set. Since there are I individuals
each having M training images, we have I Æ M DIFS values
or sample realizations for the random variable �a and so
also for �i for each rank i. Note that the mean value of
the DIFS distributions fi(Di) will increase with rank i.

When a new test image c arrives, its DIFS values
�01; �

0
2; . . . ; �0I with respect to all individual classes in the

PCA–FLD face space are arranged in an increasing order.
Let �a

0
denote the DIFS value for the top rank. The relative

DIFS values D0i can be computed using Eq. (6) as
D0i ¼ �0i � �a

0
. For the given image, the confidence weight

assigned for the hypothesis that the image belongs to that
of the identity/class at rank i is computed as

P faceðiÞ ¼ P iðD0iÞ � P orderðiÞ; 1 6 i 6 I ð8Þ

In the above equation, P iðD0iÞ describes how close the ith
rank DIFS value is to the top rank and is given by
P iðD0iÞ ¼

R1
D0i

fiðDiÞdDi. The term Porder(i) assigns an appro-

priate weight depending on the rank position and the top
rank DIFS value. If the top rank DIFS value for the given
image c is very small, then that image will most likely cor-
respond to the actual identity. Hence, Porder(i) should fall
very sharply as rank i increases. On the other hand, if the
top rank DIFS value is large, then the top person may
not be the actual identity, and hence the confidence weight
should fall gradually to accommodate even individuals at
lower ranks (i.e., higher values of i). Thus, depending on
the top rank DIFS value �a

0
, we give relative weightage to

the person at rank i using the gamma distribution. The
gamma distribution is given by

P orderðiÞ ¼
b

cðkÞ
i� 1

h

� �ðkb�1Þ

eð�
i�1
h Þ; h ¼ 1

p
; 1 6 i 6 I ð9Þ

For our problem, p ¼
R1
�a
0 f að�aÞd�a. We define Porder(i) with

k = 1 and b = 1. If p = 1, the curve given by the above
equation falls very sharply. However, when the top rank
identity is not a genuine one, the combined effect of
P iðD0iÞ and Porder(i) is to allow to accommodate identities
at lower ranks also.

In an exactly similar manner, we compute Pedge(i) and
Peye(i) for the other two features. For mathematical conve-
nience, the three facial features (face, edginess, and eyes)
are assumed to be independent. If I1, I2, . . . , II are the iden-
tity indicators of the individuals in the database, then the
final confidence weight of an identity Ii is obtained by mul-
tiplying the confidence weights contributed from each fea-
ture space of that identity, i.e.,

PðI iÞ ¼ P faceðI iÞ � P edgeðI iÞ � P eyeðI iÞ ð10Þ
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The identity ID(c) for a given image c is determined by the
following criterion:

IDðcÞ ¼
Ik if P ðIkÞ > s

Imposter otherwise

�

where

P ðIkÞ ¼ maxfP ðI1Þ; P ðI2Þ; . . . ; P ðIIÞg ð11Þ
Threshold s is chosen such that an untrained person will
not be recognized at all.

6. Experimental results

We demonstrate the performance of the proposed
method on the standard FERET and AR face databases.
The required facial features were cropped with reference
to the eye locations provided along with the database.
Fig. 3 shows the extracted facial features for an individual
in the dataset. The eye locations were used to account for
rotation and scaling, when necessary. Before constructing
the feature spaces, all the images were intensity normalized
using the BHM technique described in Section 4.2.

The FERET database contains 14,126 images comprising
of 1199 individuals. Since the images are acquired during
different photo sessions, this dataset contains significant
Fig. 3. (a) Face image, (b) edginess image, and (c) the cropped eyes.
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Fig. 4. CMS plots for (a) FB, (b) Duplicate
variations in pose, illumination and facial expressions. The
FA images (regular frontal faces of persons) were used as
the gallery set (1196 images), whereas four categories of
probe sets were used for comparison against the gallery
set. The first probe category was the FB probe set (1195
images). This indicates an alternative frontal image, taken
seconds after the corresponding FA images. The second
probe category contained all duplicate frontal images and
is referred to as the Duplicate I probe set (722 images).
The third category of probe set is the FC set (194 images)
which contains images taken on the same day but with dif-
ferent camera and illumination. The fourth category of
probe set is called the Duplicate II set (234 images). These
images are duplicates of FA images but taken at least one
year between the acquisition of the gallery images (FA)
and the probe images.

A commonly used performance measure for face recog-
nition is the cumulative match score (CMS), i.e., the recog-
nition accuracy in the top n ranks. The CMS plots for the
top n ranks are shown in Fig. 4 for all the four probe cat-
egories and for different features viz., face, edginess, eyes,
and the fusion case. For n = 1 the plots clearly reveal the
advantage of using fusion. The fusion method performs
consistently well for all the probe categories and yields an
average improvement of about 5% as compared to the best
accuracy achievable with any individual feature. In Table
1, we have also compared the performance of our method
with the partially automatic face recognition algorithms
(Phillips et al., 2000). The recognition accuracy for these
algorithms was deciphered from the plots therein. From
the table, we observe that the performance of the proposed
method is comparable to the best reported results. For the
FB, Duplicate I and Duplicate II probe sets, our method
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Table 1
Recognition accuracy for different algorithms on the FERET database

Probe set % Recognition accuracy at rank 1

Fusion UMD 97 USC MIT 96

FB 98.3 96.5 95 94.8
Duplicate I 68 46 58 57

FC 59 59 82 32
Duplicate II 54 21 46 34
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Fig. 6. CMS curves for the AR database.
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has better accuracy compared to others. On the FC probe
set, we come second.

The performance of our system was also tested on
untrained people to check how well it rejects unknown per-
sons. This was done using false acceptance rate (FAR) and
false rejection rate (FRR) curves. The relation between the
two rates is controlled by the acceptance threshold of the
system. The value of FRR and FAR at the point where
the plots cross is called the equal error rate (ERR). For
good recognition, the ERR value should be as small as pos-
sible. The system was trained with 482 out of 1199 individ-
uals. A total of 1446 images were used for training, three
images per subject. For the FAR plot, 1440 images were
used as probe from the remaining 717 untrained individu-
als. For the FRR plot, 304 images were used as probe from
482 trained individuals. The FAR and FRR plots for face,
edginess, eyes, and the fusion method are shown in
Fig. 5(a)–(d), respectively. For face, edginess, and eyes,
the acceptance threshold value is in terms of the top rank
DIFS value, whereas for the fusion method it is in terms
of the final confidence value. Note that the ERR values
for face, edginess, and eye are quite high (31%, 30%, and
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Fig. 5. FAR and FRR plots for FERET database: (a) fac
34%, respectively). In contrast, the ERR value for the
fusion method is only 12%.

We also conducted experiments on the AR face data-
base (Martinez and Benavente, 1998) which contains rich
variations in expressions and many facially occluded
images. During training, we selected 630 images comprising
of 126 individuals with five images per subject. The recog-
nition performance was tested using a probe set containing
1759 images of all the trained individuals. The images in
the test set were different from the training set. The CMS
plots are shown in Fig. 6 for different features viz., face,
edginess and eyes individually, as well as for the fusion
case. We observe that for n = 1 there is an improvement
of almost 6% with fusion over other individual features.

The FAR and FRR plots for face, edginess, eyes, and
fusion are shown in Fig. 7(a)–(d), respectively. While com-
puting FAR plots, the system was trained with 90 persons
out of the 126 members in the database. A total of 380 probe
images of the remaining untrained people were used for test-
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Fig. 7. FAR and FRR plots for the AR database using (a) face only, (b) edginess only, (c) eyes only, and (d) fusion.
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ing. While computing the FRR values, the system was again
trained with the complete dataset and a probe set of 1209
images comprising of all 126 persons was used. We observe
that the ERR values for face, edginess, and eyes are high
(25%, 29.5%, and 25%, respectively). In contrast, the ERR
value for the fusion method is much lower and is only 10%.

7. Conclusions

We have proposed a new methodology that combines
information gathered from multiple facial features, namely,
the face, the edginess image of the face, and the eyes for
robust and accurate face recognition. The distributions of
the DIFS values in each feature space yield confidence
weights for performing recognition. To compensate for
changes in illumination, a block histogram modification
method was advocated. When the fusion method was
tested on FERET and AR databases, its recognition accu-
racy as well as its ability to reject imposters was found to be
quite good.
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