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Abstract

In this paper, we propose a signature verification system based on Dynamic Time Warping (DTW). The method works by extracting
the vertical projection feature from signature images and by comparing reference and probe feature templates using elastic matching.
Modifications are made to the basic DTW algorithm to account for the stability of the various components of a signature. The basic
DTW and the modified DTW methods are tested on a signature database of 100 people. The modified DTW algorithm, which incorpo-
rates stability, has an equal-error-rate of only 2% in comparison to 29% for the basic DTW method.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Signatures form a special class of handwriting in which
letters or words may not be clearly legible. Signatures often
incorporate complex geometrical patterns that make them
a relatively secure means for authentication, attestation
and authorization in legal, banking, and other high security
environments. The signature verification problem pertains
to determining whether a particular signature is verily writ-
ten by the same person as is claimed and whether forgeries
can be determined. The shape of a signature remains rela-
tively the same over time when it is written down on an
established frame like a bank document. The main diffi-
culty in the description of pertinent features lies in the local
variability of the writing trace of the signature which varies
from person to person.

There are on-line as well as off-line techniques for signa-
ture verification. In this paper, we focus on the off-line
approach. Various off-line techniques have been proposed
in the literature for the signature verification problem.
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These include techniques based on hidden Markov Models
(Justino et al., 2000), directional pdf (Drouhard et al.,
1996), stroke extraction (Lau et al., 2002), synthetic dis-
criminant functions (Wilkinson et al., 1991), granulometric
size distributions (Sabourin et al., 1997), neural classifiers
(Bajaj and Choudhary, 1997; Huang and Yan, 1997), wave-
lets (Ramesh and Murthy, 1999), grid features (Qi and
Hunt, 1994), elastic matching (Bruyne and Forre, 1986),
and Dynamic Time Warping (DTW) (Herbst and Coetzer,
1998; Yoshimura and Yoshimura, 1997). Signature verifi-
cation by 2-D elastic matching within the regularization
theory framework is described in (Mizukami et al., 2002).

We propose a new off-line signature verification method
that uses DTW to match suitably derived 1-D features
extracted from digitized images of signatures. Our method
is different from that of Yoshimura and Yoshimura (1997)
which uses DTW to segment the signature into a fixed num-
ber of components and computes a component-wise dissim-
ilarity measure. We also suggest modifications to the DTW
algorithm to account for the stability of various sections of
a signature. The need to include stability was originally sug-
gested by Dimauro et al. (2002) for the on-line signature
verification problem. We have suitably adopted it for the
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off-line method. This primarily involves assigning weights to
various components of a signature depending on their stabil-
ity. We quantify stability of a component by using the
knowledge of the warping paths between signatures of the
same person. These weights are then used to modify the cost
function involved with the warping paths. We show that the
performance of the verification system improves signifi-
cantly with the incorporation of the stability factor.

This paper is organized as follows. Image pre-processing
and extraction of 1-D features from signature images is dis-
cussed in Section 2. In Section 3, we describe our basic DTW
algorithm for signature verification. This is followed by the
modified DTW algorithm in Section 4. Experimental results
are given in Section 5 while Section 6 concludes the paper.
Fig. 1. Examples of (a) genuine signatures; (b) casual forgeries of
signatures in (a); (c) skilled forgeries (top) of original signatures (bottom)
and (d) genuine probe signatures (not used in training on top) along with
images from training set (bottom).
2. Pre-processing and feature extraction

In this section, we discuss geometric image alignment
and extraction of 1-D features from signature images. Since
a standard signature database is not available in the public
domain, we built our own database to test the effectiveness
of our system. Our signature database comprises of 1431
signatures collected from 100 people. Each individual was
asked to provide 10 samples of his/her signature for train-
ing. We collected 300 samples of casual forgeries (3 for
every person in the database) and 75 genuine probe signa-
tures for testing. We also collected a set of 56 skilled forg-
eries. Sample signature images for each of these categories
are given in Fig. 1. The signatures were collected on A4
sheets with boxes of size 2 cm · 8 cm, big enough to accom-
modate large signatures. An HP Scanjet 4400C was used to
scan and digitize the images. The images were scanned at
150 dpi resolution and stored in bitmap format.

The scanned images may not be properly aligned. Hence,
they must be pre-processed to account for any changes in
orientation. Geometric correction is a necessary step before
template matching can be done using DTW. The effective-
ness of two types of pre-processing methods was investi-
gated – the Maximum Length Vertical Projection (MLVP)
method and the Minimum Length Horizontal Projection
(MLHP) method. Both methods involve rotating the signa-
tures by an angle and making decisions based on the lengths
of the projections.

Let ‘‘I0’’ refer to the scanned image and ‘‘Ih’’ refer to the
image rotated by an angle ‘‘h’’. For practical purposes, we
assume that the maximum variation in h is from �30� to
30�. All the images under discussion span from the highest
to the lowest non-zero pixel and the left-most to the right-
most non-zero pixel. All indices are with reference to the
top-left corner of the image which is represented by (1, 1).
Fig. 2. The original signature (left) and its geometrically aligned version
using MLVP (right).
2.1. The MLVP method

The vertical projection of an image is defined as

vhðjÞ ¼
X

i

Ihði; jÞ: ð1Þ

We pick that ‘‘Ih’’ as the reference template whose vertical
projection has the maximum length. In Fig. 2, we show a
signature before and after geometric alignment using



Fig. 3. The original signature (left) and its aligned version using MLHP
(right).
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MLVP. The image on the left is the original scanned signa-
ture and the image on the right shows the signature after
alignment.
2.2. The MLHP method

The horizontal projection of an image is defined as

hhðiÞ ¼
X

j

Ihði; jÞ: ð2Þ

From among these, we pick that ‘‘Ih’’ as the reference tem-
plate whose horizontal projection is of minimum length.
Fig. 3 shows an image that has been geometrically aligned
using MLHP.

Both MLVP and MLHP perform satisfactorily for
image alignment. We have chosen MLHP in the pre-pro-
cessing stage of our method as its performance was found
to be marginally better when used in conjunction with the
modified DTW algorithm.

The 1-D features that are typically extracted for a signa-
ture image include vertical projection (VP), horizontal pro-
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Fig. 4. The warping grid with the reference template and the probe template al
plotted. The signatures from which feature templates have been extracted are
jection (HP), top contour, bottom contour, envelope width,
and contour ratio (Bajaj and Choudhary, 1997). Among
these, we selected VP as the primary 1-D feature to be used
for verification. The vertical projection (vh) is the sum of
pixels along the columns of a binary image. To make the
feature sensitive to changes in scale, the signal is normal-
ized by the square root of the length of the vertical projec-
tion. It is well-known that the vertical projection is a stable
feature with good resolving power (Bajaj and Choudhary,
1997).
3. Dynamic time warping for signature verification

The Dynamic Time Warping (DTW) algorithm which is
based on dynamic programming finds an optimal match
between two sequences of feature vectors by allowing for
stretching and compression of sections of the sequences.
This feature of the algorithm makes it suitable for various
speech recognition applications (Sakoe and Chiba, 1978).

For the signature verification problem, we extract the
1-D VP feature from the signature images. We pairwise
match a reference template with a probe template by com-
puting a measure of variation or dissimilarity between the
two templates. The non-linear matching between the two
1-D templates is achieved on a rectangular grid as indicated
in Fig. 4.

The two templates, ‘~a’ of length ‘I’ extracted from the
probe signature and ‘~r’ of length ‘J’ extracted from the ref-
erence signature are aligned along the x-axis and the y-axis,
80 120 160 200 240 280

Warping Grid

igned along the y-axis and x-axis, respectively. The least cost path has been
also shown.
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Fig. 5. Warping grid for I = 48 and J = 32. The feasible region is
determined by the global path constraints as shown. The end-point
constraints ensure that the points (1,1) and (I,J) are part of the warping
path.
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respectively, as shown in Fig. 4. For convenience, we
always use the shorter template along the y-axis. Each
intersection on the grid is defined as a node (i, j) represent-
ing a match of the ith component of~a with the jth compo-
nent of ~r. The cost matrix associated with the grid stores
the value of the cost function associated with matching
the ith component of~a (extracted from the probe signature)
with the jth component of~r (extracted from the reference
signature). Let the cost function be represented by df(i, j).
The cost at dummy node (0, 0) is defined as ‘zero’. All the
warping paths start from this dummy node and df(0,0) = 0.

We identify a path starting from (0, 0) to (I,J) such that
the least cost is incurred while traversing the grid between
the two points. This would provide us with a match with
the least cost of variation or dissimilarity measure. We
make a reasonable assumption that the starting and ending
pixels of the two signatures being compared match. The
cost thus computed can be used for comparison with sim-
ilar costs computed using signatures in the training set.

A ‘path’ is defined as a concatenation of node pairs
extending from (ik� 1, jk� 1) to (ik, jk). The variables ‘ik’
and ‘jk’ indicate the indices of 1-D VP feature vectors ~a
and ~r (extracted from the signatures) at instance ‘k’ of
matching. A path starting from (0,0) and ending at (ik, jk)
has an overall cost associated with it. We use D(ik, jk) to
denote this type of cost, and it is defined as

Dðik; jkÞ ¼ Dðik�1; jk�1Þ þ df ðik; jkÞ: ð3Þ

Since node (0,0) is the dummy starting node for all
paths, D(0,0) = 0.

By an iterative process, we find that

Dðik; jkÞ ¼
Xk

m¼0

df ðim; jmÞ: ð4Þ

The problem can be reduced to finding a sequence of
nodes (ik, jk) which minimizes the accumulated cost for a
complete path ending at node (I,J):

D�ðik; jkÞ ¼ min Dðik�1; jk�1Þ½ � þ df ðik; jkÞ

¼ min
Xk

m¼0

df ðim; jmÞ
" #

: ð5Þ

For the final cost, we substitute in the equation
(iK, jK) = (I,J).

Using the above formulation, the matching problem can
be reduced to finding the path corresponding to the least
cost of variation or the least dissimilarity measure between
vectors representing 1-D VP features extracted from the
probe and reference signatures.

The dynamic programming algorithm as formulated
above is computationally intensive and the process can be
speeded up by using a priori information about the tem-
plates being matched. The paths in the search space can
be considerably pruned by application of certain con-
straints. We discuss these constraints below.
3.1. End-point constraints

The starting point and the ending point of the warping
path are fixed at (0,0) and (I,J). We assume that the first
and last set of non-zero pixels of the signatures to be com-
pared match as shown in Fig. 5.

3.2. Continuity constraint

The continuity constraint ensures that there is no break
in the path, i.e.,

ik � ik�1 ¼ 1: ð6Þ

In other words, matching is accomplished along the axis of
the feature extracted from the probe signature. This con-
straint would also imply that ‘K’ in Eq. (5) is the same as ‘I’.

3.3. Monotonicity constraint

The sequence of characters in a signature is constant.
The monotonicity constraint requires the characters to be
clustered in monotonically increasing order, which means

jk � jk�1 P 0: ð7Þ
3.4. Global path constraint

This constraint is used to restrict the extent of compres-
sion or expansion of the features extracted from the signa-
tures. The spatial variability can be considered to be
limited which implies that we can prune the search space.
We use a slope constraint to reduce the legal search region
as indicated in Fig. 5. The slope parameter is a measure of
the maximum allowable stretch or the compression. It is
implemented as shown below:
max J ¼ minðslop � i� slopþ 1; slopinv � i

� slopinv � I þ JÞ; ð8Þ
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min J ¼ maxðslopinv � i� slopinvþ 1; slop � i

� slop � I þ JÞ; ð9Þ
where ‘slop’ is the maximum allowed slope of the warping
path, slopinv = (slop)�1, ‘i’ is the index along the feature
extracted from the probe signature, ‘max J’ and ‘minJ’ rep-
resent the maximum and minimum permissible spatial indi-
ces of the legal search region at point ‘i’.

We have used a simple distance function throughout for
analysis, which is

df ði; jÞ ¼ jaðiÞ � rðjÞj: ð10Þ
The final warping cost D(I,J) is normalized by the length of
the feature extracted from the reference signature. This
change enhances the resolution based on the warping cost.
We have

cost ¼ 1

J
� DðI ; JÞ: ð11Þ
4. Modified DTW algorithm

In automated signature verification, signature variability
is a critical aspect which can affect verification performance.
According to Dimauro et al. (2002), the basic task of repro-
ducing a signature can be broken down in to several sub-
tasks. Each subtask concerns the imitation of one segment
of a signature and consists of three steps performed serially:
perception, preparation and execution. Hence, the general
format of difficulty in imitation of a signature is given by
the difficulty in perceiving a spatial target and executing
the subtask. Dimauro et al. (2002) proposed a new approach
for on-line verification by quantifying the stability of various
components of a signature and by making comparisons
between the genuine signatures of a writer. The approach
is based on the assumption that a highly stable component
of a signature would be more difficult to reproduce than a
highly variable component. Thus, local stability can be used
to weight the strength of each part of a signature.

We propose a modification to the basic DTW algorithm
described in Section 3 that incorporates a stability factor
for better off-line signature verification.

Let S = Srjr = 1,2, . . .,n be a set of ‘n’ templates of the
same writer. By a template, we mean the same 1-D VP fea-
ture extracted from each of the writer’s signatures. Each Sr

can be described as:

Sr ¼ zrð1Þ; zrð2Þ; . . . ; zrðMrÞð Þ: ð12Þ

Here ‘zr(i)’ denotes the value of the function represent-
ing the extracted 1-D feature at spatial index or position
‘i’. The variable ‘Mr’ represents the length of the feature
extracted from the signature ‘Sr’.

Let Sr and St be two genuine signatures of the set
(Sr,St 2 S). A warping path ‘W’ between Sr and St is any
sequence of couple of indices identifying points of Sr and
St to be joined, i.e.,

W ðSr; StÞ ¼ ði1; j1Þ; ði2; j2Þ; . . . ; ðiK ; jKÞ; ð13Þ
where (k: ik, jk 2 N, 1 6 k 6 K, 1 6 ik 6Mr, 1 6 jk 6Mt,
K = max(Mr,Mt)). If we consider a distance measure
d(ik, jk) = df(z

r(ik), zt(jk)) between points of Sr and St, we
can associate to W(Sr,St) a cost of variation or a dissimilar-
ity measure (also refer to Eq. (4)):

DW ðSr ;StÞ ¼
XK

k¼1

dðik; jkÞ: ð14Þ

The matching procedure detects the warping path
W*(Sr,St) = (i1, j1)*, (i2, j2)*, . . ., (iK, jK)* which satisfies the
imposed constraint and results in

DW �ðSr ;StÞ ¼ min
W ðSr ;StÞ

½DW ðSr ;StÞ�: ð15Þ

From W*(Sr,St) we identify Direct Matching Points
(DMPs) of Sr with respect to St. A Direct Matching Point
(DMP) of a signature Sr with respect to St is a point which
has a one-to-one coupling with a point of St. In other
words, let zr(p) be a point of Sr coupled with zt(q) of St;
zr(p) is DMP of Sr with respect to St if and only if:

(1) 8p̂ ¼ 1; . . . ;Mr.
p̂ 6¼ p) zrðp̂Þ is not coupled with zt(q).

(2) 8q̂ ¼ 1; . . . ;Mt.
q̂ 6¼ q) ztðq̂Þ is not coupled with zr(p).

A DMP indicates the existence of a region of the rth sig-
nature which is roughly similar to the corresponding region
of the tth signature. Therefore, for each point of Sr, a score
is introduced according to its type of coupling with respect
to the points of St, i.e.,

8p¼ 1;2;3; . . . ;Mr : scoretðzrðpÞÞ ¼
1 if zrðpÞ is a DMP;

0 otherwise:

�
ð16Þ

The local stability function of Sr is defined as

8p ¼ 1; 2; . . . ;Mr : IðzrðpÞÞ

¼ 1

n� 1

Xn

t¼1
t 6¼r

scoret ðzrðpÞÞ: ð17Þ

Please refer to Appendix A for an illustrative example of
this idea.

Once the stability measure of the various components of
the signature have been determined, this information needs
to be incorporated into the computation of the ‘Dissimilar-
ity measure’. Let Sr refer to the feature extracted from the
reference signature which is used to check the validity of
the feature St extracted from the probe signature. Eq.
(13) represents the match as computed using the Dynamic
Time Warping algorithm. Eqs. (10) and (11) are still valid.
We modify Eq. (14) to incorporate stability:

DW ðSr ;StÞ ¼
XK

k¼1

IðzrðikÞÞdðik; jkÞ: ð18Þ

The modified score thus computed takes into account
the stability of different sections of a person’s signature
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and hence serves as a better measure of dissimilarity
between two signatures than the one given by Eq. (14).
Our results in Section 5 also support this claim.
Table 4
Effectiveness of the two verification systems in identifying casual forgeries,
skilled forgeries and genuine signatures as a function of the threshold
value

Hard
threshold

False acceptance
(%) (casual

False acceptance
(%) (skilled

True rejection (%)
(non-training set)
4.1. Methodology for verification

In the training phase, the thresholds on the dissimilarity
measures for each of the signatures are computed. The pro-
cess of computing the thresholds can be broken down into
the steps shown in Table 1.

Thresholds for every sample of all the writers are com-
puted and stored for comparison with the probe signatures.
Table 1
Sequence of steps involved in computing the thresholds for the dissim-
ilarity measure

1. "i, j 6 N and i 5 j

Compute the warping path W(Si,Sj) between Si and Sj

Here Si and Sj are signature samples of the same writer
and ‘N’ samples are used for analysis of every writer

2. Compute the stability measure I(zi(p)) using Eq. (17) for all i

3. Compute the dissimilarity measure DW ðSi ;SjÞ as given by Eq. (18)
4. Compute the threshold score

si ¼ maxðDW ðSi ;SjÞÞ 8i; j 6 N

Table 2
Verification of the probe signatures

1. Compute wi ¼ 1
si

DW ðSpr ;SiÞ for all i 6 N

2. Compute score ¼ 1
N

PN
1 wi

3. Make a decision based on the value of ‘‘score’’

Table 3
Example of computation of dissimilarity score of a probe signature Pr1

Img I1 I2 I3 I4 I5

Pr1 0.071 0.065 0.083 0.078 0.
Threshold 0.064 0.070 0.071 0.068 0.
Ratio 1.109 0.929 1.169 1.147 1.

Score 1.0977
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Fig. 6. Plot showing the resolving power of the vertical projection using the D
and dots signatures of other people. Threshold values for genuine signatures a
Let Spr represent a probe signature. Analysis of the probe
signature proceeds as shown in Table 2.

An example of analysis of a probe signature is given in
Table 3. An averaging approach was adopted to compute
the final ‘score’ as this would reduce the effect of any freak
I6 I7 I8 I9 I10

082 0.075 0.090 0.085 0.079 0.091
063 0.080 0.077 0.072 0.081 0.086
302 0.938 1.169 1.181 0.975 1.058
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TW (left) and modified DTW (right). Triangles indicate genuine signatures
re also given.

(m) forgeries) forgeries)

DTW Modified
DTW

DTW Modified
DTW

DTW Modified
DTW

1.0 29.3 0.00 33.9 0.00 42.7 89.3
1.1 30.6 0.00 42.9 0.00 25.3 81.3
1.2 31.6 0.00 51.8 0.00 20.0 64.0
1.3 34.3 0.00 57.1 5.36 13.3 53.3
1.4 35.3 0.33 67.8 12.5 10.6 44.0
1.5 39.0 0.33 75.0 19.6 5.33 26.6
1.6 41.0 0.33 82.1 25.0 5.33 21.3
1.7 44.3 1.33 87.5 28.6 2.66 12.0
1.8 46.3 1.66 94.6 30.4 2.66 5.33
1.9 51.0 2.33 96.4 37.5 2.66 0.00
2.0 54.3 3.66 96.4 51.8 0.00 0.00
2.1 55.6 4.33 98.2 57.1 0.00 0.00
2.2 58.6 6.33 100 71.4 0.00 0.00
2.3 63.0 7.66 100 82.1 0.00 0.00
2.4 65.6 9.00 100 85.7 0.00 0.00
2.5 68.0 10.0 100 85.7 0.00 0.00
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Fig. 7. Comparative plot showing the false acceptance percentage of casual as well as skilled forgeries and the true rejection percentage of genuine
signatures as a function of m for the basic DTW (left) and modified DTW (right) methods.
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instances of the vertical projections being similar to some
of the training samples. This would require the probe sig-
nature to be consistently similar to the training templates
to qualify as a ‘‘genuine signature’’.

A simple hard thresholding scheme with a threshold
value, say ‘m’, was adopted and all probe signatures with
scores more than this value were classified as ‘‘forgeries’’.

5. Experimental results

The 1-D VP feature was analyzed using both the DTW
and the Modified DTW algorithms. An example of the
effectiveness of the 1-D VP feature is shown in Fig. 6 for
both the algorithms. From the figure, we note that the
modified DTW performs much better than the basic
DTW. It is able to better separate other signatures from
the genuine ones.

All three types of probe signatures – genuine signatures,
casual forgeries and skilled forgeries were next used for
analyzing the effectiveness of the system. A simple hard-
thresholding mechanism for decision-making was used as
described in Section 4.1. The choice of the threshold value
(‘‘m’’) is critical for the performance of the system. The rel-
ative false acceptance and true rejection rates for casual
forgeries, skilled forgeries and genuine signatures (not in
the training set) for different values of the threshold value
(‘‘m’’) are listed in Table 4. Fig. 7 shows the comparison
graphically.

In Fig. 7, when m is much larger than 1, the false accep-
tance rate for skilled forgeries is higher compared to casual
forgeries for both the algorithms, as expected. When m

approaches 1, it becomes increasingly difficult even for
skilled forgeries to get through the system. Hence, as m is
decreased to 1 the false acceptance curves corresponding
to casual and skilled forgeries merge. From the plots, it is
clear that the performance of the modified DTW is supe-
rior to the basic DTW method. Considering the plot for
modified DTW in Fig. 7, we find that with a threshold
value of 1.88, the system is able to distinguish casual forg-
eries and genuine signatures with an error rate of about
2%. The corresponding skilled forgery detection accuracy
is about 65%. However, since the cost associated with a
false acceptance is much more than a true rejection, the
threshold value for a practical system would have to be
smaller. It can also be observed that around a threshold
value of 1.5, the system has close to 0% acceptance rate
for casual forgeries, 20% acceptance rate for skilled forger-
ies, and about 25% rejection rate for genuine signatures.
6. Conclusions

An off-line handwritten signature verification system
was proposed that uses the 1-D vertical projection feature
in conjunction with DTW. Modifications were made to
the basic DTW algorithm to account for stability of vari-
ous components of a signature. The system based on the
modified DTW algorithm performed significantly better
than the basic system. The method is computationally effi-
cient and runs in real-time.
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Appendix A. Example of computing weights for the

components of a signature

Let S = S1, S2, S3 be a set of three signatures of the same
writer. Fig. A.1 shows the result of the match between S1

and S2, and S1 and S3.
The local stability function for the points of S1 obtained

from Eqs. (16) and (17) are shown in Table A.1.



Fig. A.1. S1 matches S2 (left), and S1 matches S3 (right).

Table A.1
Local Stability values for S1

Functionnpoint z1(1) z1(2) z1(3) z1(4) z1(5) z1(6) z1(7) z1(8) z1(9) z1(10)

Score1 (z1(p)) 1 0 1 1 1 1 1 0 0 0
Score2 (z1(p)) 0 1 1 1 1 0 1 1 1 0

I(z1(p)) 0.5 0.5 1 1 1 0.5 1 0.5 0.5 0

Stability M M H H H M H M M L

Here H, M and L indicate high, moderate and low stability components, respectively.
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