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Quantum Computing and Quantum Cryptography

.

.. ..
. .Why quantum computing and quantum cryptography?

Quantum algorithms can provide speedup over classical algorithms.
◮ Shor's algorithm for factoring integers is exponentially faster than any

classical algorithm.
◮ Grover's algorithm provides a quadratic speedup for searching.

It might provide a means to efficiently simulate quantum systems.

Quantum cryptography is more secure than classical cryptography.
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Quantum Computing and Quantum Cryptography

.

.. ..
. .Use of matroids in quantum computing and cryptography.

¦ Temporally unstructured quantum computation
D. Shepherd and M. Bremner, Proc. Roy. Soc. A, 2009

¦ Equivalence of quantum states
On local unitary and local Clifford orbits of stabilizer states, Preprint, 2009

¦ Quantum secret sharing
Matroids and quantum secret sharing, Preprint, 2009
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Qubits i.e. Quantum Bits

Qubits are 2-state quantum systems

Source: General Chemistry, Principles and Modern Applications

Qubits are denoted as |0〉 = [ 1
0 ] and

|1〉 = [ 0
1 ]

|ψ〉 = a |0〉 + b |1〉
State space of a qubit is C2.
.

.. ..

.

.

Observing qubits affects their state.

a |0〉+b |1〉 Observe7−→ |0〉 Pr(|0〉) = |a|2
|1〉 Pr(|1〉) = |b|2

The state of n qubits is a unit vector in C2n
= C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸

n

.

|ψ〉 =
∑

xi∈F2

αx1,...,xn |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 ;
∑

xi∈F2

|αx1,...,xn |2 = 1.
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Quantum Circuit Model

|0〉 B
E

F

NM °°° x1

|0〉

C
NM °°° x2

|0〉
|0〉

D|0〉
A NM °°° xn−1

|0〉 NM °°° xn

_ _ _ _ _ _ _ _ _ _ _ _ _ _Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â_ _ _ _ _ _ _ _ _ _ _ _ _ _

Unitary gates picture

|ψ(t)〉 = U |ψ(0)〉

Hamiltonian picture

|ψ(t)〉 = e− iHt
~ |ψ(0)〉
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Instantaneous Quantum Computation Paradigm---IQP
Temporally unstructured quantum computation, D. Shepherd and M. Bremner, Proc.
Roy. Soc. A, 2009

.

.. ..

.

.

If we understand the causes power of quantum computation we can exploit
it to design new algorithms.

Studying restricted models with limited resources could help.

|0〉 B
E

F

NM °°° x1

|0〉

C
NM °°° x2

|0〉
|0〉

D|0〉
A NM °°° xn−1

|0〉 NM °°° xn

_ _ _ _ _ _ _ _ _ _ _ _ _ _Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â
Â
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Â
Â
Â
Â_ _ _ _ _ _ _ _ _ _ _ _ _ _

.IQP..

.. ..

.

.

All the gates are
abelian and can
be implemented
simultaneously.
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IQP
.
.. ..

. .Commuting gates ⇔ Hamiltonians are additive.

We choose the IQP gates to be of the form

Hi = θi(⊗n
j=1Xpj) where X =

[
0 1
1 0

]

|0〉

C
E

F

NM °°° x1

|0〉
|0〉

D
|0〉 A NM °°° x4

_ _ _ _ _ _ _ _ _ _ _ _ _ _Â
Â
Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â
Â
Â_ _ _ _ _ _ _ _ _ _ _ _ _ _

Each gate corresponds
to n-bit string.


A C D E F

1 0 1 0 1 1
2 0 1 0 1 1
3 0 1 1 0 1
4 1 0 1 0 1


The effective Hamiltonian is

H = θ(X1 + X1X2X3 + X3X4 + X1X1 + X1X2X3X4)
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Probability Distributions in IQP

|0〉 B
E

F

76 5401 23M1

|0〉

C

76 5401 23M2

|0〉

|0〉

D|0〉
A

?> =<89 :;Mn−1

|0〉 76 5401 23Mn

We are interested in the probability distributions at the end of the
computation, i.e. Pr(X = x), X is outcome of measurement.
.Claim..
.. ..

.

.These distributions cannot be simulated efficiently on a classical computer.
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An Interactive Protocol

Alice chooses a matroid/code. a11 a12 . . . a1m
... ... . . . ...

an1 an2 . . . anm


Alice picks a ``bias".
Alice hides the code in a larger code. b11 b12 . . . b1l a11 a12 . . . a1m

... ... . . . ... ... ... . . . ...
bn1 an2 . . . b1l an1 an2 . . . anm


Alice sends it to Bob b11 b12 . . . b1l a11 a12 . . . a1m

... ... . . . ... ... ... . . . ...
bn1 an2 . . . b1l an1 an2 . . . anm


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An Interactive Protocol

Alice sends it to Bob

 b11 b12 . . . b1l a11 a12 . . . a1m
... ... . . . ... ... ... . . . ...

bn1 an2 . . . b1l an1 an2 . . . anm


Bob runs the computation induced by the
code, N times.

O =


x(1)
1 x(1)

2 . . . x(1)
n

x(2)
1 x(2)

2 . . . x(2)
n

... . . .
...

x(N)
1 x(N)

2 . . . x(N)
n


Alice tests Bob's output for bias and performs a hypothesis test if Bob
really computed or cheated.
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Probability Distributions in IQP

The probability distributions are determined by the code.

Pr(X = x) = | 〈x| e−iHt/~ |0n〉 |2

Given a vector s, we define the bias of the distribution with respect to s as

Bias = Pr(X · s = 0) =
∑

x:x·s=0

| 〈x| e−iHt/~ |0n〉 |2

It turns out the bias is related to the evaluation of the weight enumerator
of the code hidden in the larger code as long as the additional columns are
orthogonal to s.

Bias = Ec∈C[cos2(θ(n − 2wt(c))]

Instead of comparing the probability distributions, Alice only compares
their biases.
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Matroids and IQP---The Big Picture

We aim to design problems that cannot be solved efficiently on a classical
computer but can simulated efficiently in the IQP model.

¦ A computation in IQP is induced using a code/matroid.
¦ ``Hide" a code A, in a larger code B.
¦ The ``Hidden Matroid/Code Problem": given B to extract the A

with the promise A is hidden in B
¦ A simpler problem to extract a property of A.
¦ Goal is to show that the property cannot be extracted efficiently with

a classical computer.
¦ The property we extract is essentially a ``bias" in the probability

distribution of the output of the computation.
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IQP---Takeaway

IQP An abelian quantum computation model with only commuting gates.
We can view the computation as being induced by a binary code or a
matroid.

Open Are there interesting problems in this paradigm?
Claim The probability distributions in IQP are not efficiently simulated

classically.
A two party protocol has been presented in favor. This protocol relies
on the hardness of extracting the property of a hidden matroid/code.

Q1 Can this hidden matroid/code property be extracted efficiently
classically?

Q2 Does the use of weighted matroids lead to computations which are
hard classically?
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Stabilizer States

Recall that an n-qubit state is in general given by

|ψ〉 =
∑

xi∈F2

αx1,...,xn |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 ;
∑

xi∈F2

|αx1,...,xn |2 = 1.

.

.. ..

.

.

Pauli group

X =
[

0 1
1 0

]
Z =

[
1 0
0 −1

]
Y = iXZ. X2 = Z2 = Y2 = I

[X, Z] = [Z, Y] = [Y, X] = 0
Pn = {icg1 ⊗ g2 ⊗ · · · ⊗ gn | gi ∈ {I, X, Y, Z}}

Stabilizer states are quantum states fixed by an abelian subgroup of Pn.
The subgroup should not contain -I.
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Entanglement

Consider the state

|ψ〉 =
1√
2
(|00〉 + |11〉) 6= (a |0〉 + b |1〉) ⊗ (c |0〉 + d |1〉)

The qubits are highly correlated.

|00〉 + |11〉 Observe7−→ ↗ |00〉 Pr(|00〉) = 1/2
↘ |11〉 Pr(|11〉) = 1/2

}

Observing one qubit changes the state of the other qubit
instantaneously.

This phenomenon is called entanglement.
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LU-LC Equivalence---Motivation

Entanglement is invariant under local unitary group U l
n = U(2)⊗

n ≤ U(2n)

Given |ψ〉 and |ϕ〉, does there exist a local unitary such that |ϕ〉 = U |ψ〉
i.e. is |ϕ〉 ∈ LU(ψ)?

¦ Clifford group: Kn, the normalizer of Pn

Kn = {U ∈ U(2n) | UPnU† = Pn}.

¦ Local Clifford group: Kl
n = K⊗n

1 ≤ Kn.
¦ The LC equivalence of two stabilizer states can be tested efficiently.
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LU-LC Equivalence---Motivation

For many stabilizer states their orbits under local unitary (LU) group is
same as under the local Clifford (LC) group.

¦ This motivated the conjecture that these orbits are always same for
stabilizer states. [See for instance,
http://www.imaph.tu-bs.de/qi/problems/28.html]

¦ Although this conjecture turned out to be false [Ji et al, 2008], we do
not know how to characterize such states with distinct LU and LC
orbits.

We are partly motivated to find the structure in such states and we focus
on stabilizer states that arise from graphs.

Such states also have applications in foundations of quantum
mechanics.
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Stabilizer States from Graphic Matroids

Assume that we form a stabilizer state from a graphic matroid as follows:
X-generators are formed from the cycle matroid of the graph

.

.a .b

.d .c

.1

.2

.3

.4 .5

The stabilizer state is
stabilized by S =

[
SX
SZ

]

SZ =


1 2 3 4 5
Z Z I I Z
I I Z Z Z
Z Z Z Z I



SX =


1 2 3 4 5

a X I I X X
b X X I I I
c I X X I X
d I I X X I


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Stabilizer States from Graphs

.Theorem..

.. ..

.

.

Let |ψ〉 be a CSS state induced by graph without loops/coloops and
2-cycles/2-cocycles. Then LU(ψ) = LC(ψ).

.Corollary..

.. ..

.

.

Given a matroid, we can efficiently test if the induced stabilizer state's LU
and LC orbits are the same.
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Stabilizer States from Graphs

.

.. ..

.

.

Minimal elements are those whose support does not properly contain the
support of any other element of the stabilizer

¦ Every generator induced by a graphic matroid and its dual is minimal.
¦ The stabilizer of the graphic stabilizer states is generated by its

minimal elements.
.
Lemma (Van den Nest et al, Phys. Rev. A, 71(062323), 2005)..

.. ..

.

.

Let |ψ〉 be a stabilizer state with stabilizer S(ψ). Let M(ψ) be generated
by its minimal elements. If X, Y, Z occur on every qubit of M(ψ) then
LU(ψ) = LC(ψ).
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Surface Code States

.

.. ..
. .Can we go to a slightly larger class of matroids?

.

.a .b

.d .c

.1

.2

.3

.4 .5

Qubits are on the edges.

Av =
∏

e∈δ(v)
Xe

Bf =
∏

e∈∂(f)
Ze,

δ(v) := edges incident on the vertex v
∂(f) := edges in the the boundary of the face f.
S = 〈Av, Bf | v ∈ V(Γ), f ∈ F(Γ)〉
We call the states stabilized by S as the surface code states of Γ
Surface code states are CSS states.
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.1

.2

.3

.4 .5

Qubits are on the edges.

Av =
∏

e∈δ(v)
Xe

Bf =
∏

e∈∂(f)
Ze,

δ(v) := edges incident on the vertex v
∂(f) := edges in the the boundary of the face f.
S = 〈Av, Bf | v ∈ V(Γ), f ∈ F(Γ)〉
We call the states stabilized by S as the surface code states of Γ
Surface code states are CSS states.
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Dual Graphs

For every graph we can define a dual graph Γ∗.
¦ Each face becomes a node
¦ Two faces are conneced if they share an edge

.

.a .b

.d .c

.1

.2

.3

.4 .5 .A.B

.C

.

.A.B

.C
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Surface Code Matroids
The stabilizer of a surface code state is given by

¦ vertex operators
¦ face operators
¦ a subset of the cycles of Γ and Γ∗.

IV(Γ) := vertex-edge incidence matrix of Γ
IC(Γ∗) := cocycle-edge incidence matrix, where C(Γ∗) is a subset of cycles
of Γ∗.
We can write SX i.e. the X-only operators in terms of these incidence
matrices.

SX =
[

IC(Γ∗)

IV(Γ)

]
,

The surface code matroid is defined as the vector matroid of SX and we
shall denote it as M(ψΓ).
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Surface Code Matroids

.

.. ..

.

.

Let |ψΓ〉 be a surface code associated to a graph Γ. If Γ has no
loops/coloops and 2-cycles/2-cocycles, then LU(ψ) = LC(ψ).

.

.. ..

.

.

Let M(ψΓ) be a surface code matroid with ground set E(Γ). Then any
minor of M(ψΓ) is also a surface code matroid. Furthermore,
a. M(ψΓ) \ e = M(ψ′

Γ\e)
b. M(ψΓ)/e = M(ψ′′

Γ/e)

where
∣∣∣ψ′

Γ\e

〉
and

∣∣∣ψ′′
Γ/e

〉
are some surface code states of Γ \ e and Γ/e

respectively.

.

.. ..
. .Surface code matroids form a minor closed class of matroids.

Apparently these are called lift matroids and known already.
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LU-LC Equivalence---Takeaway

.

.. ..

.

.

¦ Our motivation was primarily to characterize stabilizer states with
distinct LU and LC orbits.

¦ We show that stabilizer states arising from graphs cannot have
distinct orbits.

¦ Such stabilizer states induce graphic matroids and they can be
recognized efficiently by testing if the associated matroid is graphic or
cographic.

.

.. ..

.

.

¦ We also identified a larger class of stabilizer states which induce
matroids that are minor closed.

¦ Characterize the excluded minors of these matroid closed family.
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Quantum Secret Sharing (QSS)

Classical secret to be secured
Secret is an element of a finite alphabet (usually a finite field Fq)
Encoded into q orthonormal quantum states

Quantum secret to be secured (quantum state sharing)
Secret is chosen from a set of q pure states
Encoded into a linear combination of q orthonormal states

.Why quantum secret sharing?..

.. ..

.

.

¦ Enhanced security
¦ Increased efficiency for classical secrets
¦ We might require to share a quantum state
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Quantum Secret Sharing and No Cloning

Using quantum states poses new set of problems.
.
No Cloning Theorem (Wootters, Zurek, Dieks 1982)..
.. ..

.

.We cannot make copies of an unknown quantum state.

No cloning theorem puts restrictions on the permissible authorized sets
equivalently, access structures.

¦ No two authorized sets are disjoint. [Cleve et al, 1999]
¦ The adversary structure contains its dual.

A∗ ⊆ A where A∗ = {A | A 6∈ A}

The access structure Γ is self-orthogonal.

Γ ⊆ Γ∗ where Γ∗ = {A | A 6∈ Γ}.
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Previous Work on Quantum Secret Sharing

[1] Quantum secret sharing, Hillery et al, Phys. Rev. A, 59, 1829, (1999).
Introduced quantum secret sharing.

[2] How to share a quantum secret, R. Cleve et al, Phys. Rev. Lett, 83, 648, (1999).
Systematic methods for a class of quantum secret sharing schemes and connected
them to quantum codes.

[3] Theory of quantum secret sharing, D. Gottesman, Phys. Rev. A, 64, 042311, (2000).
Further developed the theory addressing general access structures and classical secrets.

[4] Quantum secret sharing for general access structures, A. Smith, quant-ph/001087, (2000).
Constructions for general access structures based on monotone span programs.

[5] A Quantum Information Theoretical Model for Quantum Secret Sharing Schemes, H. Imai
et al, quant-ph/0311136, (2003).

Quantum secret sharing schemes analyzed in terms of von Neumann entropy.
[6] Graph states for quantum secret sharing, M. Damian and B. Sanders, Phys. Rev. A, 78,

042309, (2008).
A framework for secret sharing using labelled graph states.
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The Present Work in Context

.

.. ..

.

.

¦ Previous work by Gottesman and Smith has shown how to construct
quantum secret sharing schemes for general access structures.
¦ Based on the ideas of monotone span programs these schemes are not

always efficient.
¦ No associations have been made with matroids unlike the classical

case.
Classically, the most efficient secret sharing schemes have been induced
by matroids.

.Present work..

.. ..

.

.

¦ Characterizes quantum secret sharing schemes using matroids.
¦ Develops efficient quantum secret sharing schemes.
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Secret Sharing Schemes from Matroids

Given a matroid M we can associate a secret sharing scheme to M. Let
V = {1, . . . , n, n + 1}
.

.. ..

.

.

¦ Identify i ∈ V, as the dealer
¦ Consider all the circuits of M that contain i.

Ci = {C ∈ C | i ∈ C}

¦ Consider the access structure given by

Γi = {A \ i | 2V ⊇ A ⊇ C for some C ∈ Ci}. (1)

.Fact..

.. ..

.

.Every matroid M(V, C) induces an access structure Γi as defined in (1).

Pradeep Sarvepalli (UBC) Matroids and Quantum Computing August 4, 2009 31 / 38



. . . . . .

Introduction A Restricted Model of Quantum Computation LU-LC Equivalence of Stabilizer States Quantum Secret Sharing

Secret Sharing Schemes from Matroids

Given a matroid M we can associate a secret sharing scheme to M. Let
V = {1, . . . , n, n + 1}
.

.. ..

.

.

¦ Identify i ∈ V, as the dealer
¦ Consider all the circuits of M that contain i.

Ci = {C ∈ C | i ∈ C}

¦ Consider the access structure given by

Γi = {A \ i | 2V ⊇ A ⊇ C for some C ∈ Ci}. (1)

.Fact..

.. ..

.

.Every matroid M(V, C) induces an access structure Γi as defined in (1).

Pradeep Sarvepalli (UBC) Matroids and Quantum Computing August 4, 2009 31 / 38



. . . . . .

Introduction A Restricted Model of Quantum Computation LU-LC Equivalence of Stabilizer States Quantum Secret Sharing

Matroidal QSS

.
Fact (Cramer et al, IEEE Trans. Inform. Theory, 2008)..

.. ..

.

.

Let Γi and Γd
i be the access structures induced by a matroid M(V, C) and

its dual matroid M∗ by treating the ith element as the dealer. Then we
have

Γd
i = Γ∗

i (2)

Together with the observation that the quantum access structure is
self-orthogonal:
.
Existence of matroidal QSS (almost free)..

.. ..

.

.

An identically self-dual matroid M induces a pure state quantum secret
sharing scheme.
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Quantum Secret Sharing Schemes from Matroids
.

.. ..

.

.

Let M(V, C) be an identically self-dual matroid representable over Fq and
C ⊆ Fn+1

q such that its generator matrix is a representation of M.

GC =
[

1 g
0 Gσ0(C)

]
and Gρ0(C) =

[
g

Gσ0(C)

]
. (3)

Then there exists a quantum secret sharing scheme Σ on n parties whose
access structure is determined the by M and the dealer is associated to
the first coordinate. The encoding for Σ is determined by the stabilizer
code with the stabilizer matrix given by

S =
[

Gσ0(C) 0
0 Gρ0(C)⊥

]
. (4)

The reconstruction procedure for an authorized set A of Σ is the
transformation on S such that the encoded operators for the transformed
stabilizer code are X1 and Z1.
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Encoding

.

.. ..

.

.

E : |s〉 7→
∑

x∈σ0(C)

|s · g + σ0(C)〉

For an arbitrary state we use linearity of quantum mechanics:

E :
∑
s∈Fq

αs |s〉 7→
∑
s∈Fq

∑
x∈σ0(C)

αs |s · g + σ0(C)〉

Aside: These states are precisely, the codewords of an [[n, 1, d]]q quantum
code.
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Recovering the secret

We must form a linear combination of the authorized shares into one
of the share.

R :
∑
s∈Fq

∑
x∈σ0(C)

αs |s · g + x〉 7→
∑
s∈Fq

∑
x∈σ0(C)

αs |s〉 |f(s)〉

We must also make sure the state of the authorized sets is not
entangled with the rest of the system.

We must disentangle using only the authorized sets.
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Recovering the Secret

We must disentangle using only the authorized sets.
The key to this relies on the fact that both C and C⊥ induce the
same matroid.
So there exists a g′ whose support is entirely in supp(A) such that

E : |s〉 7→
∑

x∈σ0(C)

|s · g + σ0(C)〉 =
∑

x∈σ0(C)

∣∣s · g′ + σ0(C)
〉

To disentangle the authorized set we transform g′ to (1, 0, . . . , 0)

R :
∑
s∈Fq

∑
x∈σ0(C)

αs |s · g + x〉 7→
∑
s∈Fq

∑
x∈σ0(C)

αs |s〉 |h(x)〉
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Recovering the Secret

We must disentangle using only the authorized sets.
The key to this relies on the fact that both C and C⊥ induce the
same matroid.
So there exists a g′ whose support is entirely in supp(A) such that
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Quantum Secret Sharing---Takeaway

.

.. ..
. .Quantum secret sharing is very different from classical secret sharing

¦ No-cloning theorem implies there cannot be disjoint authorized sets,
equivalently the access structure is self-orthogonal, [Cleve et al, 1999,
Smith 2000].

¦ If there exists a self-orthogonal access structure then there exists a
QSS, [Smith 2000, Gottesman 2000].

.

.. ..

.

.

¦ We show that representable identically self-dual matroids give rise to
QSS with self-dual access structures.

¦ These schemes have information rate one and improve upon previous
schemes.
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Some Questions

.

.. ..

.

.

¦ Considering that there exist classical secret sharing schemes that arise
from matroids that are not coordinatizable, are there ideal quantum
secret sharing schemes that are induced by noncoordinatizable
matroids?

¦ Which self-dual access structures cannot be realized as ideal quantum
secret schemes?

¦ For matroid induced classical secret sharing schemes [Beimel and
Livne, 2008] showed that

rank(A) ≤ H(A)/H(S),

How are the von Neumann entropy of the sets related to the rank
function of the matroid, when the scheme is matroidal?
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