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Abstract—In this work, we propose a novel method for address-
ing the disocclusion problem of removing foreground occlusions
from the depth maps as well as color images for 3D scenes.
Our method exploits motion-parallax and color-segmentation cue
to coherently fill-in the foreground regions with intensity/depth
labels of background which is occluded by the foreground object
in the observations. The motion-parallax allows the background
information, occluded in some images, to be visible in other im-
ages. This includes stereo-correspondence information for depth
disocclusion as well as color information for image disocclusion.
The color-segmentation cue exploits a natural tendency of depth
discontinuities to coincide with intensity edges in the image of
the same scene. We also show that the color-segmentation cue is
useful, on its own, for achieving disocclusion in range maps.

I. INTRODUCTION

Unwanted foreground obstructions/occlusions are very com-
mon images of general 3D scenes. Given the immense amount
of vision research in 3D structure estimation, removing such
occlusions (also termed as disocclusion) seems quite a natural
issue to address. Surprisingly, there are only a few methods
which exploit the 3D nature of the scene to address this
problem of disocclusion.

In this work we address the problem of disocclusion for 3D
scenes. More specifically, we propose an approach to remove
user-defined foreground objects which obstruct a part of the
background. Importantly, our method estimates a disocclued
depth map as well as an dissoccluded image given multiple
stereo observations of the scene, all of which contain the
foreground occluder. Furthermore, we also apply (a part of)
our approach to achieve disocclusion of range images captured
from laser range scanner or time-of-flight range scanners.
Thus, our disocclusion method can be used for both digital
cameras and range cameras.

The main challenge in achieving disocclusion is to fill-in the
user-defined foreground regions with the relevant background
intensities, so that the resultant depth map and image is
visually coherent. Our approach involves using the motion cue,
present in the stereo images for disocclusion. The primary
idea is that the objects in a 3D scene undergo an apparent
motion depending on their depth (which is known as motion
parallax). Thus, the foreground occluder pixels will have a
different motion across images, relative to the background
pixels. Our approach exploits this phenomena to discover
background pixels hidden in the reference view, in other
views. Thus, using multiple images enables us to compute
correspondence/color information for the pixels which are
hidden in the reference image, thus allowing us to disocclude
the (reference) depth map and image. Our parallax-based

disocclusion approach uses the belief-propagtion method for
estimating depth and color labels. In addition we also the cue
from color-segmentation of the observed images to improve
the depth estimation [1]. Indeed, the segmentation cue plays
a more important role in our method than merely improving
the depth estimation as discussed below.

Note that we need the occluded reference-image pixels
to be visible in at least two (and usually more than two)
other images for computing reliable correspondences for depth
disocclusion. 1 If camera motion is restricted or the number
of images are limited, reliable correspondences for all pixels
may not established. As a result, some of the occluded pixels
may remain unlabeled. For labeling such pixels, we use the
color-segmentation cue mentioned earlier. In addition to the
segmentation cue serving in conjunction with our parallax-
based method, we also show that it can be used, on its own,
for disoccluding range-images. The segmentation-cue exploits
natural properties of 3D scenes viz. depth discontinuities being
coincident with image edges and, depth variation over small
regions (segments) being locally planar.

A. Related work

The dis-occlusion problem which we consider is closely
related to that of inpainting. However, the latter has been
mainly been addressed for single color images without consid-
ering any 3D structure dependency [9], [10]. These approaches
operate on single images and compute plausible color values to
be filled in the missing regions typically using neighbourhood
information in some sense. Unlike, our approach their task
does not include depth estimation/disocclusion.

Handling occlusions in traditional stereo depth estimation
[12] may also be treated as dis-occlusion, since it also involve
removing occlusions. However, the fundamental definitions of
occluded pixels in traditional stereo works and those in ours
are precisely complementary. While the occluded pixels in
stereo are those which are seen in the reference image but not
other images (which we as stereo occlusions), in our case, the
occluded pixels (also called hidden pixels) are those which
are not visible in the reference image but may be seen in
the other images. In fact, stereo depth estimation is a integral
part of our method (as elaborated in the next section), we
stereo occlusions are also handled in our approach. Thus,
our approach addresses both types of disocclusions. Moroever,

1Relatively, color computation for image disocclusion is easier since one
needs the hidden reference-image pixels to be visible in at least one other
image.



traditional stereo works are only concerned with depth estima-
tion, whearas our approach also involves image disocclusion.

Disocclusion in both images and depth has received rel-
atively less attention. To our knowledge, only the recent
reported works in [7], [6] closely relate to ours, which exploit
the pixel motion for disocclusion. The authors in [6] address
the problem in a binocular stereo setting [6]. Their approach
requires a priori computation of complete depth maps (with
the occluders) from both the views. In contrast to [6], our
work handles multiple stereo images and our depth estimation
is only with respect to one (reference) view. The work in
[7] consider the effects of pixel motion under a shape-from-
focus setting. Their approach handles the disocclusion problem
implicitly as opposed to our approach which explicitly checks
for missing pixels. Moreover, unlike in [7] we also consider
the stereo occlusions. Moreover, our color-segmentation based
approach to fill in the unlabeled regions and its application to
disoccluding range images is completely novel which is not
considered in [6], [7].

Some works address the disocclusion problem in
depth/range maps [13] and 3D meshes [3]. However,
their main goal is to restore damaged range data. Moreover,
these approaches work directly with range maps/3D meshes
as input and do not involve disocclusion of color images.

II. THE APPROACH

We now describe our disocclusion method in detail. Our
depth and image disocclusion approach works in two stages.
We first compute the disoccluded depth map using multiple
stereo observations where the user has marked, in one (ref-
erence) image, the foreground regions to be removed. Given
the estimated disoccluded depth map we then perform image
disocclusion image the same multiple stereo observations.

For depth map disocclusion, we first discuss the parallax-
based approach for discovering correspondences for the hid-
den reference-image pixels across other images, followed by
a segmentation-based method for disoccluding those pixels
which are unlabeled in the parallax-based approach. The image
disocclusion is based solely on the parallax-based approach,
which disoccluded almost all the hidden image pixels. For
the remaining unlabeled image pixels (which are very few in
number and span small regions), we use the exemplar-based
inpainting approach [10] for estimating their labels.

Our parallax-based approach employs the efficient-BP al-
gorithm [8], which involves computing messages and beliefs
on an image-sized grid where a label is assigned to each
node. The messages and beliefs are expressed as data and
prior costs which are to be minimized. The data cost uses the
observations, while the prior cost regularizes the solution. In
the subsequent sections, we describe these cost definitions for
our problem.

A. Depth disocclusion

Our method begins with the user marking the foreground
pixels to be removed. To minimize the user-interaction, the
occluder is to be marked only in the reference image. The

occluder pixel locations in other images are marked depending
on the knowledge of those in the reference image. Since
occluder is also a part of the scene, its pixels will also undergo
motion across images and this motion depends on the depth
of the occluder. Hence, to enable the marking of occluder
pixels in the other images, we first compute the depth of the
complete scene including that for the occluder. Thus, the depth
disocclusion process has three main components 1) Depth
estimation for the complete scene using multi-image stereo
2) Motion-parallax-based depth disocclusion 3) Segmentation-
based depth disocclusion.

1) Stereo depth estimation: The complete depth estimation
is carried out by using a belief-propagation-based stereo tech-
nique as described below. Since the BP algorithm considers
computing costs for every label at each node, the following
costs for a particular label at a particular node (pixel).

The data cost at a pixel (l1, l2) in the reference image for
the stereo matching problem is

Edi(l1, l2) = |g1(l1, l2)− gi(θ1i, θ2i)| (1)

where (θ1i, θ2i) is the warped location in the ith, which
depends on the camera motion and the depth label Z for which
the cost is computed. Her, without loss of generality, out of
all observations gi, i = 1...N , we use g1 as the reference.

To consider stereo-occlusions we modulate the data cost
with a visibility term Vi(l1, l2) which switches on/off depend-
ing on whether a pixel is visible or occluded in the ith image.
The resultant data cost is

Edi(l1, l2) = V1(l1, l2) · |g1(l1, l2)− gi(θ1i, θ2i)| (2)

Since stereo-occlusions is not the focus of this paper and due
to space-constraints, we refer the reader to [11], [1] for more
details on computing and updating visibility Vi via the geo-
consistency concept. The total data cost between the reference
image (i = 1) and all other images (i > 1) is then computed
by summing the individual costs Edi for all i > 1.

The regularization cost which smoothes the solution while
preserving prominent discontinuities is defined as a truncated
absolute function

Ep(n1, n2,m1,m2) = min(|Z(n1, n2)− Z(m1,m2)|, T ) (3)

where, Z(n1, n2) and Z(m1,m2) are depth labels for neigh-
bouring nodes and T is the threshold for truncation.

The estimation using only the above defined costs may
yield some of the pixels as labeled incorrectly. As mentioned
above, the image segmentation can be used to mitigate such
errors. Note that the use of segmentation cue here is not
used for disocclusion but for improving the depth estimates.
Again, due to space constraints we describe it here briefly.
More details can be found in [1]. Initially, we color-segment
the reference image using the mean-shift algorithm [2]. We
classify the pixels as reliable/unreliable based on an initial
coarse depth estimate. The first BP iteration is run without
using the segmentation cue. We then compute a plane-fitted
depth map that uses the current estimate, the segmented image



and the reliable pixels. To regularize the estimates for the
unreliable pixels, we feed this plane-fitted depth back to the
iteration process by defining a more general data term as

Eds(l1, l2) = Ed(l1, l2) + w(l1, l2) · |Z(l1, l2)− Zp(l1, l2)| (4)

where Ed(l1, l2) is the previously defined data cost. Zp denotes
the plane-fitted depth map and the weight w is 0/1 if the
pixel is reliable/unreliable. We use this data cost in subsequent
iterations after the first.

2) Depth disocclusion using motion-parallax: The above
method yields a complete depth map which also includes the
depth labels of the foreground occluders. Using these depth
labels and the user-marked occluders in reference image, we
locate the occluder pixels in the other images. At the end of
this process, we have marked the pixels to be disoccluded in
all the images. We denote these set of hidden pixels as M and
proceed as follows to compute the background depth labels for
such pixels.

We arrange the images in an (arbitrary) order (g1, g2, ..., gN )
with g1 being the reference image. For a hidden pixel,
g1(l1, l2) ∈ M and is not visible in the reference image.
Hence, we need to compute the depth value at (l1, l2) by
searching for the correspondence between images other than
the reference.

We compute the coordinates (θ1i, θ2i) and (θ1j , θ2j) for a
depth label. If gi(θ1i, θ2i) /∈ M and gj(θ1j , θ2j) /∈ M , the
matching cost between them is defined as

Edi(l1, l2) = V c
ij(l1, l2) · |gi(θ1i, θ2i)− gj(θ1j , θ2j)| (5)

where 1 < i < j and the visibility V c
ij is a compound visibility

term defined as

V c
ij(l1, l2) = Vi(l1, l2) · Vj(l1, l2) (6)

The compound visibility defined above is also takes into ac-
count the stereo-occlusions as well as the user-defined hidden
pixels. The idea behind defining the compound visibility is
that the data cost is not computed if a pixel is not observed
in either the ith or the jth view.

The corresponding total data cost for g1(l1, l2) involving
all images for a depth label is then computed by summing the
matching costs as

Ed =
1
Ni

∑
i

Edi (7)

Here Ni are the number of pairs of images gi and gj such that
gi(θ1i, θ2i) /∈ M and gj(θ1j , θ2j) /∈ M and Vi(l1, l2) 6= 0.
Thus, the cost for a pixel missing in the reference image is
computed by using those images in which the pixel is visible.

3) Segmentation-based depth disocclusion: In the above
procedure, there may be some pixels for whom Ni = 0. The
pixel correspondences for such hidden pixels are not found.
This results in such pixels being left unlabeled. We invoke the
segmentation cue to estimate labels for such pixels.

As mentioned earlier, the segmentation cue exploits the
behaviour of depth discontinuities coinciding with the im-
age edges. This behaviour allowed the segmentation-cue to

improve the stereo-depth estimation (as discussed previously)
when all pixels in a segment are visible, having some estimates
of depth, which are used for plane-fitting.

However, for the disocclusion problem, the scenario is quite
different. Here, we wish to compute the hidden background
depth values for which we have no depth estimates in a
segment. In fact, the segments for these hidden regions are
not even the true segments of the scene. These segments are
themselves unlabeled and are hence erroneous. We denote
a set of such segments by Sm. Each such segment will
span across largely different depth values, thus disobeying the
very premise for the use of the segmentation cue of locally
planar depth variation. Hence, we cannot use such segments
to compute the plane-fitted depth map.

To address this issue, we assign the segment-labels to each
pixel in Sm as that of the segment /∈ Sm closest to that pixel.
This essentially extends the segments neighbouring to those in
Sm by adopting the pixels in Sm. The closeness is determined
by searching in eight directions from a pixel. Thus, this process
assigns segment-labels to all the pixels in Sm. Moreover, since
these labels are assigned according to the closest neighbouring
segments to the pixels in Sm, they are very similar to their
actual natural labels which they would have been assigned, if
the foreground occluder would not have been present.

Note that these expanded segments already have disoc-
cluded pixels for which the depth is estimated using the
parallax-method described earlier. These can now be used
to compute the labels for the newly added unlabeled pixels
(from Sm). We use the disoccluded pixels to fit a plane via
the RANSAC method [4]. We then use this plane-fit and the
disoccluded pixels to define a local cost Cp for assigning a
depth label for each invisible pixel p.

Cp = |z − zpl|+ λp

∑
q∈Vp

|z − zq| (8)

Here, zpl is the plane-fitted range at a pixel. Vp is the set of
visible neighbours in the second order neighbourhood of pixel
p that belong to its segment. The second term on the RHS
of equation 8, weighted by λp, enforces similarity between
neighbours. The depth label minimizing Cp is chosen as the
label for pixel p.

For some segments, the number of disoccluded pixels are
below a threshold (which generally occurs for small segments).
Hence, the plane-fitting based labeling of equation 8 may
not be robust. For such segments, we compute the median
zm depth over the disoccluded pixels. We also compute the
median depths zma of the disoccluded pixels for the adjacent
connected segments. We then label all the unlabeled pixels for
such small segments according to the cost

Cs = |z − zm|+ wa

∑
zma∈Ma

|z − zma| (9)

where Ma is the set containing medians zma of the visible
pixels in adjacent segments. In equation 9, the second term
enforces similarity over neighbouring segments. with the quan-
tity wa weighing their contribution. Note that this assigns all



the unlabeled pixels in a segment with a constant (median)
depth label. However, as mentioned earlier, this occurs for very
small segments for which a constant depth approximation is
also quite valid.

B. Image disocclusion via motion-parallax

Given the estimated disoccluded depth map, we now wish to
estimate the color labels for the hidden pixels in the reference
image. With the estimated depth label for each pixel, we map
the location of a hidden reference pixel in other images. If the
pixels at the mapped locations /∈M , we use them in our data
cost computation.

The data cost for image disocclusion compares the in-
tensities of gi(θ1i, θ2i) i > 1 with an intensity label, if
gi(θ1i, θ2i) /∈M . This data cost for a particular gi(θ1i, θ2i) /∈
M and an intensity label L is defined as

Edi(l1, l2) = Vi(l1, l2) · |L− gi(θ1i, θ2i)| (10)

The total data cost is sum of the Ni data costs similar to that
described by equation 7, where Ni is the number of images
where gi(θ1i, θ2i) /∈ M i > 1. The smoothness cost for the
image is also defined similar to that in equation 3, except that
the intensity labels instead of depth labels are used.

Lastly, there may be missing pixels in g1 for which
gi(θ1i, θ2i) ∈M ∀i. Such pixels are left unlabeled. The extent
of such unlabeled pixels depends on the original extent of the
missing region and pixel motion. We observe in our experi-
ments, that for most of the image the pixel motion is sufficient
to leave no missing region unlabeled. The maximum extent
of such unlabeled regions, if they exist at all, is relatively
very small as compared to that of the original hidden regions.
Such small unlabeled regions can be filled by any inpainting
algorithm (for instance, the exemplar-based inpainting [10]).

III. EXPERIMENTAL RESULTS

We validate our approach via real experiments on multi-
ple stereo images from the Middlebury stereo dataset [12].
Moreover, as mentioned earlier, we also show results for
disocclusion of range images from the USF dataset [5]. These
datasets contain complex scenes and serve to test our approach
quite extensively. We mark some of the prominent foreground
objects for removal. For the stereo dataset the object selection
is carried out only in the reference image. The foreground
objects cover a considerable-sized region.

The parameters in our method are typically set as follows:
The smoothness weights in both the motion-parallax and
segmentation-based methods are chosen so the smoothness
costs approximately balances the data cost. The truncation
threshold is set to half the maximum depth/intensity label.
The minimum number of visible pixels for robust plane-fitting
is chosen to be 20-30. The belief propagation algorithm for
parallax-based disocclusion is run for about 4-5 iterations. The
convention for displaying the depth map is that the nearer
objects are darker than the farther ones.

We first provide the results on the stereo images of the
Middlebury dataset. These results are generated using our

complete method described section II for both depth and
image disocclusion. This is followed by the depth disocclusion
results on USF range-image dataset which only uses the
segmentation-based method of section II.A.3.

A. Disocclusion in stereo

The images in the results on stereo-disocclusion are ordered
as follows: The sub-figures (a,b) in all the experiment show
two of the four observations used of which the first observation
is the reference. Sub-figure (c) shows the reference image
with foreground objects to be removed, marked in black.
Sub-figures (d,e) show the complete depth-map including
the foreground occluders and, the dissocluded depth map,
respectively, while (f) shows the disoccluded reference image.

Figs. 1, 2 and 3, the disocclusion results on three stereo
datasets for the Drumsticks, Dwarves and Reindeer scenes,
respectively. Note that, basically, the complete depth maps
shows very good localization of discontinuities and a very
plausible depth variation. Note that the correctness is local-
ization and accuracy of depth estimation are important for
marking the foreground objects in the all images based on
that in the reference image. The correctness in marking in
turn dictates that of the disocclusion process.

One can observe that the disoccluded depth map does not
show any trace of the foreground occluders. Particularly, the
background edges which the occluders cross are do not show
any visual distortion. Similarly, the smoother depth regions
also do not show any visible artifacts, thus demonstrating the
successful disocclusion.

The image disocclusion also shows high visual coherence.
Particularly, for the dwarves and reindeer scenes where the
foreground objects (the plant and the reindeer, respectively)
span a fairly large region, the disocclusion is quite appreciable.
A (much) closer look shown minute distortions in some of the
edges, which is hardly visible and may be discounted. More-
over, the background texture is also restored quite well, which
is an important concern in disocclusion/inpainting methods.

B. Disocclusion in range images

We now provide results to show the effectiveness of the
segmentation-based method for removing occlusions. As men-
tioned, we use the range images for demonstrating this. Range
images are captured from laser scanners or time-of-flight range
scanners [14], [13]. These are increasing in popularity due to
their accuracy and high depth-resolution.

Our segmentation-based approach uses a registered
intensity-image and range-image pair to compute the disoc-
cluded range image. Given the availability numerous range-
intensity image registration techniques and the fact that many
range cameras also capture a corresponding intensity image,
acquiring such a registered pair is not a major issue.

The user marks the occluder in either the range or the
intensity image. Once the occluder is marked and we know
the unlabeled pixels, we are effectively in the same stage as
that in the stereo-disocclusion case when the motion-parallax



(a) (b) (c)

(d) (e) (f)
Fig. 1. Drumsticks scene: (a,b) Two of the four observations used in the experiment. (c) Reference observation with the marked occluders. (d) Estimated
complete depth including the occluders. (e,f) Disoccluded depth and image, respectively.

(a) (b) (c)

(d) (e) (f)
Fig. 2. Dwarves scene: (a,b) Two of the four observations. (c) Reference observation with occluders marked. (d) Estimated complete depth map. (e,f)
Disoccluded depth and image, respectively.

based disocclusion leaves some pixels unlabeled. Thus, range
disocclusion only needs the segmentation-based approach.

In Figs. 4 and 5, we show two results on range images.
Sub-figure (a) shows the original intensity image where the
occluders are marked with black in sub-figures (b) (The cone-
like object at the back in Fig. 4(b) and the table in Fig. 5(b)).
Sub-figures (c,d) give the (complete) ground-truth range map
and the disoccluded range map, respectively.

Again, we notice high fidelity in depth disocclusion, with
the occluders all but removed. Notice that background edges
of the walls and floors in Fig. 4(d) which are masked by
the occluder are restored quite well. Moreover, in both exam-
ples, the gradual background range variation is also captured
with negligible visible artifacts. This sufficiently validates our
segmentation-based range disocclusion.

IV. CONCLUSION

We proposed an approach disocclusion of depth maps
and images based on motion-parallax and color-segmentation.
The motion-parallax based approach uses the fact that pixels
occluded in one view can be seen in others. The segmentation-
based approach enforces depth discontinuities to coincide with
the image discontinuities and approximates depth variations to
be locally planar. We provide results on stereo as well as range
images to validate our method.
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