Oversampling Analog to Digital Converters 21st International Conference on VLSI Design, Hyderabad

Shanthi Pavan Nagendra Krishnapura

Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India

4 January 2008

・ロト ・ 理 ト ・ ヨ ト ・

Outline

- Introduction to sampling and quantization
 - Quantization noise spectral density
 - Oversampling
 - Noise shaping- $\Delta\Sigma$ modulation
- High order multi bit $\Delta\Sigma$ modulators
- Stability of $\Delta\Sigma$ A/D converters
- Implementation of $\Delta\Sigma$ A/D converters
 - Loop filter design
 - Multi bit quantizer design
 - Excess delay compensation
 - Clock jitter effects
- Mitigation of feedback DAC mismatch
 - Dynamic element matching
 - DAC calibration
- Case study
 - 15 bit continuous-time $\Delta\Sigma$ ADC for digital audio

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Signal processing systems

イロト 不得 トイヨト イヨト

- Natural world: continuous-time analog signals
- Storage and processing: discrete-time digital signals
- Data conversion circuits interface between the two
- Wide variety of precision and speed

Continuous time signals

- Signals defined for all t
- Signals can take any value in a given range

< 注入 < 注入 →

Discrete time signals

- Signals defined for discrete instants n
- Signals can take any value in a given range

3

ъ

- Signals defined for discrete instants n
- Signals can take discrete values kV_{LSB}

프 > 프

- A segment of a continuous-time signal has an infinite number of points of infinite precision
- Discretization of time (sampling) and amplitude (quantization) results in a finite number of points of finite precision
- Sampling and quantization = Analog to digital conversion
- Errors in the process?

ヘロト ヘアト ヘビト ヘビト

Signals in time and frequency domains

- Continuous time signal $x_{ct}(t)$
- Frequency domain representation using its Fourier transform X_{ct}(f)

$$X_{ct}(f) = \int_{-\infty}^{\infty} x_{ct}(t) \exp(-j2\pi ft) dt$$

- Discrete time signal x_d[n]
- Frequency domain representation using its Fourier transform X_d(ν)

$$X_d[\nu] = \sum_{n=-\infty}^{\infty} x_d[n] \exp(-j2\pi\nu n)$$

X_d[v] periodic with a period of 1

イロト 不得 トイヨト イヨト 三頭

Signals in time and frequency domains

• Signal bandwidth f_b : $|X_{ct}(f)| = 0$ for $f > f_b$

<ロ> (四) (四) (三) (三) (三)

Signals in time and frequency domains

- $X_d[\nu]$ periodic with a period of 1
- $X_d[\nu]$, $0 \le \nu \le 0.5$ completely defines real $x_d[n]$

医水理医水理医

Sampling an analog signal

 $x_d[n] = x_{ct}(nT_s)$

• Analog signal sampled to obtain a discrete-time signal

Sampling

- Copies of signal spectrum at $nf_s = n/T_s$
- Perfect reconstruction possible for $f_s \ge 2f_b$

(個) (日) (日) (日)

Sampling without aliasing

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

Reconstruction from sampled signal

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

Aliasing during sampling

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

Sampling followed by quantization

Quantized Sampled analog signal

Shanthi Pavan Nagendra Krishnapura

Oversampling Analog to Digital Converters

Quantization followed by sampling

Sampled continuous-time quantized signal

Shanthi Pavan Nagendra Krishnapura

Oversampling Analog to Digital Converters

- Nonlinearity results in harmonic distortion
- Harmonics folded about the sampling frequency

(個) (日) (日) (日)

Sampling and Quantization-Spectral density

国际 化国际

Sampling and Quantization-Spectral density

- $f_s/f_{in} = p/q$, large p, q: Closely spaced tones \sim noise
- f_s/f_{in} irrational: Continuous spectrum
- Approximated by a constant spectral density

(A) E > (A) E > (A)

Quantization error model

Modelled as an additive error

・ 同 ト ・ ヨ ト ・ ヨ ト …

Quantization error distribution

- Quantization error in the range $[-V_{LSB}/2, V_{LSB}/2]$
- Uniform distribution
- Mean squared value of $V_{LSB}^2/12$

医水黄医水黄医 三重

Sampling and Quantization-Error

- Fully correlated to the input signal
- Statistics independent of the input signal

• Uniform distribution; mean = 0; variance = $V_{LSB}^2/12$

- White spectral density
- Modelled as uncorrelated additive white noise

- 2^N level quantizer with V_{LSB} spacing
- Full scale sinewave input—amplitude (2^{N-1} V_{LSB})
- Mean squared signal: $(2^{N-1}V_{LSB})^2/2$
- Mean squared noise: $V_{LSB}^2/12$

•
$$SNR = \frac{3}{2}2^{2N} = 6.02 N + 1.78 \, \text{dB}$$

・ 同 ト ・ ヨ ト ・ 一 同 ト

Sampling and Quantization

Fourier transform of a continuous-time signal

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

Sampling and Quantization

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

Sampling and Quantization

Signal and quantization noise

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

Oversampling and Quantization

Oversampling and Quantization

Signal and quantization noise

- Sample at $f_s \gg 2f_{in}$
- Oversampling ratio $OSR = f_s/2f_{in}$
- Filter the noise using a filter of bandwidth fb
- Mean squared value of error = $V_{LSB}^2/12/OSR$
- Increased signal to quantization noise ratio

▲圖 と ▲ 国 と ▲ 国 と

- 2^N level quantizer with V_{LSB} spacing
- Full scale sinewave input—amplitude = $2^{N-1} V_{LSB}$
- Oversampling ratio OSR
- Mean squared signal: $(2^{N-1} V_{LSB})^2 / 2$
- Mean squared noise: $V_{LSB}^2/12/OSR$

•
$$SNR = \frac{3}{2}2^{2N}OSR = 6.02N + 10\log OSR + 1.76 dB$$

・ 同 ト ・ ヨ ト ・ 一 同 ト

Oversampling and Quantization

Move quantization error to filter stopband?

프 > 프

- Hard nonlinearity
- Modelled as additive error

æ

イロト 不得下 イヨト イヨト

Linearization of soft nonlinearity

- Negative feedback loop
- Loop gain $\rightarrow \infty \Rightarrow$ Error $u v \rightarrow 0$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Linearization of hardnonlinearity

- Quantizer output cannot equal the input
- Loop gain $\rightarrow \infty \Rightarrow$ Error $|u v| \rightarrow \infty$

문 🛌 🚊
Reduce error to zero only in the signal band

- Negative feedback loop with dc loop gain $\rightarrow \infty$
- Small loop gain at high frequencies
- Error $|u v| \rightarrow 0$ at low frequencies

First order $\Delta\Sigma$ modulator

- Loop filter is an accumulator
- Error $|u v| \rightarrow 0$ at low frequencies
- Differencing followed by accumulation– $\Delta\Sigma$ modulator

Noise and Signal transfer functions

$$STF = \frac{V}{U} = \frac{z^{-1}/1 - z^{-1}}{1 + z^{-1}/1 - z^{-1}}$$
$$= z^{-1}$$
$$NTF = \frac{V}{E} = \frac{1}{1 + z^{-1}/1 - z^{-1}}$$
$$= 1 - z^{-1}$$

医外球 医外口

Noise transfer function

-20

Output noise spectral density

$$\begin{array}{rcl} {S_{\nu_{e}}}(\nu) & = & {S_{e}}(\nu) |1 - exp(-j2\pi\nu)|^{2} \\ & = & {4S_{e}}(\nu) \sin^{2}(\pi\nu) \\ {S_{\nu_{e}}}(f) & = & {4S_{e}}(f) \sin^{2}(\pi f/f_{s}) \end{array}$$

문에 세면에 드린

Output noise in the signal band

$$\begin{aligned} v_{e}^{2} &= \int_{0}^{f_{b}} S_{v_{e}}(f) df \\ &= 4 \frac{V_{LSB}^{2}}{6f_{s}} \int_{0}^{f_{b}} \sin^{2}(\pi f/f_{s}) df \\ &\approx 4 \frac{V_{LSB}^{2}}{6f_{s}} \int_{0}^{f_{b}} (\pi f/f_{s})^{2} df \\ &= \frac{V_{LSB}^{2}}{12} \frac{\pi^{2}}{3} \left(\frac{2f_{b}}{f_{s}}\right)^{3} \\ &= \frac{V_{LSB}^{2}}{12} \frac{\pi^{2}}{3} \left(\frac{1}{OSR}\right)^{3} \end{aligned}$$

▲圖 → ▲ 臣 → ▲ 臣 → 二 臣

- Output noise $\propto \textit{OSR}^{-3}$ with first order noise shaping
- Output noise $\propto OSR^{-1}$ with no noise shaping
- Output noise $\propto OSR^{-(2L+1)}$ with L^{th} order noise shaping

Tremendous increase in signal to noise ratio with oversampling

伺い イヨト イヨト

- 2^N level quantizer with V_{LSB} spacing
- Full scale sinewave input—amplitude = $2^{N-1}V_{LSB}$
- Oversampling ratio OSR
- First order noise shaping
- Mean squared signal: $(2^{N-1}V_{LSB})^2/2$
- Mean squared noise: $(V_{LSB}^2/12)(\pi^2/3)1/OSR^3$

•
$$SNR = \frac{9}{2\pi^2} 2^{2N} OSR^3 = 6.02 N + 30 \log OSR - 3.4 dB$$

▲ 伊 ♪ ▲ 臣 ♪ ▲ 臣 ♪ ― 臣

- $1 z^{-1}$ for a first order $\Delta \Sigma$ modulator
- Higer order differencing ($\sim (1 z^{-1})^N$) in higher order modulators
- Crucial quantity in the design of delta sigma modulators

▲ 伊 ♪ ▲ 臣 ♪ ▲ 臣 ♪ ― 臣

$\Delta\Sigma$ analog to digital converter

- Analog to digital converter (Flash) in the forward path
- Digital to analog converter in the feedback path

• Output noise in signal band suppressed by noise shaping Output of the analog to digital converter is the oversampled digital output *v*

★ Ξ ► ★ Ξ ►

- Sampling preserves the signal if $f_s \ge 2f_b$
- Quantization adds an error $V_{LSB}^2/12$
- Quantization error modelled as additive white noise
- Oversampling and filtering reduces quantization error in the signal band
- Oversampling, noise shaping, and filtering provides a much higher reduction of quantization error in the signal band

・ 同 ト ・ ヨ ト ・ ヨ ト

- For the first order loop
- $V(z) = X(z) + (1 z^{-1}) E(z)$
- STF = 1, NTF = $1 z^{-1}$
- Can we do better ?

★ 문 ► ★ 문 ►

High Order NTFs

- $V(z) = X(z) + (1 z^{-1})^2 E(z)$
- Second Order Noise Shaping
- Can be extended to higher orders

・ 同 ト ・ ヨ ト ・ ヨ ト …

High Order NTFs

In-band quantization noise for a first order NTF is

$$\mathsf{Q} pprox rac{\Delta^2}{12\pi} \int_0^{rac{\pi}{OSR}} \omega^2 d\omega = rac{\Delta^2}{36\pi} \left(rac{\pi}{OSR}
ight)^3$$

What if the NTF was of the form
$$(1 - z^{-1})^N$$
?
 $Q \approx \frac{\Delta^2}{12\pi} \int_0^{\frac{\pi}{OSR}} \omega^{2N} d\omega = \frac{\Delta^2}{12(2N+1)\pi} \left(\frac{\pi}{OSR}\right)^{2N+1}$

Increasing order can dramatically reduce in-band quantization noise.

<ロ> <同> <同> < 回> < 回> < 回> < 回>

High Order NTFs

- Higher order \Rightarrow Reduced in-band noise
- NTF gain increases at high frequencies (around $\omega \approx \pi$).
- Why cant one go on increasing order ?

Stability of $\Delta\Sigma$ Modulators

- $Y(z) = L_0(z)U(z) + L_1(z)V(z)$
- *v* is the quantized version of *y*.

프 > 프

- Quantizer is modeled as an additive noise source.
- V(z) = U(z)STF(z) + E(z)NTF(z)
- Y(z) = U(z)STF(z) + E(z)(NTF(z) 1)
- In the signal band, $STF(z) \approx 1$
- Quantizer Input \approx (ADC input) + (Shaped Noise)

・ 同 ト ・ ヨ ト ・ 一 同 ト

Stability of $\Delta\Sigma$ Modulators

Quantizer input for OBG=1.5 and OBG=3.5

э

Gain of a Nonlinear Characteristic

- Assume an infinite precision quantizer with saturation.
- What is its gain ?
- Gain depends on signal.
- Black sinewave : Gain = 1
- Red sinewave : Gain < 1</p>

Gain of a Nonlinear Characteristic

• Gain =
$$\frac{E(v.y)}{E(y.y)}$$

- Makes intuitive sense.
- E(v.y) is the average value of v.y.
- *E*(*v*.*y*) is a measure of how much the output "resembles" the input.

・ 同 ト ・ ヨ ト ・ ヨ ト -

1

Gain of a Nonlinear Characteristic

If input to the quantizer exceeds the quantizer range

- Quantizer gain falls.
- If quantizer gain falls, system poles can move out of the unit circle.
- Modulator will become unstable.
- Signal level dependent loop stability has to be expected.

・同 ト ・ ヨ ト ・ ヨ ト

Intuition about Loop Stability

- Loop becomes unstable if the quantizer saturates.
- Saturation occurs if the quantizer input exceeds the quantizer range.
- Quantizer Input = ADC Input + Shaped Noise.
- Conclusions -
 - The maximum ADC input **must be smaller** than the quantizer range. (called the Maximum Stable Amplitude (MSA)).
 - $\bullet~$ More "shaped" noise \rightarrow More likelihood of instability.
- More shaped noise \rightarrow Lesser in-band noise.
- An aggressive NTF will have a reduced MSA.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Estimating Maximum Stable Amplitude (MSA)

- Simulation is the best way.
- Keep stepping up the input sinewave amplitude.
 - For every amplitude, compute in-band SNR.
 - Beyond the MSA, the closed loop poles move out of the unit-circle.
 - Noise shaping is lost \Rightarrow In-band SNR falls.
 - Quantizer input tends to infinity.

Time consuming.

・ 同 ト ・ ヨ ト ・ ヨ ト -

Estimating MSA Without Sinewave Inputs

- Originally proposed by Lars Risbo.
- Put a slowly increasing ramp into the ADC.
 - Beyond the MSA, the closed loop poles move out of the unit-circle.
 - Quantizer input tends to infinity very rapidly.
 - The value of the ADC input when the quantizer input *blows up* is the MSA.
- Found (empirically) to result in an MSA close to that predicted by the sinewave method.
- Much quicker than the sinewave technique.

イロト イ押ト イヨト イヨト

Estimating MSA Without Sinewave Inputs

3

э

Estimating MSA Without Sinewave Inputs

log(Quantizer Input) versus ADC Input MSA is about 90% of the quantizer range MSA vs OBG for a Third Order NTF

★ E ★ E ★ E ★

A Systematic NTF Design Procedure

- NTFs of the form $(1 z^{-1})^N$ have stability problems.
- Why?
- The OBG is too high (2^N) .
- This saturates the quantizer even for small inputs, causing instability.
- The MSA is small.
- Worse for low quantizer resolutions.

イロト 不得 トイヨト イヨト 三頭

A Systematic NTF Design Procedure Solution

• Introduce poles into the NTF.

•
$$NTF(z) = \frac{(1-z^{-1})^N}{D(z^{-1})}.$$

• Recall that $NTF(\infty) = 1$.

•
$$\Rightarrow D(z = \infty) = 1.$$

イロン 不得 とくほ とくほう 一度

- Properly chosen poles reduce OBG of the NTF, enhancing stability.
- However, stability comes at the expense of increased in-band noise.

A Systematic NTF Design Procedure

- Commonly used pole positions : Butterworth, Chebyshev, Inv. Chebyshev etc.
- Coefficients for these approximations readily gotten from MATLAB.
- Schreier's Delta-Sigma Toolbox is an invaluable design aid.
- One should understand what the toolbox does.

・ 同 ト ・ ヨ ト ・ ヨ ト

- A Systematic NTF Design Procedure
 - Choose the order of the NTF.
 - OSR, number of levels (*n*) and desired SNR are known.

• Example : Order = 3, OSR = 64, *n* = 16, SNR = 115 dB.

- Basically, the NTF is a high-pass filter transfer function.
 - Example : Choose a Butterworth Highpass.
- Choose the 3 dB corner of the high pass filter -
 - Example : $\omega_{3dB} = \frac{\pi}{8}$.
 - For a Butterworth NTF, specifying the cutoff specifies the complete transfer function.

・ 同 ト ・ ヨ ト ・ ヨ ト …

A Systematic NTF Design Procedure

Get the transfer function from MATLAB

• [b,a]=butter(3,1/8,'high')
•
$$H(z) = \frac{0.6735 - 2.0204z^{-1} + 2.0204z^{-2} - 0.6735z^{-3}}{1 - 2.2192z^{-1} + 1.7151z^{-2} - 0.4535z^{-3}}$$

• MATLAB sets $|H(e^{j\pi})| = 1$.

• Recall that for H(z) to be a valid NTF, $H(\infty) = 1$.

<ロ> <同> <同> < 回> < 回> < 回> < 回>

A Systematic NTF Design Procedure

• Scale H(z) by $\frac{1}{0.6735}$ to obtain NTF(z). • $NTF(z) = \frac{(1 - 3z^{-1} + 3z^{-2} - z^{-3})}{1 - 2.2192z^{-1} + 1.7151z^{-2} - 0.4535z^{-3}}$

- A Systematic NTF Design Procedure
 - Find loop filter using $\frac{1}{1+L(z)} = NTF(z)$.
 - Simulate the equations describing the modulator.
 - Compute the peak SNR.
 - In our example, we obtain SNR=102 dB after simulation.
 - MSA = 0.85.

▲ 伊 ト ▲ 臣 ト ▲ 臣 ト ─ 臣

A Systematic NTF Design Procedure

- If SNR is not enough, repeat the entire procedure above with a higher cutoff frequency for the Butterworth high pass filter.
 - This will increase the OBG (intuition on this later).
 - The MSA will reduce.

- If SNR is too high, repeat the entire procedure above with a lower cutoff frequency for the Butterworth high pass filter.
 - This will decrease the OBG (intuition on this later).
 - The MSA will increase.

<個と < 回と < 回と
A Systematic NTF Design Procedure

- SNR obtained with 3 dB cutoff of $\frac{\pi}{8}$ is inadequate.
- So, we increase the cutoff frequency to $\frac{\pi}{4}$.
- The peak SNR is around 116 dB.
- OBG = 2.25, MSA = 0.8.
- We are done.
- This iterative process is coded into synthesizeNTF in Schreier's toolbox.

・ 同 ト ・ 臣 ト ・ 臣 ト …

A Systematic NTF Design Procedure : Remarks

- Butterworth is one of several candidate high pass filters.
 - All the zeros of transmission are at the origin.
- Another useful family is the inverse Chebyshev approximation.
 - Has complex zeros (on the unit circle).

• *E* is a disturbance injected into the feedback loop.

•
$$V(z) = X(z) \frac{L(z)}{1+L(z)} + E(z) \frac{1}{1+L(z)}$$
.

• If
$$L(z) = \infty$$
, $V(z) = X(z)$.

• The loop rejects E(z), or the loop is *insensitive* to E(z).

- L(z) cannot be ∞ at all frequencies.
- $V(z) = X(z) \frac{L(z)}{1+L(z)} + E(z) \frac{1}{1+L(z)}$.
- The loop rejects *E* at frequencies where the loop gain is high.
- How effectively this is done is called the sensitivity function.
- Sensitivity is $\frac{1}{1+L(e^{j\omega})}$

- In a $\Delta\Sigma$ loop, sensitivity is the same as the NTF.
- Recall : The first sample of the NTF impulse response is 1.
- Equivalent to $NTF(\infty) = 1$
- The NTF can be written as $\frac{(1+a_1z^{-1})(1+a_2z^{-1}+a_3z^{-2})\cdots}{(1+b_1z^{-1})(1+b_2z^{-1}+b_3z^{-3})\cdots}$
- Poles must be within the unit circle (for a stable loop).
- The zeroes are on the unit circle (or inside).

ヘロト 人間 とくほ とくほ とう

• It can be shown that $\int_0^{\pi} \log(|1 + a_1 e^{-j\omega}|) d\omega = 0$, if $|a_1| \le 1$.

The area above the 0 dB in the log magnitude plot is equal to the area below the 0 dB line.

▲ 伊 ト ▲ 臣 ト ▲ 臣 ト ─ 臣

•
$$\int_0^{\pi} \log(|1 + a_2 e^{-j\omega} + a_3 e^{-j2\omega}|) d\omega = 0$$

if the roots of $1 + a_2 z^{-1} + a_3 z^{-2}$ lie within (or on) the unit circle.

• Straightforward to derive, if one accepts the previous result.

< 🗇 > < 🖻 > .

크 > 크

$$\int_0^{\pi} \log |NTF(e^{j\omega})| d\omega =$$
$$\int_0^{\pi} \log \left| \frac{(1+a_1e^{-j\omega})(1+a_2e^{-j\omega}+a_3e^{-2j\omega})\cdots}{(1+b_1e^{-j\omega})(1+b_2e^{-j\omega}+b_3e^{-3j\omega})\cdots} \right| =$$

$$\int_{0}^{\pi} \log(|1 + a_{1}e^{-j\omega}|) d\omega + \int_{0}^{\pi} \log(|1 + a_{2}e^{-j\omega} + a_{3}e^{-j2\omega}|) d\omega - \int_{0}^{\pi} \log(|1 + b_{2}e^{-j\omega} + b_{3}e^{-j2\omega}|) d\omega + \cdots$$

<ロ> (四) (四) (三) (三) (三)

$$\int_{0}^{\pi} \log |NTF(e^{j\omega})| d\omega =$$

$$\int_{0}^{\pi} \log \left| \frac{(1+a_{1}e^{-j\omega})(1+a_{2}e^{-j\omega}+a_{3}e^{-2j\omega})\cdots}{(1+b_{1}e^{-j\omega})(1+b_{2}e^{-j\omega}+b_{3}e^{-3j\omega})\cdots} \right| =$$

$$\int_{0}^{\pi} \log(|1+a_{1}e^{-j\omega}|) d\omega + \int_{0}^{\pi} \log(|1+a_{2}e^{-j\omega}+a_{3}e^{-j2\omega}|) d\omega =$$

$$\int_{0}^{\pi} \log(|1 + a_{1}e^{-j\omega}|) d\omega + \int_{0}^{\pi} \log(|1 + a_{2}e^{-j\omega} + a_{3}e^{-j2\omega}|) d\omega - \int_{0}^{\pi} \log(|1 + b_{2}e^{-j\omega} + b_{3}e^{-j2\omega}|) d\omega + \cdots$$

= Zero

<ロ> (四) (四) (三) (三) (三)

$$\int_{0}^{\pi} \log |NTF(e^{j\omega})| d\omega = 0$$

The Integral of the Log Magnitude of an NTF is 0

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

<ロ> (四) (四) (三) (三) (三)

Good inband performance at the expense of poor out-of-band performance.

Complex zeros better than choosing all NTF zeros at the origin.

ъ

Complex zeros better than choosing all NTF zeros at the origin.

3

Higher order \Rightarrow less in-band noise.

A B > 4
 B > 4
 B

프 () () 프 ()

- Remember : A quantizer = ADC + DAC.
- Needs ONE DAC.
- Loop filter gain goes to infinity at DC, with order 2.
- Both NTF zeros at DC (z = 1).
- Called CIFF (Cascade of Integrators Feed Forward)

- Remember : A quantizer = ADC + DAC.
- Needs TWO DACs.
- Loop filter gain goes to infinity at DC, with order 2.
- Both NTF zeros at DC (z = 1).
- Called CIFB (Cascade of Integrators Feed Back).

- CIFF loop with complex zeros.
- NTF zeros are at $1 \pm j\sqrt{\gamma}$.

프 > 프

< ⊒ >

- CIFB loop with complex zeros.
- NTF zeros are at $1 \pm j\sqrt{\gamma}$.

ヨトメヨト

Loop Filter Implementation

- Traditionally done in discrete-time.
- Implemented using switched-capacitor techniques.
- Switched capacitor circuits have several advantages.
 - Exact nature of settling is irrelevant, only the settled value matters.
 - Pole-zero locations of the loop filter are set by capacitor ratios, which are exteremely accurate.
 - Insensitive to clock jitter, as long as complete settling occurs.
 - Easier to simulate.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Loop Filter Implementation Switched capacitor loop filters have disadvantages too -

- Difficult to drive from external sources due to the large spike currents drawn.
- Upfront sampling : requires an anti-alias filter.
- Integrator opamps consume more power than continuous-time counterparts.
- Require large capacitors to lower kT/C noise.

イロト 不得 トイヨト イヨト 三頭

Continuous-time Loop Filters

- What is the NTF ?
- How does one design such a loop ?
- How does this compare with a discrete-time loop filter ?

DAC Modeling

- The input to the DAC is a digital code a_k that changes every T_s.
- The DAC output is an analog waveform.
- Output = $\sum_{k} a_{k} p(t kT_{s})$
- p(t) is called the pulse-shape.
- Commonly used shapes are the Non-Return to Zero (NRZ) and Return-to-Zero (RZ) pulses.

イロト イポト イヨト イヨト

Loop Modeling

- Set input to zero.
- Replace ADC-DAC with quantization noise e(n).
- DAC is modeled as a filter with impulse response p(t).

★ Ξ ► ★ Ξ ►

Loop Modeling

- Break the loop after the sampler.
- Apply a discrete time impulse.
- What comes back is $I[n] = p(t) * I(t)|_{kT_s}$.
- The z-transform of *I*[*n*] is the equivalent discrete time loop filter.

ヘロト ヘ帰 ト ヘヨト ヘヨト

A First Order Example

• Discrete-time equivalent impulse response of the loop filter 0, 1, 1, 1, 1 · · ·

•
$$L(z) = \frac{z^{-1}}{1-z^{-1}}$$

•
$$NTF(z) = \frac{1}{1+L(z)} = 1 - z^{-1}$$

(雪) (ヨ) (ヨ)

A Second Order Example

- Say we need $NTF(z) = (1 z^{-1})^2$.
- Discrete-time impulse response through k_1 $k_1(r_1(t) - r_1(t - 1)) = \{0, k_1, k_1, k_1, k_1, \dots\}$
- Discrete-time impulse response through k_2 $k_2(r_2(t) - r_2(t-1)) = \frac{1}{2}\{0, k_2, 3k_2, 5k_2 \cdots\}$

- A Second Order Example
 - Discrete-time impulse response through k₁

$$k_1(r_1(t) - r_1(t-1)) = \{0, k_1, k_1, k_1, k_1, \dots\} \Rightarrow \frac{k_1 z^{-1}}{1 - z^{-1}}.$$

1

イロト 不得 トイヨト イヨト 三頭

• Discrete-time impulse response through k_2 $k_2(r_2(t) - r_2(t-1))$ $= \frac{1}{2}\{0, k_2, 3k_2, 5k_2, 7k_2 \dots\} \Rightarrow \frac{k_2 z^{-1}}{(1-z^{-1})^2} - \frac{0.5k_2 z^{-1}}{1-z^{-1}}.$ • $L(z) = \frac{(k_1 + 0.5k_2)z^{-1} + (-k_1 + 0.5k_2)z^{-2}}{(1-z^{-1})^2}.$

A Second Order Example

•
$$L(z) = \frac{(k_1 + 0.5k_2)z^{-1} + (-k_1 + 0.5k_2)z^{-2}}{(1 - z^{-1})^2}$$
.
• To achieve *NTF*(*z*) = $(1 - z^{-1})^2$, we need
 $L(z) = \frac{2z^{-1} - z^{-2}}{(1 - z^{-1})^2}$.
• $\Rightarrow k_1 = 1.5, k_2 = 1$.

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

イロト 不同 トイヨト イヨト

æ

Continuous-time Sigma-Delta Summary

- It is possible to "emulate" a D-T loop filter with a C-T one.
- The equivalence depends on the DAC pulse shape.
- The technique can be extended to high order NTFs -
 - From the desired NTF(z), find L(z)
 - Convert *L*(*z*) into *L*(*s*) using the DAC pulse shape
 - The MATLAB command d2c will do it for you, for an NRZ DAC.
 - Implement L(s) using any one of the loop filter topologies.
- A CT loop filter has several other advantages ... listen on.

ヘロト ヘ帰 ト ヘヨト ヘヨト

Move L(s) outside the loop

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

- ∢ ⊒ →

Move the sampler outside the loop

프 🖌 🛪 프 🕨

 Replace the cascade of the DAC and L(s) by the equivalent discrete-time filter L(z).

э

• NTF(z) = 1/(1 + L(z))

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Consider a tone at frequency Δf in the signal band.
- Response to frequency Δf is $L(\Delta f)NTF(\Delta f)$.
- In a general ADC, a tone $(\Delta f + f_s)$ can alias as Δf .
- What about a CTDSM ?
- Response to frequency $(\Delta f + f_s)$ is $L(\Delta f + f_s)NTF(\Delta f)$

・過 と く ヨ と く ヨ と

- Alias rejection is $\left|\frac{L(\Delta f)}{L(\Delta f + f_s)}\right|$
- Implicit anti-aliasing without an explicit filter !
- Valuable feature of CT Delta-Sigma modulators.

< 回 > < 回 > .

Effect of Time-Constant Variations in the Loop Filter

- On-chip RC's vary with process and temperature.
- On an integrated circuit, ratios of like elements are tightly controlled.
- We need to only worry only about quantities with "dimensions".
- What happens due to absolute variation of RC time constants ?
If all RC time-constants decrease

- Loop filter bandwidth increases.
- In-band loop gain increases.
- Lower in-band quantization noise better in-band NTF.
- NTF must be worse out-of-band - higher OBG.

・ 同 ト ・ ヨ ト ・ ヨ ト …

If all RC time-constants decrease

- Higher OBG for the NTF.
- Reduced maximum stable amplitude.
- Closer to instability.

イロト 不得 トイヨト イヨト

If all RC time-constants increase

- Loop filter bandwidth decreases.
- In-band loop gain decreases.
- Higher in-band quantization noise poorer in-band NTF.
- NTF must be better out-of-band - lower OBG.

<個と < 回と < 回と

If all RC time-constants increase

- Lower OBG for the NTF.
- Increased maximum stable amplitude.
- "More" stable.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Effect of RC Variations on the NTF

Nominal NTF : Maximally flat with an OBG=3

医下子 医下口

Effect of RC Variations: Time Domain Intuition

Nominal NTF : Maximally flat with an OBG=3

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

Effect of RC Variations: Time Domain Intuition

Nominal NTF : Maximally flat with an OBG=3

Why is there excess loop delay ?

- Quantizer needs time to make a decision.
- Finite operational amplifier gain-bandwidth product.
- DEM logic delay in multibit converters.

A First Order Example

- Loop filter is an integrator.
- An NRZ DAC is used.
- Sampling Rate = 1 Hz

ъ

 Discrete-time equivalent impulse response of the loop filter 0, 1, 1, 1, 1 ···

•
$$L(z) = \frac{z^{-1}}{1-z^{-1}}$$

• $NTF(z) = \frac{L(z)}{1+L(z)} = 1 - z^{-1}$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- In practice, the quantizer needs time to make a decision.
- Equivalent to a delay t_d in the loop.
- What happens to the NTF of the loop ?

• Discrete-time equivalent impulse response of the loop filter $\{0, 1 - t_d, 1, 1, 1 \cdots\} = \{0, 1, 1, 1, 1 \cdots\} + \{0, -t_d, 0, 0, 0 \cdots\}$ • $L(z) = \frac{z^{-1}}{1 - z^{-1}} - t_d z^{-1}$ • $NTF(z) = \frac{L(z)}{1 + L(z)} = \frac{1 - z^{-1}}{1 - t_d z^{-1} + t_d z^{-2}}$

- The order of the system is increased.
- Becomes unstable for $t_d = 1$
- Not surprising a delay in a feedback loop is always problematic.
- Aggressive NTF designs are more sensitive to excess delay.

伺 とくき とくき とう

- Impulse response of the loop filter with delay $\{0, t_d, 1, 1, 1 \dots\} = \{0, 1, 1, 1, 1 \dots\} + \{0, -t_d, 0, 0, 0 \dots\}$
- Add a path with discrete-time response {0, *t*_d, 0, 0, 0...} to the loop filter.

• Implementation of feedforward path in the loop.

크 > 크

• Equivalent implementation of loop filter feedforward.

크 > 크

- Eliminate path from the input (small compared to the integrator output).
- Excess delay can be compensated by adding a direct path around the quantizer.

< 🗇 🕨

· < 프 ► < 프 ►

Excess Delay Compensation : Summary

- Direct path around the quantizer.
- Modification of H(s) (coefficient tuning).
- General approach valid even for high order modulators.
- Determining coefficients and *k* best done numerically.

Clock Jitter in Discrete-time $\Delta\Sigma$ ADCs

The input is sampled outside the modulator

★ Ξ ► ★ Ξ ►

Clock Jitter in Discrete-time $\Delta\Sigma$ ADCs

- Treat the input as a sinusoid with maximum amplitude A.
- Error due to jitter at the sampling instant is $\Delta t \frac{dA \sin(2\pi f_{in}t)}{dt}$
- Assume white clock jitter with RMS value σ_i .
- RMS value of noise due to jitter in the signal bandwidth is $\sigma_j \sqrt{2} A \pi f_{in} / OSR$

・ 同 ト ・ ヨ ト ・ ヨ ト

Clock Jitter in Continuous-time $\Delta\Sigma$ ADCs

The input is sampled inside the modulator.

A E > A E >

The Ideal Sampler/Quantizer

- Input is sampled in the ADC.
- ADC output code is sampled by the DAC.

프 🖌 🛪 프 🕨

The Ideal Sampler/Quantizer

- DAC output analog waveform fedback into the loopfilter.
- No delay in the quantizer, no clock jitter.
- ADC output code is the modulator output.

The Real Sampler/Quantizer

- ADC needs a finite time for conversion.
- DAC is clocked *t*_{del} later.
- The clock is jittery.

프 > 프

Effect of ADC Sampling Jitter

- Modelled as an error preceding the ADC.
- Noise shaped by the loop.

★ E ► < E ►</p>

Effect of DAC Reconstruction Jitter

- Modelled as an error following the DAC.
- Equivalent to an error at the modulator input.
- Degrades performance.

프 🖌 🛪 프 🕨

Types of DACs : NRZ versus RZ

Modeling Clock Jitter in NRZ DACs

▲ロ ▶ ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ▲ 目 ▶ ● の Q ()

Modeling Clock Jitter in RZ DACs

Clock Jitter in NRZ versus RZ DACs

- Error depends on the height & number of transisitions in the DAC output waveform.
- NRZ DACs have a transition height y(n) − y(n − 1), one transistion every T_s.
- RZ DACs have a transition height 2y(n), two transistions every T_s.
- RZ DACs are MUCH more sensitive to clock jitter !

▲ 伺 ▶ ▲ 回 ▶ ▲ 回 ▶ … 回

Clock Jitter in Modulators with NRZ DACs

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Effect of Jitter on SNR

$$e_{j}(n) = [y(n) - y(n-1)] \frac{\Delta t(n)}{T}$$
$$\sigma_{ej}^{2} = \sigma_{dy}^{2} \frac{\sigma_{\Delta t}^{2}}{T^{2}}$$
$$y(n) = v_{in}(n) + e_{q}(n) * h(n)$$

- v_{in} is the input.
- e_q is the quantization noise sequence.
- *h*(*n*) is the impulse response corresponding to the NTF.

$$y(n) - y(n-1) = v_{in}(n) - v_{in}(n-1) + (e_q(n) - e_q(n-1)) * h(n)$$

Due to oversampling, $v_{in}(n) \approx v_{in}(n-1)$

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ● ● ● ● ● ● ●

$$y(n) - y(n-1) \approx (e_q(n) - e_q(n-1)) * n(n)$$

 $e_q(n)$ is a white sequence with mean square value σ_{lsb}^2 .

((n)) ((n A)) (a (n)) (a (n))

$$\sigma_{dy}^2 \approx \frac{\sigma_{lsb}^2}{\pi} \int_0^{\pi} |(1 - e^{-j\omega}) NTF(e^{j\omega})|^2 d\omega$$

4)) **b**(m)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

The in-band noise due to jitter (J) is

$$J \approx \frac{\sigma_{\Delta T_s}^2}{T^2} \frac{\sigma_{lsb}^2}{\pi OSR} \int_0^\pi |(1 - e^{-j\omega}) NTF(e^{j\omega})|^2 d\omega$$

Effect of Jitter on SNR

$$J = \frac{\sigma_{\Delta T_s}^2}{T^2} \frac{\sigma_{lsb}^2}{\pi OSR} \int_0^\pi |(1 - e^{-j\omega}) NTF(e^{j\omega})|^2 d\omega$$
(1)

- Observation : The NTF at high frequencies (close to $\omega = \pi$) contributes the most to *J*.
- \Rightarrow NTFs with high OBG result in more jitter noise.
- Smaller LSB, less jitter noise → multibit modulator less sensitive to jitter.

・ 戸 ・ ・ ヨ ・ ・ モ ・ ・

Example Calculation

- Audio modulator, 24 kHz bandwidth.
- OSR = 64 (f_s = 3.072 *MHz*), 4-bit quantizer.
- Quantizer input range is 2 V.
- LSB size is $2/16 \rightarrow \sigma_{lsb}^2 = \frac{(2/16)^2}{12}$
- Assume 100 ps RMS jitter.
- J = (1.28 μV)².
- Maximum Signal Amplitude is 0.83 V peak.
- Signal to Jitter Noise Ratio is $20 \log(\frac{0.83/\sqrt{2}}{1.28\,\mu V}) = 113 \, dB$
- Conclusion : 100 ps RMS Jitter is not an issue for 15 bit resolution.

(人間) トイヨト イヨト 三日

Feedback DAC nonlinearity

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters
$\Delta\Sigma$ analog to digital converter

Typically 4 bits (16 levels) or less in the quantizer

★ Ξ ► ★ Ξ ►

Feedback DAC architecture

quantizer output $v = d_{2-0}$ [binary] = b_{1-7} [thermometer]

- Flash quantizer gives a thermometer coded output
- Thermometer coded DAC: high accuracy and small loop delay

(個) (日) (日) (日)

Switched capacitor (discrete-time) $\Delta\Sigma$ modulator

- Array of *M* capacitors for M + 1 levels
- Flash quantizer output v
- v capacitors charged to V_{ref} and M v to zero volts

Continuous-time $\Delta\Sigma$ modulator

- Array of *M* resistors for M + 1 levels
- Flash quantizer output v
- v resistors connected to V_{ref} and M v to ground

伺き くほき くほとう

Continuous-time $\Delta\Sigma$ modulator

- Array of *M* current sources for M + 1 levels
- Flash quantizer output v
- v current sources turned on and M v turned off

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Multi bit: smaller LSB \Rightarrow lower quantization noise
- Single bit: larger LSB \Rightarrow higher quantization noise

- Multi bit quantizer
 - Clearly defined gain
 - Conforms to prediction using linear models
- Single bit quantizer
 - Signal dependent quantizer gain
 - Deviates from prediction using linear models

- Multi bit quantizer
 - Characteristics not linear due to mismatch
- Single bit quantizer
 - Characteristics always linear

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Effect of DAC nonlinearity

- DAC output equals the input *u*
- v related to the input u by inverse nonlinearity of the DAC

くロン 人間と 人造と 人造とい

Modeling the effect of DAC nonlinearity

 Nonlinear DAC driven by an ideal ΔΣ modulator and its output w analyzed

프 > 프

Multi bit feedback DAC nonlinearity

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Multi bit feedback DAC nonlinearity

•
$$I_{out}[0] = 0$$

• $I_{out}[8] = \sum_{n=1}^{8} I_n$
• $I_{LSB} = 1/8 \sum_{n=1}^{8} I_n$
• DNL $\Delta I_k = I_k - I_{LSB}$
• INL $I_{ek} = \sum_{n=1}^{k} I_n - nI_{LSB} = \sum_{n=1}^{k} \Delta I_k$

ヘロト 人間 とくほとく ほとう

-20

Effects of DAC nonlinearity

Shanthi Pavan Nagendra Krishnapura

Oversampling Analog to Digital Converters

Effects of DAC nonlinearity

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

- Distortion
- Increased in band quantization noise

ヘロト ヘ戸ト ヘヨト ヘヨト

- Reduce relative mismatch of DAC elements
- $\sigma_I/I_{LSB}, \sigma_C/C, \sigma_R/R \propto 1/\sqrt{WL}$
- 100× area increase to reduce relative mismatch by 10×
- Sizing alone cannot help

・ 同 ト ・ ヨ ト ・ ヨ ト …

Representing v using a thermometer DAC

- v current sources must be on—multiple possibilities
- M!/M!(M-v)! combinations can represent v
- Only one possibility for v = 0 (all off) and v = 8 (all on)

< ∃ →

Different combinations of unit cells for a given input

- v = 1 can be represented by turning on any one of I_{1-8}
- Average of all possibilities

$$\frac{1}{8}\sum_{n=1}^{8}I_n=I_{LSB}$$

is the ideal output!

- For all *v*, averaging all possible combinations produces the ideal output
- Use different combinations to represent a given code

・ 同 ト ・ ヨ ト ・ ヨ ト …

Different combinations of unit cells for a given input

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

Randomization

- $M \times M$ switching matrix
- In each cycle, randomly choose a set of connections
- Converts distortion to white noise
- *M*! possible connections in the switch matrix (9! = 362880)—use a smaller subset
- Switch matrix introduces delay in the loop

<週 > < 回 > < 回 >

Randomization-Butterfly scrambler

- Each stage flips across 1, 2, or 4 positions
- 7 switches instead of 64
- Only 128 combinations used—but good enough in practice

イロト 不得 トイヨト イヨト

Randomization-results

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

$\Delta\Sigma$ modulator with randomization

Extra delay in the loop

(A) E > (A) E > (B)

- Distortion components converted to noise
- Increased noise floor
- Additional loop delay

・ 同 ト ・ ヨ ト ・ ヨ ト

Data weighted averaging

• Cycle through all the current sources as rapidly as possible

DAC nonlinearity

э

Data weighted averaging—dc input

- Accumulated error is zero after a small number of cycles
- Pattern repeats every *M* cycles for an *M* + 1 level DAC
- Tones at f_s/M and its harmonics for v = 1

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Data weighted averaging—arbitrary inputs

(E)

Data weighted averaging—arbitrary inputs

・ロット (雪) (山) (山) (山)

Data weighted averaging—arbitrary inputs

Data weighted averaging—mismatch shaping

- ∞ D/A output error bounded by INL_{max}
- Finite power at all frequencies
- $1 z^{-1}$ at the output provides first order shaping

Data weighted averaging—implementation

- *M* input barrel shifter driven by accumulated ADC output
- Loop delays from thermometer-binary converter, accumulator, barrel shifter

(A) E > (A) E > (B)

Data weighted averaging—results

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters
$\Delta\Sigma$ modulator with data weighted averaging

Extra delay in the loop

★ E ► < E ►</p>

- Provides first order mismatch shaping
- Potential for tones at $\approx f_s/M$ with an M + 1 level quantizer
- For low OSR, tones can be close to the signal band
- Additional loop delay

(過) (正) (正)

Individual level averaging

- Cycle through all current sources for each input code
- Separate pointer for each input code
- Lesser potential for tones than DWA
- More noise than DWA

Data weighted averaging—variants

æ

э

- Bidirectional DWA: Opposite directions in each cycle
- Double index averaging: Separate pointers for v > M/2 and v ≤ M/2
- DWA with randomization: Randomize the shifts once in every few cycles to break up tones

イロト 不得 トイヨト イヨト 三頭

Higher order mismatch shaping

- Mismatch shaped by the transfer function H_{mismatch}
- Deviation from exact shaping due to the constraint |sv| = |v|
- Complex hardware

(雪) (ヨ) (ヨ)

Dynamic element matching: tradeoffs

- Mismatch error reduction
 - High order noise shaping (highest)
 - DWA
 - ILA
 - Randomization (lowest)
- Potential for tones
 - Randomization (lowest)
 - High order noise shaping
 - ILA
 - DWA (highest)
- Complexity
 - High order noise shaping (highest)
 - ILA, Randomization
 - DWA (lowest)
- Excess loop delay
 - High order noise shaping (highest)
 - ILA
 - DWA
 - Randomization (lowest)

Dynamic element matching: summary

Data weighted averaging

- Best compromise between complexity and performance
- Works very well with high OSR
- Potential for tones at low OSR
- ILA, other DWA variants
 - More complex, less potential for tones
- Randomization
 - Can also be used for DACs without noise shaping

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Measure DAC characteristics
- Duplicate its characteristics in the digital path
- $v' = v + \epsilon$; $\epsilon \ll v$; Lot more bits in v' than v

イロト 不得下 イヨト イヨト

Calibration

- Store only the error to reduce register width
- Noise shaped quantization (digital ΔΣ modulator) to reduce decimator input width

イロト イポト イヨト イヨト

Analog calibration

Calibrate all current sources against a master source

• Use M + 1 current sources and calibrate one at a time

< ∃→

- No additional components in the loop \Rightarrow no excess delay
- Measuring DAC characteristics inline is challenging
- Additional digital or analog complexity

▲┌── ▶ ▲ □ ▶ ▲ □ ▶

References

- Randomization: L. R. Carley, "A noise-shaping coder topology for 15+ bit converters," IEEE Journal of Solid-State Circuits, vol. 24, pp. 267 - 273, April 1989.
- Data weighted averaging: R. T. Baird and T. S. Fiez, "Linearity enhancement of multibit δΣ A/D and D/A converters using data weighted averaging," *IEEE Transactions on circuits and systems-II*, vol. 42, pp. 753 762, December 1995.
- Individual level averaging: B. H. Leung and S. Sutarja, "Multibit Σ-Δ A/D converter incorporating a novel class of dynamic element matching techniques," *IEEE Transactions on circuits and systems-II*, vol. 39, pp. 35-51, January 1992.
- Theoretical analysis: O. J. A. P. Nys and R. K. Henderson, "An analysis of dynamic element matching techniques in sigma-delta modulation," *Proceedings of the 1996 IEEE International symposium on circuits and systems*, vol. 1, pp. 231-234, May 1996.
- Comparison through simulation: Zhimin Li, T. S. Fiez, "Dynamic element matching in low oversampling delta sigma ADCs," Proceedings of the 2002 IEEE International symposium on circuits and systems, vol. 4, pp. 683-686, May 2002.
- Digitally calibrated ΔΣ modulator: M. Sarhang-Nejad and G. C. Temes, "A high-resolution multibit Σ Δ ADC with digital correction and relaxed amplifier requirements," *IEEE Journal of Solid-State Circuits*, vol. 28, pp. 648 - 660, June 1993.
- Analog calibrated DAC: D. Wouter J. Groeneveld et al., "A self-calibration technique for monolithic high-resolution D/A converters," IEEE Journal of Solid-State Circuits, vol. 24, pp. 1517 1522, December 1989.
- Higher order mismatch shaping: R. Schreier and B. Zhang, "Noise-shaped multibit D/A convertor employing unit elements" *Electronics letters*, vol. 31, No. 20, pp. 1712-1713, 28th September 1995.
- Additional filtering of DEM errors: M. H. Adams and C. Toumazou, "A Novel Architecture for Reducing the Sensitivity of Multibit Sigma-Delta ADCs to DAC Nonlinearity," *Proceedings of 1995 IEEE International* symposium on circuits and systems, vol. 1, pp. 17-20, May 1995.
- Additional filtering of DEM errors: J. Chen and Y. P. Xu, "A Novel Noise Shaping DAC for Multi-bit Sigma-Delta Modulator," IEEE Transactions on Circuits and Systems II-Express Briefs, vol. 53, no. 5, pp. 344-348, May 2006.

CASE STUDY

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

A 15-bit Continuous-time $\Delta\Sigma$ ADC for Digital Audio Design Targets

- Audio ADC (24 kHz Bandwidth)
- 15 bit resolution
- OSR = 64 (*f*_s = 3.072 MHz)
- 0.18µm CMOS process, 1.8 V supply

・ 同 ト ・ ヨ ト ・ ヨ ト …

Continuous-time versus Discrete-time A continuous-time implementation was chosen

- Implicit anti-aliasing
- Resistive input impedance
- Low power dissipation

伺き くほき くほう

Architectural Choices

- Single-bit versus multibit quantization ?
- Single loop versus MASH ?
- NTF ?
- Loop Filter Architecture ?

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Architecture : Single-bit vs Multibit

Single bit quantizer

- Simple hardware
- Gentle NTF
- High jitter sensitivity
- Metastability
- Opamp slew rate

Multibit quantizer

- Complex hardware
- Aggressive NTF
- Low jitter sensitivity
- Metastability : no issue

・ 同 ト ・ ヨ ト ・ ヨ ト

Reduced slew rate

A 4-bit quantizer is used.

Architecture : Single Loop vs MASH

Matching of transfer functions are needed in a MASH design

- More complicated
- Might require calibration

A single loop design is chosen.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Architecture : Choice of the NTF

A maximally flat NTF is chosen

Small OBG

Large OBG

- High in-band quantization noise
- Low jitter noise
- Increased Maximum Stable Amplitude (MSA)

- Low in-band quantization noise
- High jitter noise
- Reduced Maximum Stable Amplitude (MSA)

・ 同 ト ・ ヨ ト ・ ヨ ト

An OBG of 2.5 is chosen as a compromise

Effect Of OBG On Jitter And Quantization Noise

<ロ> <同> <同> <日> <同> <日> <日> <同> <日> <日> <日 < □> <日 < □> < □> <日 < □> <

Effect Of Systematic RC Time Constant Variations On The NTF

★ E ► ★ E ► E

MSA And SQNR With Systematic RC Time Constant Variations

Simulated Output Bit Stream

э

Feedfoward versus Distributed Feedback Loopfilters

(a) $\omega_1 = 2.67, \omega_2 = 2.08, \omega_3 = 0.059$

(b) $\omega_1 = 0.34, \omega_2 = 0.71, \omega_3 = 1.225$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Feedfoward versus Distributed Feedback Loopfilters

Feedforward

- First integrator is fasest.
- Third integrator is slowest.
- First opamp is power hungry (for noise reasons).
- Third opamp is low power (slowest integrator).
- Small capacitor area.

Distributed Feedback

- Third integrator is fastest.
- First integrator is slowest.
- First opamp is power hungry (for noise).
- Third opamp is power hungry (fastest integrator).
- Large capacitor area.

イロト イポト イヨト イヨト

A feedforward loop filter is used.

Loop Filter

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆」

Excess Delay Compensation : Conventional

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

Excess Delay Compensation : Proposed

★ 문 ► ★ 문 ► _ 문

First Opamp

프 🖌 🛪 프 🛌

∃ 990

Second Opamp

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

Flash ADC Block Diagram

▲ 臣 → ▲ 臣 → 二

æ

Comparator

Effect of Random Offset in the Comparators

Digital Backend

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Unit DAC Resistor

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Reference Generation Circuitry

æ

Test Setup and Die Layout

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

(個) (日) (日) 日

Test Setup Schematic

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters

イロト 不同 トイヨト イヨト

æ -

Measured Dynamic Range

э

In Band Spectrum

・ロト・日本・モト・モト モーク

Out of Band Spectrum

э

Performance Summary

Table: Summary of Measured ADC performance.

Signal Bandwidth/Clock Rate	24 kHz/3.072 MHz
Quantizer Range	3 V _{pp,diff}
Input Swing for peak SNR	-1 dBFS
Dynamic Range/SNR/SNDR	93.5 dB/92.5 dB/90.8 dB
Active Area	0.72 mm ²
Process/Supply Voltage	0.18 μm CMOS/1.8 V
Power Dissipation (Modulator)	90 µW
Power Dissipation (Modulator and	121 μW
Reference Buffers)	
Figure of Merit(DR/SNR)	0.049 pJ/level,
	0.054 pJ/level

<ロ> (四) (四) (三) (三) (三)

Some References ...

 Delta-Sigma Data Converters: Theory, Design and Simulation
S. Norsworthy, R. Schreier and G. Temes, IEEE Pre-

S. Norsworthy, R. Schreier and G. Temes, *IEEE Press* The Yellow Bible of $\Delta\Sigma$ ADCs

Understanding Delta-Sigma Data Converters
R. Schreier and G. Temes, *IEEE Press* The Green Bible of ΔΣ ADCs
Both the above are essential reading !

・ 同 ト ・ 臣 ト ・ 臣 ト …

Some References ...

- Theory, Practice, and Fundamental Performance Limits of High-Speed Data Conversion Using Continuous-Time Delta-Sigma Modulators
 J. Cherry, Ph.D Dissertation, Carleton University.
 Excellent reading on continuous-time Delta-Sigma modulator design.
- A Power Optimized Continuous-time ΔΣ ADC for Audio Applications

S. Pavan, N. Krishnapura et. al, *IEEE Journal of Solid State Circuits, February 2008.*

Detailed description of the case study discussed in this tutorial.

ヘロト ヘアト ヘビト ヘビト