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Pell’s Equation

Goal is to find finding integral and positive solutions to
the following equation

x2 − dy2 = 1

x2 − 2y2 = 1, Solutions (3, 2); (17, 12); . . .

Has infinite number of solutions

Harder than factoring

Quantum Algorithm for Pell’s Equation – p. 4/60



Classical Method for Pell’s equation

Based on continued fractions

Approximations of the continued fraction of
√
d give the

solution

Example

x2 − 2y2 = 1,
√

2 = 1 +
1

2 + 1
2+ 1

2+···

√
2 ≈ 1 +

1

2
=

3

2
=
x

y

Observe that 32 − 2 · 22 = 9 − 8 = 1
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Continued Fraction Method

Why does this work?

Is every approximation a solution?

What is the complexity of the algorithm?
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Continued Fraction Method - cont’d

Example - cont’d

√
2 ≈ 1 +

1

2 + 1
2

= 1 +
2

5
=

7

5
=
x

y

√
2 ≈ 1 +

1

2 + 1
2+ 1

2

= 1 +
1

2 + 2
5

= 1 +
5

12
=

17

12
=
x

y

72 − 2 · 52 = 49 − 50 = −1 6= 1

172 − 2 · 122 = 289 − 288 = 1
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Continued Fraction Method - cont’d

Not every approximation gives a solution to the Pell’s
equation

We might have to take many terms in the continued
fraction before we get the solution

Typically if we use the input size as log d, size of the
solution will be O(

√
d) ≈ O(elog d)
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A Close Look at the Solutions

Every solution can be uniquely identified with x+ y
√
d,

x, y > 0

Smallest solution with x+ y
√
d is called the

Fundamental solution

x1 + y1

√
d

Every other solution can be obtained as power of the
fundamental solution

x+ y
√
d = (x1 + y1

√
d)n

It suffices to compute the fundamental solution
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A Closer Look at the Solutions

d x

10 19
13 649
29 9801
53 66249
61 1766319049

109 158070671986249
181 2469645423824185801
277 159150073798980475849
397 838721786045180184649
409 25052977273092427986049
421 3879474045914926879468217167061449
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Regulator

O(x1 + y1

√
d) = O(e

√
d)

Just to write down the solution will take exponential
amount of write operations

We will rather compute a representation of the solution

Regulator Rd = ln(x1 + y1

√
d), and x1 + y1

√
d is the

smallest in magnitude of all solutions

Rd being irrational is computed to n digit accuracy

Even for this reduced problem the best classical
algorithm has a running time O(e

√
log d poly(n))
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Overview of Hallgren’s Algorithm

Reformulate the Pell’s equation as a period finding
problem

Form a function h(x) with period Rd

Modify the quantum period finding algorithm to find
irrational period

The quantum part of the algorithm
Computes only the integral part of Rd

Perform classical post processing given the integral
part of Rd

Compute the fractional part of Rd making use of the
integral part of Rd provided by the previous step
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Some Algebraic Number Theory

Let Q(
√
d) = {a+ b

√
d | a, b ∈ Q}

The solutions of Pell’s equation are elements in Q(
√
d)

O is called the ring of algebraic integers

O = {a ∈ Q(
√
d) | f(a) = 0, f(x) ∈ Z[x]}

Z[x] consists of polynomials with integral coefficients

Units of O are elements in O that they have
multiplicative inverses

O× = { Units of O} = {u ∈ O | u−1 exists }
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Algebraic Number Theory - cont’d

x+ y
√
d is a solution of x2 − dy2 = 1 if and only if

x+ y
√
d is a unit of O

ǫo smallest unit in O×, with ǫo > 1

O× = {±ǫko | k ∈ Z}
Rd = ln ǫo

All the solutions of x2 − dy2 can be obtained from the
fundamental unit ǫo
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Algebraic Number Theory - cont’d

Product of sets A,B ⊆ Q(
√
d), then

A ·B = {
n
∑

i=1

aibi | n > 0, ai ∈ A, bi ∈ B}

Ideal I ⊆ Q(
√
d) such that I · O = I

Integral Ideal I ⊆ O
Fractional Ideal I ⊆ Q(

√
d)

Principal Ideal I = γO
If ǫ ∈ O, then ǫO = O
Equality of ideals αO = βO if and only if α = βǫ, where
ǫ is a unit in O
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Reformulating Pell’s equation

Let P = {γO | γ ∈ Q(
√
d)}

Consider g : R → P

g(x) = exO = Ix

g(x) is periodic with Rd

g(x+ kRd) = ex+kRdO,
= exǫkoO = exO
= g(x)
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Using a periodic function to findRd

Naive algorithm to compute Rd

Find g(x) = Ix

Find y > x such that g(y) = Ix
y − x = kRd

Another naive algorithm
Assume that the ideals could be ordered somehow
Given Ix find g−1(Ix)

Find an ideal Iy next to Ix such that Iy = Ix

g−1(Iy) − g−1(Ix) = kRd
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Problems with the Naive Algorithms

y > eRd is exponentially large in log d

Ix is an infinite set, comparing two ideals poses
problem

There are infinitely many ideals between x, x+ δ for
which Ix = Ix+δ, Q(

√
d) and P are both dense

We need to somehow order the ideals

We need to move from one ideal to another

Finite precision arithmetic
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More Algebraic Number Theory

O is a Z-module, so it behaves like a vector space

O = m+ n
D +

√
D

2
, D =

{

d, d ≡ 1 mod 4

4d, d ≡ 2, 3 mod 4
,

O = Z +
D +

√
D

2
Z

For any principal ideal I = γO

I = γZ + γ
D +

√
D

2
Z
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Comparing Principal Ideals

The basis is not unique, we can rewrite I as

I = k

(

aZ +
b+

√
D

2
Z

)

−a < b ≤ a, a >
√
D√

D − a < b ≤
√
D, a <

√
D

Presentation of an ideal is the triplet (a, b, k) which is
computable in polynomial time given γ.

Addresses the problem of comparing infinite sets.
Equality of ideals is equivalent to having the same
presentation
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Discretizing Ideals

Reduced principal ideals have the form

I = Z +
b+

√
D

2
Z

Reduced principal ideals are finite in number

Addresses the problem of density of sets Q(
√
d) and P

Cycle of Reduced Principal Ideals

J = {O = J0, J1, . . . , Jm−1}
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Moving Among Ideals

I = Z + γZ, then define

ρ(I) =
1

γ
I

Gives another principal ideal

If I ∈ J then ρ(I) ∈ J

If repeated then finally it gives a reduced principal ideal

If I was reduced principal ideal ρ(I)is another reduced
principal ideal

Since there are a finite number of reduced principal
ideals it cycles
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Moving Among Ideals - cont’d

σ(I) :
√
d 7→ −

√
d

Inverse operation of moving back is given by ρ−1 = σρσ

This addresses the problem of moving between the
ideals back and forth
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Ordering Ideals

Let Iy = γIx. Then the distance between Iy and Ix is

δ(Ix, Iy) = ln γ

Distance from O: δ(exO) = δ(O, exO) = ln ex = x

Distance allows us to order the ideals along the
number line in the same form as the input x

Addresses the problems of invertibility and ordering

If Ix = Iy, then δ(Ix, Iy) = y − x = kRd

δ(I, ρ(I)) can be computed in polynomial time
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Spacing of Ideals

δ(Ji, Ji+1) ≥ 3
32D

δ(Ji, Ji+2) ≥ ln 2

δ(Ji, Ji+1) ≤ 1
2
lnD

If we succesively apply ρ to a non reduced ideal I, until
we just get a reduced principal ideal Ired, then

|δ(I, Ired)| ≤ lnD

and Ired ∈ {Jk−1, Jk, Jk+1}
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Jumping Across Ideals

We note that the ideals are exponential in number so
moving across efficiently requires more than use of
reduction operator ρ

Use the product of ideals to move faster than ρ

I1 · I2 is much farther from O than either of I1, I2

δ(I1 · I2) = δ(I1) + δ(I2)

Product of ideals is not necessarily reduced so we
reduce it to bring it back to the principal cycle of
reduced ideals

We denote this operation by ∗
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Review

We need positive, intgeral solutions for x2 − dy2 = 1

Each solution can be encoded as x+ y
√
d an element

in Q(
√
d)

All solutions can be obtained from the smallest solution
x1 + y1

√
d

We introduced the Regulator Rd = ln(x1 + y1

√
d)
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Review - cont’d

Every solution is an element of Q(
√
d)

More specifically every solution is also an element of
the ring of algebraic integers in Q(

√
d)

A solution of Pell’s equation is precisely the set
elements in O which have multiplicative inverses

Our goal is to compute the generator of this subgroup
which is precisely the regulator Rd
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Review - cont’d

Solutions 
Pell’s Eqn

Quadratic Number Field
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Review - cont’d

Solutions 
Pell’s Eqn

Quadratic Number Field

Algebraic Integes, O
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Review - cont’d

Solutions 
Pell’s Eqn

Quadratic Number Field

Unit group of O

Algebraic Integes, O
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Review - cont’d

Solutions 
Pell’s Eqn

Quadratic Number Field

Unit group of O

Algebraic Integes, O
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Review - cont’d

We then defined the ideals as special sets in Q(
√
d)

which are loosely speaking closed under addition and
multiplication

A special type of ideals are the principal ideals which
take the form I = γO
We defined a periodic function that is periodic with Rd

from R to the set of principal reduced ideals

They can all be ordered with respect to their distance
from O
We can move among the ideals using ρ and ρ−1

We have a means of moving from one ideal to another
exponentially large steps
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Review - cont’d

Reduced Principal IdealsIdeals closed under +,x

Principal Ideals

Algebraic Integes, O

Quadratic Number Field
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Review - cont’d
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Quadratic Number Field

Algebraic Integes, O

Principal Ideals

Ideals closed under +,x Reduced Principal Ideals

I

ρ(Ι)ρ (Ι)−1
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Hallgren’s Periodic Function
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h(x) = (g(x), x− δ(g(x))) = (Ix, x− δ(Ix))

Ix is the nearest reduced principal ideal to the left of x
i.e, δ(Ix) < x

h(x) is periodic with Rd

h(x) is one to one
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Hallgren’s Periodic Function
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h(x) = (g(x), x− δ(g(x))) = (Ix, x− δ(Ix))
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Discretizingh(x)

For practical implementation we would like to discretize
h(x)

Assuming that x is discretized with a step of 1/N the
discretized function hN(k) = ⌊h(k/N)⌋N

hN(k) is weakly periodic with P = NRd

hN(k + ⌊lNRd⌋) = hN(k) or hN(k + ⌈lNRd⌉) = hN(k)
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Hallgren’s Periodic Function
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After discretization h(x) is weakly periodic not periodic
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Quantum Period Finding Algorithms

A state in superposition

Transformation to a state with a suitable function

Partial measurement

Fourier transform to get rid of offset

Measurement

Classical post processing
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Hallgren’s Period Finding Algorithm

Form is an uniform superpostion of q states where
q = pNRd + r

|ψ〉 =
1√
q

q−1
∑

j=0

|j〉|0〉

Compute hN(|ψ〉)
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Superposition

hN |ψ〉 =
1√
q

q−1
∑

j=0

|j〉|hN(j)〉
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Partial Measurement
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hN |ψ〉 =
1√
q
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Partial Measurement - cont’d

(2+3NR)

h(2)

(2+NR)

h(2)

Second Register

First Register
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After Measurement

On measurement the state will collapse to

|ψ〉 =
1√
p

p−1
∑

n=0

|k + [nNRd]〉|hN(k)〉
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QFT to Remove Offset

Take the Quantum Fourier transform

F|ψ〉 =
1√
pq

p−1
∑

n=0

q−1
∑

j=1

e2πi(k+[nNRd])|j〉,

=

q−1
∑

j=0

aj|j〉

Assumes q=pNR

P
ro

ba
bi

lit
y

1/p=NR/q

5q/NR4q/NR3q/NR2q/NRq/NR

Register after Quantum Fourier Transform
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QFT - cont’d

Register after Quantum Fourier Transform

q/NR 2q/NR 3q/NR 4q/NR 5q/NR

Prob(lq/NR) < 1/p 

P
ro

ba
bi

lit
y

Assumes q=NR+r

q/NR 2q/NR 3q/NR 4q/NR 5q/NR

1/p=NR/q

P
ro

ba
bi

lit
y

Assumes q=NR
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Identifying Periodicity

Register after Quantum Fourier Transform

Assumes q=NR+r

P
ro

ba
bi

lit
y

Prob(lq/NR) < 1/p 

5q/NR4q/NR3q/NR2q/NRq/NR

We are interested in
j = lq/NR

j is small, more precisely, j < q

log NRd

Prob(j) must be large
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Identifying Periodicity - cont’d

For sufficiently large q ≥ 3(NRd)
2, many j such that

j is a multiple of q/NRd

j < q

log NRd

Probability of such j is highly likely,

Prob(j) >
α

logNRd

,

α a constant
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Extracting Periodicity

But how do we extract the periodicity from the state?

Measure and repeat to get another measurement such
that

c = [kq/NRd]

d = [lq/NRd]

We do not know k, l, Rd

Compute the convergents of c
d

| c
d
− a

b
| < 1

2b2
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Extracting Periodicity - cont’d

Compute the convergents of c/d then

k

l
=
cn
dn

and k = cn,

for some n

c = [ kq

NRd

] = kq

NRd

Estimate the period as

NRd = [
kq

c
]

Check if NRd = cnq/c satisfies |lRd −NRd| < 1
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Extracting Periodicity - cont’d
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If |NRd − jRd| < 1, then h(NRd) is an ideal among
{ρ−4(O), ρ−3(O), . . . ,O, . . . , ρ3(O), ρ4(O)}
Because δ(I, ρ2(I)) > ln 2 > 0.693
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Integral Part ofRd

Integral part of Rd

⌊Rd⌋ =

⌊

NRd

N

⌋

We know Rd to a precision 1/N

With probability ≥ 1/ poly(logNRd) this algorithm will
return NRd such that |NRd −NRd| < 1
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Computing the Fractional part ofRd

Given ⌊Rd⌋
Compute h(⌊Rd⌋) = (Ix, x− δ(Ix))

�
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�
�

NRNR−1NR−2

Ο

> 0.693

>0.693

�
�
�
�

ρ (Ο)−2−4ρ (Ο)

−3ρ (Ο) ρ (Ο)−1

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

We know that δ(I, ρ2(I)) > ln 2 = 0.693
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Computing the Fractional part ofRd - cont’
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NRNR−1NR−2

Ο

> 0.693
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ρ (Ο)−2−4ρ (Ο)

−3ρ (Ο) ρ (Ο)−1

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Therefore δ(I, ρ4(I)) > 2 ln 2 > ⌈Rd⌉
This implies that O must be one of the ideals
{ρ−3(O), ρ−2(O), ρ−1(O),O}
δ(I,O)) can be computed in polynomial and this gives
the fractional part of Rd
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Summary of the Algorithm

Start with a superpostion of inputs

Compute Hallgren’s periodic fucntion for all these
inputs

Perform partial measurement

Perform QFT to get rid of offset

Perform a measurement to get c

Repeat to get another value d

Extract the Integral part of Rd

Compute the fractional part of Rd
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Applications

Principal Ideal Problem
Given an ideal determine if it is a principal ideal

Class Group structure
Determine the structure of the group Iinv/P
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Principal Ideal Problem

Recall an ideal I ⊆ Q(
√
d) such that I · O = I

Principal ideal I = γO
All ideals of the form I = αZ + βZ

Given an ideal, decide if there exists a γ such that
I = γO
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Computing the Class Group

Invertible ideals
An ideal I is called invertible if there exists another
ideal J such that I · J = O
Let I = {I | I−1 exists }
P = {I | I = γO}
Let C = I/P
C is a finite abelian group and called the class
group
Class group problem is to determine the structure of
C

Quantum Algorithm for Pell’s Equation – p. 58/60



Generalizations

A general problem is to compute the unit group of a
O ⊆ Q(θ) where [Q(θ) : Q] = n

For Pell’s equation n = 2

Similarly the class group and the principal ideal
problem also can be generalized

Two algorithms for the same have appeared recently by
Hallgren and Vollmer, Schmidt independetly this year
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Questions ?
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Questions ?

Thank You
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