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Abstract

Large Dynamic Range Dynamically Biased
Log-Domain Filters

Nagendra Krishnapura

This dissertation investigates the enhancement of the dynamic range per unit power con-

sumption of analog filters using dynamic biasing. A technique for realizing dynami-

cally biased log-domain filters while maintaining input-output linearity is presented. This

method is much simpler than previously known techniques for realizing large dynamic

range filters using syllabic or instantaneous companding. The consequent advantages of

the proposed technique are pointed out.

In order to demonstrate the capabilities of the proposed dynamically-biased log-

domain filters, a third-order Butterworth filter with a cutoff frequency of 1 MHz is de-

signed in a 0.25 µm BiCMOS technology. Circuit techniques to ensure proper operation of

the filter over a wide range of input currents are presented. With suitable dynamic bias-

ing, the fabricated filter can maintain a THD < 40 dB and S/N > 53.7 dB for differential

input current amplitudes ranging from 3 µA to 2.5 mA (a range of 58.4 dB). In terms of the

range of signals that can be handled, the performance is equivalent to that of a conven-

tional filter with a maximum signal to noise ratio of 112 dB. The filter draws 575 µW from a

2.5 V supply in the quiescent condition and 26.1 mW with the maximum input amplitude

of 2.5 mA. The maximum power consumption normalized to the order, the dynamic range,

and the bandwidth is 5.9 × 10−20 J, which represents more than an order of magnitude of

improvement over existing filters.

The design of a current mode peak detector that can provide the dynamic bias to the

filter based on the input signal strength is presented. Satisfactory operation of the peak de-

tector over a range of current amplitudes from 1.4 µA to 2.8 mA is verified experimentally.

The envelope detector in a 0.25 µm BiCMOS technology occupies 0.12 mm2 and consumes



162.5 µW in the quiescent condition. The attack time for a 1:2 increase in the input ampli-

tude is less than 1.2 µs and the decay time for a 2:1 decrease in the input amplitude is less

than 40 µs over the entire range of input amplitudes.

The feasibility of log-domain filtering in standard CMOS processes is verified by

an experimental prototype of a 22 kHz second-order filter using lateral bipolar transistors

and pMOS accumulation capacitors. This filter occupies 0.085 mm2 in a 0.25 µmCMOS

technology, consumes 4.1 µW from a 1.5 V supply and has a measured dynamic range of

56.1 dB.

The behavior of noise in companding systems is different from that in classical linear

systems due to their inherent internal nonlinearity. Methods for analysis and simulation

of noise in instantaneous companding processors are presented. Experimental results cor-

roborating the theory are given.
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Chapter 1

Introduction

1.1 Motivation

Integrated continuous time active filters are used in various applications like channel selec-

tion in radios, anti-aliasing before sampling, and hearing aids. One of the figures of merit

of a filter is the dynamic range; this is the ratio of the largest to the smallest signal that

can be applied at the input of the filter while maintaining certain specified performance.

The dynamic range required in the filter varies with the application and is decided by the

variation in strength of the desired signal as well as the strength of unwanted signals that

are to be rejected by the filter.

It is well known that the power dissipation and the capacitor area of an integrated

active filter increases in proportion to its dynamic range [1]. This situation is incompatible

with the needs of integrated systems, especially battery operated ones. In addition to this

fundamental dependence of power dissipation on dynamic range, the design of integrated

active filters is further complicated by the reduction of supply voltage of integrated circuits

imposed by the scaling down of technologies to attain higher speed and lower power con-

sumption in digital circuits. The reduction in power consumption with decreasing supply

voltage does not apply to analog circuits. In fact, considerable innovation is required with

a reduced supply voltage even to avoid increasing the power consumption for a given signal

1
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Figure 1.1: Companding with memoryless noisy channels.

to noise ratio ( S/N ). These aspects pose a great hurdle to the active filter designer.

A technique which has attracted attention recently as a possible route to filters with

higher dynamic range per unit power consumption is companding [2, 3]. Traditionally com-

panding has been applied to memoryless systems with a dynamic range limited chan-

nel (e.g. in telephony). The key idea is to ensure that the signal in the channel stays suffi-

ciently above noise. To ensure this, preamplification is applied. However, it is necessary

to avoid overloading the channel as well and for this reason, large signals are preampli-

fied by much smaller amounts than small signals. Thus the entire dynamic range of input

signals is amplified by appropriate amounts depending on their strength so that they are

near the top of the channel’s dynamic range. To restore the output of the channel to the

original input levels, the opposite, i.e. small gain for small signals and large gain for large

signals is applied. Fig. 1.1 depicts this situation.

The gain can be made to depend on the signal in one of the two following ways.

1. The input “amplifier” includes a nonlinearity whose slope (equivalently, the small

signal gain) decreases as the input increases as shown in Fig. 1.2(a). It can be seen that

the input is “compressed”. The output amplifier has the opposite behavior, as shown

in Fig. 1.2(b). This case, where the output of the amplifier is a nonlinear function of

the instantaneous value of the input is termed “instantaneous companding”.
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2. Alternately, the input and output amplifiers can have characteristics of the form y =

gx with a variable gain g. The gain of these amplifiers are made to depend on the

input signal. The characteristic of such amplifiers are depicted in Fig. 1.3 where the

gain g is shown as a parameter.

If the gain is made to depend on the instantaneous value of the input signal, this case

reduces to instantaneous companding1 described above.

A distinct situation occurs when the gain is made to depend on an average measure

of the input signal strength (e.g. the envelope or the root-mean-square value). This

case is termed “syllabic companding”.

Although either Fig. 1.2 or Fig. 1.3 can be used to describe the input and output blocks of

instantaneously-companding filters, it is customary to use the former. The latter is typi-

cally used only in the description of syllabic companding filters.

Companding in telephony (A-law or µ-law [4]) is an example of instantaneous com-

panding. Dolby noise reduction system used in tape recorders is an example of syllabic

companding.

Merely substituting a filter in place of the “channel” shown in Fig. 1.1 with either

type of input and output amplifiers described above results in a system that is not lin-

ear and time-invariant between its input and output. This general problem of applying

companding to filters while maintaining input-output linearity and time-invariance has

been solved earlier [5, 3, 6, 7]. Several practical implementations have been published as

well. While some of them have significantly improved dynamic range per unit power

consumption compared to traditional active filters, it is thought that companding can do
1Any nonlinearity y = α(x) = (α(x)/x)x can be thought of as an amplifier with a gain α(x)/x which

depends on the signal x.
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Figure 1.2: Companding using a nonlinearity: (a) Compression at the input, (b) Expansion
at the output.
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pansion at the output.
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much better. It is in fact hoped that companding filters can be realized with a lower power

consumption per dynamic range than passive RC/RLC filters which are assumed to be oper-

ating at the fundamental lower limit [1] of power consumption for a given dynamic range.

This thesis will demonstrate the design and implementation of a filter with high

dynamic range per unit power consumption using one of several possible companding

techniques.

1.2 History and state of the art of companding filters

It was mentioned earlier (Fig. 1.2) that instantaneously-companding filters use nonlinear-

ities at the input and at the output. They are in fact a special case of externally linear, in-

ternally nonlinear (ELIN, [3]) filters in which the input nonlinearity is a compression and

the output nonlinearity, an expansion. Research into ELIN filters and companding filters

started out separately and intersected as they progressed. Although no clear distinction

can be drawn between the two, papers that emphasize the synthesis of input-output lin-

ear relations using nonlinear blocks can be placed in the former category and papers that

emphasize enhancement of dynamic range, in the latter. Both these types can be found in

the examples listed below. But the focus of this dissertation is on enhancement of dynamic

range using companding.

The idea of using syllabic companding to “improve” a filter was discussed in 1990

in [2]. It was recognized in that reference that the filter presented was not a linear system

between the input and the output. The technique improved the selectivity and dynamic

range of filters. The system behaved like an input-output linear system only for input

signals with slowly varying envelopes.

In order to eliminate this restriction, it was pointed out in [5] that one needs to appro-
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priately adjust the state variables of the filter. Techniques for doing this were discussed in

[5] for discrete gain changes and in [8] for continuous gain changes. These techniques are

applicable to both instantaneous and syllabic companding filters. [9] presents an example

of a continuous time syllabic companding based on the formulation in [8].

The earliest form of ELIN filters, dubbed “log-domain” filters due to their use of

logarithmic nonlinearity of diodes date back to 1978 [10]. The motivation was not com-

panding, but wide tunability of filter parameters.

[6] presented a compact realization of first-order log-domain filters using translinear

loops [11, 12] and through the use of class-AB circuits for high dynamic range, connected

them to the concept of companding filters introduced in [2]. To date, log-domain filters

have been the most thoroughly investigated species of companding filters.

Log-domain filters received a systematic treatment in [7] in which they were shown

to be synthesizable using exponential mappings of state variables in the state equations of

linear filter prototypes. Since then, several papers dealing with their analysis and synthesis

have been published [13, 14, 15]. A state space formulation for class-AB log-domain filters,

which are a class of filters capable of large dynamic range was presented in [16].

[17] presented a log-domain filter with syllabic companding. This was however still

based on the formulation of [8]. [18] presented a technique for syllabic companding using

dynamic biasing that is unique to log-domain filters and is much simpler to implement

than [17]. The potential increase in the dynamic range of syllabically-companding filters

was illustrated in [24].

The works mentioned above have dealt with the theoretical aspects of compand-

ing/ELIN filters. Notable experimental results can be found in [19, 20, 21, 22, 23]. [19]

presented a class-AB log-domain filter in BiCMOS technology which outperformed most
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published filters in terms of dynamic range per unit power consumption by a large factor.

Log-domain filters at very high frequencies of hundreds of MHz to a GHz are explored in

[21, 22]. [23] deals with programmable log-domain filters.

The above are a few examples of the published works in the area of companding

filters. In this author’s opinion, while theoretical aspects of companding filters have re-

ceived a fair amount of attention, not enough experimental results are available as yet to

conclusively prove the benefits of companding filters and also to verify if companding fil-

ters can indeed outperform passive RC/RLC filters in terms of dynamic range per unit

power consumption. It is hoped that this dissertation will fill some of that gap.

1.3 Overview of the thesis

The next chapter is devoted to previously published techniques for the implementation

of companding filters. After outlining the fundamental limits to dynamic range of tra-

ditional linear filters, an overview of previously published examples of instantaneously-

companding and syllabically-companding filters is given. This is followed by a discussion

of dynamic biasing, which is a recently introduced idea [18, 24] for the realization of high

dynamic range filters.

Techniques greatly simplifying the practical implementation of dynamically-biased

filters are discussed in Chapter 3. These are compared to existing methods of companding.

The generation of the gain control signal for syllabic companding in general and

dynamic biasing in particular is considered in Chapter 4.

Chapter 5 deals with possible implementations of companding filters in pure CMOS

technology.

The nonlinear relation between the internal state variables and input (and output) in
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companding filters complicates the estimation of noise and renders traditional methods in-

adequate. Suitable techniques for estimating noise in presence of such internal nonlineari-

ties are discussed in Chapter 6. Analytical methods for calculating noise in instantaneous

companding filters are given.

Chapter 7 deals with the design of various prototypes to test the feasibility of ideas

presented in Chapters 3 through 5. The design of a 3rd-order dynamically-biased log-

domain filter which can operate over a wide range of currents is given. The implementa-

tion of the peak detector which generates the dynamic bias is discussed. An experimental

prototype for evaluating the feasibility of log-domain filters in standard CMOS processes

is presented. In Chapter 8 the measurement techniques and implementation results of the

prototypes are presented. In light of the experimental results, possible changes to circuit

realizations that may improve the performance and enable more accurate measurements

are discussed. The thesis concludes in Chapter 9 with a discussion of achieved results and

suggestions for future work.



Chapter 2

Review of Companding Filters

2.1 Power dissipation and dynamic range of filters

2.1.1 Power dissipation and signal to noise ratio in simple circuits

It has been shown elsewhere [1, 25] that the power dissipated in a circuit is directly pro-

portional to the desired signal to noise ratio. Although the exact value of the constant of

proportionality is dependent on the circuit details, the relations can be worked out [1, 25]

for some simple cases and are given below.

For a first-order passive RC filter (Fig. 2.1) with a pole frequency fp, the power dissi-

pated in the driving source Pdiss at a frequency fp to maintain a given signal to noise ratio

S/N (expressed as a ratio of mean square quantities) is given by

Pdiss = 2πkTfp S/N (2.1)

where k is the Boltzmann constant and T is the absolute temperature. This expression and

similar expressions for other simple circuits are derived in Appendix A. (2.1) is derived

assuming highly ideal conditions and the power dissipation in real circuits may be orders

of magnitude higher.

9
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Figure 2.1: Sinusoidal source driving a first-order RC filter.

2.1.2 Power dissipation and dynamic range of conventional active filters

The linear relationship between the input and the output of a filter implies that the output

signal strength is proportional to the input signal strength1. Also, in a conventional filter,

the output noise is a constant. In an active filter, the input signal is limited to a certain

upper limit which depends on the supply voltage and the topology used. Typically, the

output distortion increases gradually with increasing input signal. In this discussion, for

simplicity, we assume a hard limit for the signal power denoted by Smax.

This situation is depicted in Fig. 2.2. S denotes the output signal power and N de-

notes noise power measured in dB relative to some arbitrary reference. The signal to noise

ratio S/N (measured in dB) at the filter’s output is shown in Fig. 2.3. S/N increases by

1 dB for every dB increase in the input signal until the hard limit Smax is reached.

A typical application demands that a certain minimum signal to noise ratio S/N min

be maintained at the filter’s output2. This level is indicated on Fig. 2.3. The range of

signals over which the filter can be used under this constraint is the dynamic range DR,

and is indicated on the figure3. It can be seen that the peak signal to noise ratio of the filter
1Signal strength could be specified as peak, root mean square (rms) or mean square values of voltage or

current, or as power dissipated by the signal in a reference resistor. The decibel (dB) representation of any of
these units referred to a desired standard could also be used (e.g. dBm).

2For simplicity we assume that this is the only criterion imposed on the filter although in some systems,
S/N min itself could be a function of signal level.

3Conventionally the maximum signal to noise ratio S/N max is termed the dynamic range. This amounts
to calculating the dynamic range assuming S/N

min
= 0 dB. This convention will not be used here. To avoid
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Figure 2.2: Output signal and noise in a typical active filter.

S/N peak which occurs when the input is Smax, is far greater than the specified S/N min.

This excess signal to noise ratio is an unavoidable characteristic of conventional linear

filters. From the unit slope of the S/N curve in Fig. 2.3, it can be inferred that the excess

signal to noise ratio is equal to the dynamic range (DR) itself.

If an increase in dynamic range is desired, the noise floor of the filter has to be low-

ered. The new noise floor N ′ of the filter is shown using a dashed line in Fig. 2.2. The

corresponding signal to noise ratio S/N ′ is plotted in Fig. 2.3. The dynamic range in-

creases (by the amount the noise is lowered) to DR′. The peak signal to noise ratio also

increases by the same amount from S/N peak to S/N ′
peak . Thus the peak signal to noise

ratio is inextricably linked to the dynamic range in conventional filters.

This is an undesirable situation because the power dissipated in a circuit is directly

proportional to the signal to noise ratio as discussed in section 2.1.1. To obtain the de-

sired dynamic range, excessive signal to noise ratio and consequently excessive power

confusion while discussing companding filters, in this work, the term dynamic range is reserved to denote the
possible range of signal variations subject to a given constraint.



12

Smax
0 dB

input level (dB)

S
/N

 (
dB

)

DR

S/N’ 
peak

S/N’

S/N 
peak

S/N 
min

DR’

S/N

Figure 2.3: Signal to noise ratio and dynamic range of a typical active filter.

consumption are inevitable. An increase in dynamic range necessitates an equal increase

in the peak signal to noise ratio although the signal to noise ratio demanded by the appli-

cation remains unchanged and may be much lower than that.

Thus there appears to be a potential for significant power savings in those circuits

intended to be used over a large dynamic range of input signals while maintaining a mod-

est signal to noise ratio. Given that the excess signal to noise ratio is equal to the dynamic

range and dynamic range of 106 (60 dB) is not unheard of, power reduction by a factor of a

million is possible if this excess signal to noise ratio is eliminated![1].

2.1.3 Power dissipation and dynamic range of companding filters

Consider the two filters Filter 1 and Filter 2 shown in Fig. 2.4(a). Filter 1 is a linear time-

invariant active filter with a transfer function H(s). Let Smax and N respectively be the

maximum possible signal level and the noise at the output of the filter. These quantities

are marked on a log scale in Fig. 2.4(b). Assuming for simplicity that the specified S/N min

is 0 dB, the dynamic range of this filter DR is the ratio Smax/N .
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Figure 2.4: Filters with skewed operating ranges.

Filter 2 is the same filter embedded between two amplifiers of gain g and g−1 where g

is greater than unity. The transfer functions of Filter 1 and Filter 2 are identical. Assuming

noiseless amplifiers, both the maximum output signal and the output noise of Filter 2 are

reduced by a factor g when compared to Filter 1. This is depicted in the lower part of

Fig. 2.4(b). Hence, the dynamic ranges of the two filters are identical.

It can be seen that Filter 2 outperforms Filter 1 for small signals due to its lower noise

level. However, the maximum signal that can be fed to Filter 2 is lower as well and Filter 1

would be preferable in a large signal situation.

By switching between these two configurations based on the input signal strength,

optimal conditions can be had for both large and small input signals. However it must

be ensured that the original linear time-invariant nature of the filter is not destroyed in

presence of such switching. If this can be accomplished, we would have a filter whose

dynamic range is increased to DR′ = DR + 20 log(g) as shown in Fig. 2.4(b). Thus, the dy-

namic range (expressed in terms of mean square quantities) has increased by g2. Increas-

ing the dynamic range of the original filter (Filter 1) by a factor of g2 using conventional
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means (i.e. lowering its noise floor) would also increase its power dissipation by a factor

g2 (section 2.1). Therefore, if the switching between the two situations while maintaining

the linear time-invariant nature of the system could be implemented without a g2 times

larger power dissipation, we would have a filtering technique that has a superior dynamic

range per unit power consumption when compared to conventional active filters.

The description above considered two discrete values for the gain used at the input

and the output. In general, any number of discrete values can be used for g. g can be even

be made to vary continuously with the input signal strength. Since the filter embedded

between the amplifiers is the dominant source of noise, best performance is obtained if the

signal fed to this filter stays as much above its noise as possible.

It was stated in section 1.1 that it is indeed possible to maintain input-output LTI [5,

8, 3] behavior in the presence of signal dependent gains at the input and the output of the

filter. The following sections describe existing methods for realizing input-output linear

filters that use the two types of companding mentioned in Chapter 1. The issues involved

in the implementation of these techniques are briefly touched upon.

2.2 Companding techniques

2.2.1 Instantaneously-companding filters

Externally linear, internally nonlinear filters

A linear integrator is shown in Fig. 2.5(a). u, x and y denote the input, the output and the

state variable respectively. The state variable description of this system is given by

dx

dt
= ku (2.2)

y = x (2.3)

In [26], it is shown that the input-output relationship given above can be obtained with an-

other system with a transformed state variable v [27]. Let the transformation be described
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Figure 2.5: (a) Internally linear integrator, (b) ELIN integrator.

by

x = f(v) (2.4)

where f is a continuous monotonic nonlinearity. Substituting (2.4) into (2.2) and (2.3),

using the relation df(v)/dt = f ′(v)dv/dt and rearranging the terms, we obtain the state

equations of the system in terms of the transformed state variable v.

dv

dt
= k

u

f ′(v)
(2.5)

y = f(v) (2.6)

Fig. 2.5(b) shows the realization of this transformed system. The input u is divided by

f ′(v) before being fed to the integrator. The integrator is followed by the nonlinearity f().

The input-output behavior of this system is identical to that of the integrator in Fig. 2.5(a).

Because of the presence of the nonlinearity f() in the system, this is an externally linear,

internally nonlinear (ELIN) integrator [26, 3].

The ELIN integrator in Fig. 2.5(b) turns into a companding integrator if an expanding

nonlinearity f() is used at the output. An expanding nonlinearity f() has a slope f ′(v) that

increases with increasing v. The input “amplifier” would thus have a gain 1/f ′(v) that
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decreases with increasing v.

Higher order filters are constructed using integrators. The ELIN versions of these

filters can be derived either by substituting the integrators in the filters by ELIN integrators

shown in Fig. 2.5(b) or by transforming the state variables of the system using nonlinear

mapping [27]. These two methods are illustrated below for a first-order filter.

A first-order filter using feedback around the linear integrator in Fig. 2.5(a) is shown

in Fig. 2.6(a). The transfer function of this filter is

H(s) =
Y (s)

U(s)
=

k

s + a
(2.7)

To obtain an ELIN first-order filter with the transfer function above, the internally linear

integrator must be substituted by the ELIN integrator in Fig. 2.5(b). Fig. 2.6(b) shows the

resulting filter. Fig. 2.6(c) shows a further transformation whereby the feedback path is

placed around the integrator used inside the companding filter. The equivalence between

Fig. 2.6(b) and Fig. 2.6(c) can be easily seen.

The state equations of the first-order filter in Fig. 2.6(a) are

dx

dt
= −ax + ku (2.8)

y = x (2.9)

Using x = f(v) as before, these state equations can be expressed in terms of the new state

variable v

f ′(v)
dv

dt
= −af(v) + ku (2.10)

y = f(v) (2.11)

Dividing the first equation above by f ′(v), the state equations can be rewritten as

dv

dt
= −a

f(v)

f ′(v)
+

k

f ′(v)
u (2.12)
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Figure 2.6: (a) Internally linear first-order filter, (b) ELIN first-order filter, (c) ELIN first-order
filter with transformed feedback path.

y = f(v) (2.13)

It can be seen that the block diagram in Fig. 2.6(c) realizes these equations.

When f() is an exponential

Log-domain filters are obtained when the nonlinearity f() is an exponential. The exponen-

tial nonlinearity could be realized using a bipolar transistor whose characteristic is given

by

f(v) = Is exp(
v

Vt
) (2.14)
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where Is, v and f() are respectively the saturation current, the base-emitter voltage, and

the collector current of the bipolar junction transistor and Vt is the thermal voltage kT/q.

Using this equation for f(), the first-order filter in Fig. 2.6(c) can be redrawn as shown in

Fig. 2.7(a). Since the derivative of an exponential is also an exponential, the feedback term

reduces to subtraction of a constant. Note that the input u and the output y in this block

diagram of a log-domain filter are currents.

In practice the integrator is realized using a capacitor C which has the input-output

relation

v =
1

C

∫

ic(t)dt (2.15)

where v is the voltage across the capacitor (“output” of the integrator) and ic is the cur-

rent through the capacitor (“input” to the integrator). Modifying the block diagram in

Fig. 2.7(a) to use the capacitive integrator described by (2.15) results in Fig. 2.7(b).

Translinear loops

The output of the input amplifier in Fig. 2.7(b) is u(kCVt)/y. This is a product of two

currents divided by another current and can be realized [6] using translinear loops [11,

12]. Translinear loops are loops of base-emitter junctions of transistors. Fig. 2.8 shows an

example of a translinear loop with four transistors Q1−4. The following relations hold true

for this circuit:

VBE1 + VBE2 = VBE3 + VBE4 (2.16)

Vt ln
i1

A1Is0
+ Vt ln

i2
A2Is0

= Vt ln
i3

A3Is0
+ Vt ln

i4
A4Is0

(2.17)

i1i2
A1A2

=
i3i4

A3A4

(2.18)

where VBE1−4, i1−4 and A1−4 are respectively the base-emitter voltages, emitter currents

and normalized areas of transistors Q1−4 and Is0 is the saturation current of a transistor
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Figure 2.7: Realization of a log-domain first-order filter.
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Figure 2.8: Translinear loop with four transistors.

with unit area. Assuming equal areas for all transistors, we have

i1i2 = i3i4 (2.19)

Such equations relating products of currents are characteristic of translinear loops.

The circuit in Fig. 2.8 is by itself incomplete; the actual currents flowing in the transistors

depends on other elements connected to the circuit. The relation between the products of

currents given above can be used to realize interesting nonlinear functions [11, 12].

More transistors can be included in the translinear loop and relations similar to (2.18)

derived. Usually, the number of transistors is even and connected such that (2.16) has equal

number of terms on either side. If this condition is not satisfied, the equation relating the

products of currents (like (2.18)) contains the saturation current Is0, making the relation

dependent on process and temperature, usually an undesirable situation.

In the discussions of the circuits that follow, unless mentioned otherwise, transistors

are assumed to have equal areas and infinite current gains β. The effects of deviations from

this assumption are discussed separately. Therefore, the simplified relation (2.19) can be

used with collector or emitter currents.

Log domain filters

Fig. 2.7(c) shows the first-order log-domain filter [6] realized using bipolar transistors. Q4

implements the output nonlinearity. The capacitor C implements the integrator. I3 is the
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constant term aCVt subtracted at the input of the integrator in Fig. 2.7(b). Q1, Q2, Q3 and

I2 are connected as shown in Fig. 2.7(c) to realize the input “amplifier”. The transistors

Q1−4 form a translinear loop identical to the one in Fig. 2.8. (2.19), which relates products

of emitter currents in a translinear loop, can be used to determine the emitter current of

Q3 in Fig. 2.7(c). Q3’s emitter current is found to be uI2/y and has the same form as the

output of the input amplifier in Fig. 2.7(b). It can thus be seen that the circuit in Fig. 2.7(c)

emulates the block diagram of Fig. 2.7(b). By comparing Fig. 2.7(b) with Fig. 2.7(c), the

correspondence between the currents I2 and I3 in the circuit and the constants a and k in

the block diagram can be seen. The transfer function of the filter in Fig. 2.7(c) is given by

Y (s)

U(s)
=

I2/CVt

s + I3/CVt
(2.20)

=
k

s + a
(2.21)

The pole of the low pass filter is determined by the current I3 and capacitor C and the dc

gain is determined by the ratio I2/I3.

The feedback used in Fig. 2.6(a) reduces to subtraction of a constant current in the

log-domain version (Fig. 2.7(c)). This fact can be intuitively understood from Fig. 2.9.

Fig. 2.9(a) shows a first-order RC filter (lossy integrator) with a zero input. As is well

known, the output y decays exponentially from its initial value y0. The first-order log-

domain filter in Fig. 2.7(c) reduces to Fig. 2.9(b) when the input u is zero. The constant

current I3 causes the voltage v across the capacitor C to decrease linearly. This linear de-

crease, through the exponential nonlinearity of the bipolar transistor causes the output y

to decay exponentially.
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Figure 2.9: Damping in a log-domain filter.

Higher-order log-domain filters

Higher order log-domain filters can be synthesized either by using exponential mappings

of the state variables in the state equations of the linear filter prototype [7] or by replacing

the integrators in the linear filter prototype using log-domain integrators ([14] for LC lad-

der prototypes). State variables are a set of independent variables in the circuit that can

be used to completely describe the operation of the circuit given the initial conditions [28].

In the state space descriptions of LC/active RC filters, inductor currents and/or capaci-

tor voltages are usually used as state variables. Note that the scaled versions of inductor

currents and/or capacitor voltages in the circuit can also be used as state variables. In the

following discussion, the state variables in the prototype are referred to as “linear-domain”

state variables. In a log-domain filter derived from a linear prototype, the voltages across

the capacitors—the “log-domain” state variables—are related logarithmically to the linear-

domain state variables, and the collector currents are scaled versions of the linear-domain

state variables.

Fig. 2.10 shows a doubly terminated third-order RLC filter. x2 is the inductor current
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Figure 2.10: Ladder filter prototype and logarithmic (exponential) mappings.

and Rx1 and Rx3 are the capacitor voltages where R is the termination resistance of the

RLC filter. x1, x2, and x3, which have dimensions of currents, are chosen to be the state

variables of the prototype filter. The equations (Kirchoff’s voltage and current laws) gov-

erning the ladder filter can be rewritten in terms of new state variables v1, v2 and v3 that

are logarithmically related to the original state variables x1, x2 and x3. The mappings are

shown in the figure. I0 is a normalizing current (For the example in Fig. 2.7, it was the satu-

ration current Is). The equations so obtained can be realized using translinear loops. In the

log-domain version of the filter v1, v2 and v3 would be the voltages across the integrating

capacitors and x1, x2 and x3 (or their scaled versions) would be the collector currents of

the bipolar transistors.

Quiescent currents in log-domain filters

Since the state variables of the prototype filter are scaled versions of the collector cur-

rents of the transistors of the log-domain filter, they need to have positive quiescent values

and stay positive for all inputs for proper operation of the filter. In the LC ladder filter

in Fig. 2.10 a positive quiescent value of the state variables can be achieved by having a

positive quiescent input u. This however is not the case with all filters. The issue of main-
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Figure 2.11: (a) RLC Bandpass filter, (b) Modification to ensure positive quiescent state
variable x2, (c) General modification to ensure positive quiescent state variables xk.

taining positive quiescent collector currents in log-domain filters has been treated partially

in [7, 27, 14, 29]. A systematic procedure to synthesize log-domain filters with positive cur-

rents in all their transistors is given in [30]. Without going into details, the principle behind

these methods can be illustrated using Fig. 2.11.

Fig. 2.11(a) shows an RLC bandpass filter whose state variables are x1 and x2. It is

obvious that the quiescent value of the capacitor voltage Rx2 is identically zero regardless

of the dc value of u due to the dc short circuit across the capacitor through the inductor.

x2 would swing both positive and negative on application of a sinusoidal signal u. This

situation is problematic if the RLC band-pass filter has to be transformed into a log-domain

filter (or if it is intended to be built with electrolytic capacitors that explode if a voltage of

incorrect polarity is applied to them!). The solution, shown in Fig. 2.11(b), is to provide a

dc bias to the capacitor by connecting a voltage source in series. With this arrangement,

the quiescent value of the new state variable x2a is Vbias/R. The relation between u and

y (measured across the combination of capacitor C and the bias source) is unaffected by

this addition. Thus, the log-domain filter synthesized using exponential mappings of state

variables in the circuit equations of the filter in Fig. 2.11(b) would have positive quiescent

current in all its transistors. The voltage Rx2a across the capacitor would be y+Vbias where

y is the intended output and Vbias is the bias voltage. Therefore x2a, which appears as the



25

collector current of a transistor in the log-domain version of the circuit, includes the bias.

The bias should be subtracted from x2a to obtain the desired output. The state variables in

any RLC filter can be made to have the desired values by adding voltage sources in series

with the capacitors or current sources in parallel with the inductors. Fig. 2.11(c) shows

the general scheme. The filter so obtained can be transformed into a correctly operational

log-domain filter through exponential mappings of state variables.

ELIN vs. companding log-domain filters

The paragraphs above discussed the synthesis of ELIN filters with an exponential non-

linearity at the output. It was mentioned earlier that ELIN filters are companding filters

when an expanding nonlinearity is used at the output. Although the exponential nonlin-

earity at the output appears to be “expanding”, log-domain filters of the type shown in

Fig. 2.7(c) are not companding filters. This can be inferred from the examination of the

nonlinearity [31]. It is noted that noise analysis [32, 33] shows that output noise does not

vary appreciably with the signal.

In Fig. 2.7(c), the input u is the sum of a dc bias current and a signal current. The

negative swings of the signal current should not be so large as to reduce the total input

u to very small values which would cause the transistor’s characteristic to deviate from

the exponential. Assuming symmetric input signals this means that the peak value of the

signal input is constrained to be somewhat less than the bias. With this constraint, the

nonlinearity of the exponential is not exercised as much and the change in output noise

with signal is not significant.

A type of log-domain filter which does incorporate instantaneous companding is the

class-AB filter shown in Fig. 2.12 [6]. The filter has differential inputs up, un and differential

outputs yp, yn. The two halves of the filter, which are identical to the first-order filter in
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Figure 2.12: Class-AB instantaneous companding log-domain filter.

Fig. 2.7(c) are coupled using transistors Q5. The resulting filter behaves as a first-order

filter between the differential inputs up − un and outputs yp − yn. In this case, the peak

value of the input signal is no longer constrained by the bias current used at the input.

This is because the input signal up − un can be symmetric even if up and un individually

are not. up and un could be half wave rectified or geometrically split [19] versions of the

input, with their difference being the desired input signal. For large positive inputs, up

is very nearly equal to the input and un is nearly zero. The opposite situation exists for

a large negative input. Since only one half of the circuit is active for each polarity of the

input signal, this circuit is known as a class-AB log-domain filter.

An integrated class-AB log-domain filter with a large dynamic range was presented

in [19]. But the circuit used to split the input signal into two asymmetric signals was

external to the chip. [22] presented a class-AB log-domain filter for high frequencies that

included an on-chip signal splitter. A formal theoretical treatment of class-AB filters can

be found in [16].

Practical realization of log-domain filters

The main problems in the practical realization of log-domain filters arise from the non-

exponential behavior of the bipolar transistor. The deviation from the ideal characteristic

results in distortion at the output of the log-domain filter. The Early voltage VA and the
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Figure 2.13: First order log-domain filter in Fig. 2.7(c).

ohmic resistances in series with the base and emitter contribute to deviations from the

exponential. The problem of low Early voltage can be countered by cascoding the tran-

sistors so that a constant voltage is maintained across their collector and emitter. The

simplest technique to combat series resistances is to use transistors of sufficiently large

area so that the resistances are minimized. But too large transistors compromise the fre-

quency response of transistors due to large parasitic capacitances. A technique to maintain

ELIN behavior in presence of series ohmic resistances is presented in [34]. But due to its

complexity, it may introduce frequency limitations similar to that of a large transistor.

Another major nonideality is the finite current gain of the bipolar transistors. The

first order log-domain filter in Fig. 2.7 is redrawn in Fig. 2.13. The connections to the col-

lectors are not shown. It is assumed that they are biased at voltages that are large enough

to keep the transistors out of saturation. It can be seen that the current flowing through

the capacitor is reduced from its ideal value by an amount equal to the base current of

Q4. Assuming that Q4 has a current gain β and that Q1−3 have infinite current gains, the

differential equation governing this circuit can be written as follows.

dy

dt
= − I3

CVt
y +

I2

CVt
u +

y2

βCVt
(2.22)

The last term on the right hand side introduces a nonlinearity into the equation and disap-

pears when β = ∞.

Base current compensation circuits that sense the output current and inject an appro-
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priate current into that base are not very effective when the current is time varying. This

is because the small base current causes the compensation circuits to be slow. The best

known solution to this problem is to use an alternative topology in which the parasitic

base current drawn from the capacitor is independent of the signal [19].

Log-domain filter topology immune to base current errors

The log-domain filter topology proposed in [19] is described in detail below. The deriva-

tion of the topology is shown as a logical sequence of steps, although that is probably not

how it was originally conceived. Since at each step there is more than one choice, some

seemingly arbitrary assumptions are made so that the topology in [19] is arrived at. While

deriving this topology, it is assumed that the base currents of the transistors are zero. The

effect of base currents can be examined after the derivation.

The translinear loop of transistors Q1−4 is the heart of the circuit in Fig. 2.13. As de-

scribed earlier in this section, this translinear loop is used to derive the current that is to be

integrated in the capacitor C. The emitter (and collector) currents of Q1−4 are denoted by

i1−4 respectively. The translinear loop alone is shown in Fig. 2.14(a-i). Another translinear

loop using four transistors is shown in Fig. 2.14(a-ii). The transistors and their currents in

the two translinear loops are named identically to reflect an underlying correspondence.

Disregarding for the moment the method by which these currents are established in the

transistors, it can be seen that (2.19) holds for both of the translinear loops in Fig. 2.14(a).

i1i2 = i3i4 (2.23)

This equation was used to derive the current flowing into the integrating capacitor C in

Fig. 2.7(c). Since both of the translinear loops in Fig. 2.14(a) obey this equation, conceivably,

both of them can be used to implement the first order filter in Fig. 2.13.
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Figure 2.14: Deriving an alternative topology of a first-order log-domain filter.
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Fig. 2.14(b) shows the same translinear loops with one of the nodes grounded in each

case. Q4 is assumed to be the transistor realizing the exponential nonlinearity. A capacitor

C is connected across the base and emitter of Q4. The collector current of Q4 is taken as

the output y. The voltage across the capacitor is denoted by v and is the state variable of

the circuit. For Fig. 2.14(b-ii) to be identical to Fig. 2.14(b-i), a current equal to i3 must be

driven through the capacitor. The method used to accomplish this is discussed later.

Fig. 2.14(c-i) shows the circuit with the input current u and a constant current I2 fed

into transistors Q1 and Q2 respectively. To force I2 into the collector of Q2, a negative feed-

back loop—shown with thick lines—is formed around Q2. u is pulled out of the emitter of

Q1.

Fig. 2.15 shows the feedback arrangement that is used to force I2 into the collector

of Q2 in Fig. 2.14(c-ii)[19]. A transistor M2 provides negative feedback around Q2. If the

collector current of Q2 exceeds I2, the collector voltage falls and vice versa. The collector

voltage is sensed by the gate of M2 whose drain current varies accordingly. When equilib-

rium is reached, Q2’s collector current equals I2. M2’s drain current equals the sum of i2

and i2x which respectively are the emitter current of Q2 and any other current that may be

pumped into the emitter of Q2. The collector voltage of Q2 is determined by VSS and the

the parameters of M1. These are assumed to be such that Q1,2 are operating in the active

region.

A similar feedback loop is used to force the input u into the collector of Q1 as shown

in Fig. 2.14(c-ii).

In Fig. 2.14(c-ii), both of the nodes to which the capacitor is connected are low-

impedance nodes. Any current injected into the top node flows into ground and that

injected into the bottom node flows into M2. Therefore, the intended current i3 cannot



31

Q2

I2

i2

-VSS

M2

i2x

Figure 2.15: Feedback around Q2 in Fig. 2.14 to force a current into its collector.

be independently forced into the capacitor in the present incarnation of the circuit. This

situation can be remedied by connecting the capacitor as shown in Fig. 2.14(d-ii). The volt-

age across the capacitor is v = VBE4 − VBE2 instead of VBE4. Q2 carries a constant current

I2 and therefore, VBE2 (= Vt ln(I2/Is)) is a constant voltage. Since the capacitor is an open

circuit at dc, a dc shift in the capacitor voltage can be introduced without changing the op-

eration of the circuit. i3 can now be drawn from the capacitor by connecting the collector

of Q3 as shown in Fig. 2.14(d-ii). The damping current I3 can be connected as shown in

Fig. 2.14(e) to complete the derivation.

The circuit in Fig. 2.14(e-ii) is complete and performs the same function as the one

in Fig. 2.14(e-i) which is the first-order log-domain filter in Fig. 2.7. The transfer function

between y and u is given by

Y (s)

U(s)
=

I2

I3

1

1 + sCVt/I3

(2.24)

Fig. 2.16 shows the first order log-domain filter in Fig. 2.14(e-ii) which is modified

such that it can be operated with a positive power supply. The sources of M1 and M2 are

returned to ground and the bases of Q1,4 are biased with a positive voltage Vbase (equal to

VSS in Fig. 2.14(e-ii)).

When the current gains of the transistors are finite, the only base current that affects
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Figure 2.16: First-order filter in Fig. 2.14(e) operating from a positive power supply.

the operation of the circuit is that of Q2. But Q2’s base current is a constant I2/β which

is subtracted from I3. Thus no nonlinearity is introduced into the circuit and the only

effect of the finite β (assuming β is constant w.r.t. the collector current) is a reduction of

the bandwidth of the filter. If this reduction is not tolerable, it can be compensated either

by injecting a current I2/β as shown in the figure (used in [20]) or using automatic tuning

techniques [35].

2.2.2 Syllabically-companding filters

A linear integrator, identical to the one in Fig. 2.5(a) is shown in Fig. 2.17(a). The state

variable description of this system is given by (2.2) and (2.3). Let a new state variable v be

related to the original state variable x by a multiplying factor g (g can be time varying in

general) as follows

v = gx (2.25)

The state equations of a new system with v as the state variable instead of x can be obtained

by substituting x = g−1v in (2.2) and (2.3) [8, 3]

g−1
dv

dt
− 1

g2

dg

dt
v = ku (2.26)

y = g−1v (2.27)
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Figure 2.17: (a) Integrator, (b) Integrator with time varying gains at the input and the output.

Multiplying the first of the equations by g, we obtain

dv

dt
= ku +

1

g

dg

dt
v (2.28)

y = g−1v (2.29)

Fig. 2.17(b) shows the realization of these equations in the form of a block diagram. Com-

pared to Fig. 2.17(a), this has an extra feedback path which is in effect only when g is

changing with time. This feedback provides the state variable compensation4 mentioned

in [5, 8].

More complicated syllabic companding filters can be synthesized by similarly trans-

forming the state equations of the filters. A second order filter using this principle was

presented in [9].

The integrator in Fig. 2.17(b) uses time varying gains g and g−1, but has an LTI be-

havior between its input and output. To turn this into a companding integrator, g must be

changed in accordance with the input signal strength so as to be small for large inputs and
4Modification of the state variable in order to maintain input-output linearity and time-invariance.
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vice versa. In case of syllabic companding, the variation of g is much “slower” than the

variations of the input signal u.

A syllabic companding filter needs a circuit that measures the average strength of

the input to generate a signal that controls the value of g. This could be a rectifier followed

by a filter, an envelope detector, or an rms detector. The biggest difficulty in realizing syl-

labic companding filters is in the state variable compensation circuit whose gain must be

proportional to the time derivative of g. Direct differentiation of the gain control signal g

is usually avoided to prevent excessive high frequency noise. But since the gain control

signal is generated by a filtering process to average the input signal strength, direct differ-

entiation is unnecessary. Fig. 2.18(a) shows a first-order filter that was used in [9] used to

generate a gain control current Ig from the rectified input signal IR. The signal at the input

of the integrator in the filter is naturally the time derivative of Ig. Ig and its time derivative

are fed to a divider to extract the desired control signal for the feedback gain. While this is

simpler than generating the time derivative explicitly, a divider is still required.

A log-domain filter to which syllabic companding is applied using variable gain

amplifiers at the input and the output is presented in [17]. A log-domain circuit to generate

the state variable compensation circuit is used in this work. Fig. 2.18(b) shows a first-order

log-domain filter that is used to generate the gain control signal Ig from the rectified input

IR. The current flowing through the capacitor is given by

ic = C
dv

dt
(2.30)

= C
d

dt

(

Vt log
Ig

Is

)

(2.31)

=
CVt

Ig

dIg

dt
(2.32)

Which is precisely of the form required for the gain of the feedback path in Fig. 2.17(b). This



35

ωR
IR Ig

-+ Σ

ωR

1 dIg
dt

I3

I2

v+
-

Q1

Q2

Q3

Q4

C

IR

Ig

ic

(a) (b)

1 dIg
dtIgωR

Figure 2.18: Generating the time derivative of the gain control current Ig.

current can be extracted from the collector current i3 of the transistor Q3 after subtracting

a bias I3.

Fig. 2.19 shows the block diagram of a syllabic companding filter in a general form [3].

A filter is enclosed between variable gain amplifiers whose gains are controllable. The in-

put signal strength5 is used to generate an appropriate control signal g which is used to

control the gains of the amplifiers at the input and the output. To maintain LTI behavior,

a state variable compensation circuit is used. In Fig. 2.17(b), the feedback path performed

this function. In general, a state variable compensation circuit consists of amplifiers whose

gains are proportional to the time derivative of g, divided by g.

Practical realization of syllabically-companding filters

As mentioned in sections 1.1 and sec 2.1.3, companding attempts to enhance the dynamic

range of filters by ensuring that the internal signal (between the input and output ampli-

fiers; e.g. gu in Fig. 2.19) is as large as possible even for small input signals. Ideally this

means that g must be varied in inverse proportion to the input signal strength. This in

turn implies that if a large dynamic range of input signals needs to be handled, g must

vary over a very large range as well. Therefore the input amplifier is a multiplier which

must be linear and be able to handle high dynamic range signals at both its inputs. The
5In general, signal strength anywhere in the filtering chain could be used to generate the control signal g.
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Figure 2.19: Block diagram of a general syllabic companding filter.

design of such an amplifier is by no means trivial. This fact combined with the complexi-

ties involved in the design of the state variable compensation circuit make it very difficult

to realize a high dynamic range syllabic companding filter based directly on the prototype

of Fig. 2.17(b). Work in this direction is under progress by others in the field.

2.2.3 Syllabically-companding log-domain filters using dynamic biasing

Fig. 2.20 shows the first-order log-domain filter in Fig. 2.7(c) with minor modifications. The

dc bias and signal currents at the input and the output are shown separately. The currents

i1 and i4 respectively in the input transistor Q1 and the output transistor Q4 are related by

the transfer function in (2.20). This transfer function, with some terms rearranged can be

expressed as

I4(s)

I1(s)
=

I2

I3

1

1 + sCVt/I3

(2.33)

The dc gain is I2/I3 and the pole is located at a = I3/CVt. The current i1 in the transistor

Q1 is the sum of the signal input u and a bias Ibias . The current i4 in the transistor Q4 under

quiescent conditions (u = 0) is (I2/I3)Ibias . The signal output y is obtained by subtracting

this quiescent output current from i4. The transfer function between the signals u and y is
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Figure 2.20: First-order filter in Fig. 2.7 with bias currents shown separately at the input and
the output.

the same as (2.33) and is not affected by the bias current Ibias .

Y (s)

U(s)
=

I2

I3

1

1 + sCVt/I3

(2.34)

The output noise of the filter, along with the largest signal that can be handled, de-

termines the dynamic range of this class-A filter. Several papers: e.g. [32, 36, 33] have been

published outlining the methods for calculation of noise in such a filter. Chapter 6 de-

scribes in detail the steps involved in calculating the noise. It is also known [32, 33] that in

class-A operation, the output noise does not change appreciably from the quiescent value

when an input signal is applied. Therefore it is sufficient to consider the quiescent output

noise in discussing the signal to noise ratio or dynamic range of class-A log-domain filters.

The mean square integrated output noise of the filter in Fig. 2.20 in the quiescent state can

be shown to be6

i2n,out =
qa

2
Adc(Adc + 1)

(

Ibias +
Ibias

2

I3

)

(2.35)

Where q is the electron charge and Adc and a are the dc gain and the pole frequency (in

rad/s) of the filter respectively. Apart from the dc gain Adc and the bandwidth a of the

filter, the output noise depends on the bias current Ibias . The output noise increases with
6This expression includes the shot noise from the transistors Q1−4. The power spectral density of noise

from Q4, which is not bandlimited by the circuit is multiplied by the noise bandwidth (in Hz) of the circuit
0.25a to obtain the expression for i2n,out.



38

Ibias .

Reducing Ibias results in a reduced output noise but leaves the transfer function of

the filter unchanged. The bias current Ibias need only be large enough to accommodate

the input signal u. Therefore, the signal to noise ratio for small inputs can be improved

considerably by decreasing Ibias . The effect of varying the bias Ibias on the dynamic range

of the filter is similar to that of companding. Also reducing Ibias reduces the power con-

sumption of the filter. However, if the bias Ibias is time varying, the output contains the

filtered version of this time varying bias in addition to the desired output. Some manner

of compensation is required in order to obtain only the filtered version of the input signal

u at the output.

The solution offered in [18] to this problem is loosely based on the state variable

compensation technique discussed in section 2.2.2. It involves injecting a state variable

compensating current into the capacitor of the log-domain filter. Fig. 2.21(a) shows the cir-

cuit in Fig. 2.20 with the compensating current ix included and a slightly modified output

bias mIbias subtracted from i4. m is a parameter that is larger than the dc gain I2/I3 and

can be chosen for convenience in the final circuit design.

The equations governing the new circuit in Fig. 2.21(a) contain ix, Ibias , and the time

derivative of Ibias . Imposing the condition that the new equation relating u and y be the

same as that with a constant bias results in a particular form for ix. The equation for ix can

then be used to derive the circuit that generates it. In line with the principle enunciated in

Fig. 2.18, it is also assumed that Ibias itself is the output of a low pass filter so that the time

derivative of Ibias does not have to be generated explicitly.

The log-domain filter in Fig. 2.20 with a constant bias is governed by the following
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Figure 2.21: (a) First order log-domain filter with a current ix injected into the capacitor, (b)
Circuit for generating ix and the filter used to average IR.

equation:

CVt
dy

dt
= −I3y + I2u (2.36)

In the translinear loop Q1−4 in Fig. 2.21(a) the product of currents in the transistors Q1−2 is

the same as the product of currents in the transistors Q3−4. Thus, the equations governing

this circuit in presence of a time varying Ibias are

(u + Ibias)I2 =

(

C
dv

dt
+ I3 − ix

)

i4

=

(

CVt

i4

di4
dt

+ I3 − ix

)

i4 (2.37)

i4 = y + mIbias (2.38)

where the exponential relation between v and i4 is used to express the relation entirely in

terms of currents. Using (2.38), (2.37) can be rewritten as

CVt
dy

dt
= −I3y + I2u +

[

ix(y + mIbias) − (mI3 − I2)Ibias − mCVt
dIbias

dt

]

(2.39)
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If the term enclosed in square brackets on the right hand side is zero, (2.39) is identical to

(2.36). For this to happen, ix should be of the following form:

ix =
(mI3 − I2)Ibias + mCVt

dIbias
dt

(y + mIbias)

=
mIbias(I3 − I2

m + CVt
Ibias

dIbias
dt )

y + mIbias

(2.40)

This equation containing products and ratios of currents can be implemented using a

translinear loop. The principle in Fig. 2.18(b) can be used to generate the term containing

the time derivative of Ibias . The resulting circuit is shown in Fig. 2.21(b). The transistors

Q1−4 form the log domain filter that generates the bias Ibias from uR which could, for in-

stance, be the rectified version of the input u. Qx generates ix derived above. I ′2 is adjusted

to obtain the correct scaling factor between the peak value of u and the bias Ibias .

Simulation results

The dynamically biased filter in Fig. 2.21 was simulated to verify its operation. I2 = I3 =

1.61 µA, C = 100 pF and m = 1.11 were used in Fig. 2.21 to obtain a cutoff frequency of

100 kHz for the main filter 10 kHz for the auxiliary filter that generates Ibias . In these simu-

lations, the envelope was assumed to be extracted using an ideal envelope detector. Conse-

quently, uR was not the rectified input, but the envelope itself. To evaluate the advantages

of dynamic biasing, a conventional log-domain filter with a constant bias (Fig. 2.20) which

is large enough to accommodate the largest input was also simulated. Identical inputs

were fed to the two filters. These simulations are discussed in greater detail in [30].

Fig. 2.22(a) shows the input u with a changing envelope and a corresponding uR (slightly

larger than the input envelope) fed to the auxiliary filter. The total current i4 in the output

transistors of the filters in Fig. 2.20 and Fig. 2.21 are shown in Fig. 2.22(b) and Fig. 2.22(c)

respectively. i4 is small for small signals in the latter case reducing the transconductance of
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Figure 2.22: Simulation of the filter in Fig. 2.21: (a) Input u with a changing envelope and
the corresponding uR, (b) Output transistor current in the filter with a constant bias, (c)
Output transistor current and the output bias current mIbias in the filter with a dynamic
bias, (d) Output signal y of the filter for cases (b) and (c).

Q4 in Fig. 2.21. This reduces the gain for noise from internal points to the output and also

reduces the noise from the output transistor Q4. The current mIbias that is subtracted from

i4 in Fig. 2.21 is also shown in Fig. 2.22(c). The output signal y obtained by subtracting the

bias in the two filters is shown in Fig. 2.22(d). As expected, they are identical.

The output noise power spectral density, obtained using transient noise simulation7

is shown in Fig. 2.23 with the input amplitude as a parameter. Two versions of the filter in

Fig. 2.21, with and without noise are simulated with a sinusoidal input u at 100 kHz and a

bias Ibias that is 10% larger than the peak value of u. The difference in their outputs taken to

determine the output noise. The noisy version of the filter has uncorrelated noise sources

that are connected between the collector and emitter of each transistor. The variation of

the power spectral density of the output noise with the input signal (due to a proportional

change in the bias current) is easily seen. Due to class-A operation, the results from the
7Chapter 6 deals with this technique in greater detail.
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Figure 2.23: Noise PSD at the output of the filter in Fig. 2.21: solid line—from transient
analysis, dashed line—from “.AC” analysis.

large signal transient analysis and a small signal “.AC” analysis at the quiescent point of

the filter are very close to each other.

The rms integrated noise (from 0 to 2.5 MHz) is plotted versus the input current in

Fig. 2.24. The output noise increases with the input signal. Two distinct slopes (on a log-

arithmic scale) of increase can be identified in this figure. At very small input currents,

the rms integrated output noise increases as the square root of the input current. At very

large input currents, the rms integrated output noise increases in proportion to the sig-

nal. This behavior is consistent with (2.35) whose right hand side has terms containing

Ibias and Ibias
2 ((2.35) is an expression for the mean square integrated output noise). At very

small currents, the transconductance of the output transistor Q4, and hence, the amount

noise form the internal circuits that appears at the output, is very small. The output noise

is dominated by the shot noise of the input and output transistors (Q1 and Q4) which in-

creases as the square root of the output current. At very large currents, the noise from the

input and output transistors is insignificant. Most of the noise is from the internal nodes
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Figure 2.24: Integrated noise at the output of the filter in Fig. 2.21 with the input amplitude
as a parameter: solid line—from transient analysis, dashed line—from “.AC” analysis.

converted into an output current by the transconductance of Q4. Since the transconduc-

tance of the bipolar transistor Q4 is proportional to its collector current, the output noise is

proportional to the output current.

Fig. 2.25 shows the output signal to noise ratio of (i) the dynamically biased filter in

Fig. 2.21 and (ii) a filter with a constant bias in Fig. 2.20. For the latter, the bias current is set

to 10% larger than the highest value of the input peak. At small currents, when the output

noise of the dynamically biased filter has a square root dependence on the input current,

the signal to noise ratio increases by 0.5 dB for every dB increase in the input signal. At

large currents, the output noise is proportional to the input current resulting in a constant

signal to noise ratio. The signal to noise ratio of the filter with a constant bias is much

smaller than that of the dynamically biased filter for the most part. This is because, with a

constant (large) bias Ibias , the output noise has a constant large value. At the largest input

signal, the dynamically biased filter has a slightly smaller signal to noise ratio due to extra
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Figure 2.25: Signal to noise ratio at the output of the filter in Fig. 2.21.

noise added from the state variable compensation circuit. This plot shows the advantage

of the companding systems very clearly. If a S/N min of 40 dB is desired, the dynamically

biased filter can accept signals that are five hundred times smaller than that are acceptable

with the constant biased filter.



Chapter 3

A Simplified Technique for Dynamic
Biasing and Syllabic Companding in
Log-Domain Filters

3.1 Introduction

This chapter deals with the implementation of syllabic companding log-domain filters

through dynamic biasing. It is shown here that the large signal linearity of log-domain

filters can be exploited to eliminate the state variable compensation circuit [37]. Conse-

quently, this approach is much simpler than the previously known techniques for syllabic

companding and dynamic biasing described in Chapter 2. The new technique is described

in the following section. The proposed technique is compared to other approaches to com-

panding in section 3.3.

3.2 Proposed technique

The first order log-domain filter from Fig. 2.20 is shown in Fig. 3.1(a). As mentioned in

the previous chapter, a linear time-invariant (LTI) relation exists between the large signal

currents i1 and i4 in the input and the output transistors. When Ibias is constant with time,

the same relation holds between the input signal u and the output signal y. The transfer

45
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Figure 3.1: (a) First order log-domain filter, (b) Pseudo-differential operation with time vary-
ing bias.

function relating the two currents i1 and i4 and also u and y is ((2.33), (2.34))

Y (s)

U(s)
=

I4(s)

I1(s)
=

I2

I3

1

1 + sCVt/I3

(3.1)

In the time domain, the same relations can be expressed as

i4(t) = i1(t) ∗ h(t) (3.2)

y(t) = u(t) ∗ h(t) (3.3)

Where h(t) is the impulse response of the filter between i1 and i4 or equivalently, the in-

verse Laplace transform of the transfer function in (3.1) and ∗ denotes convolution.

Assume that the filter shown in Fig. 3.1(a) is duplicated as shown in Fig. 3.1(b). One

of the two filters receives a signal u added to a bias Ibias . The other filter is operated with

the same bias Ibias but an opposite input −u as shown in the figure. The output transistor
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currents i4p and i4n in the two halves of the filter can be written as

i4p(t) = (u(t) + Ibias(t)) ∗ h(t) (3.4)

i4n(t) = (−u(t) + Ibias(t)) ∗ h(t) (3.5)

The difference output y = i4p − i4n is given by

y(t) = 2u(t) ∗ h(t) (3.6)

Thus, in the difference output, the bias dependent term Ibias(t) ∗ h(t) disappears. The

relation between the input u and the output y is LTI and is the same as that given by (3.3)

for the original log-domain filter in Fig. 3.1(a) operating with a constant bias except for a

factor of two which appears due to differential operation. In contrast with the technique

described in the previous chapter (section 2.2.3, [18]), no extra circuit is required for state

variable compensation here.

Deriving this result using the approach in [38] would require an internal description

of a log domain filter, and would be more involved.

As described in section 2.2.1, the quiescent currents in the transistors of a log-domain

filter are established either by adding a bias to the input or by using auxiliary bias sources.

The relationship from the input and the auxiliary bias sources to the output is linear and

time invariant. Therefore, the method described above for canceling the bias components

at the output is applicable generally to all log-domain filters. Although the specific exam-

ples cited in this work relate only to log-domain filters, the proposed technique also applies

to other filters in which the input bias (current or voltage) controls the internal biasing.

Two log-domain filters that are fed with identical bias currents and input signals of

opposite polarity realize a pseudo-differential filter. The bias sources can now be varied

in accordance with the signal strength to achieve dynamic biasing. The differential output
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differential (class-AB) filters, (c) Single ended operation.

contains no component due to the time varying bias. This general scheme is shown in

Fig. 3.2(a).

There are log-domain filter structures that are intended for differential operation—

e.g. the class-AB circuits in [6, 19]. Instead of operating in class-AB mode, they could also

be operated with a dynamic bias at the input as shown in Fig. 3.2(b). Again, the differential

output contains no component due to the time varying bias.

An additional benefit of the pseudo-differential or differential operation as described

in the previous paragraphs is the cancellation of even order nonlinearities and common

interferences to the two halves of the circuit.

There may be cases in which single ended input and output are desirable. This could,

for example, be in order to interface conveniently with preceding and following circuits.

In that case, the configuration shown in Fig. 3.2(c) could be used. The sum of the signal

and bias is fed to one of the filters and the time varying bias alone is fed to the other. In the

difference of the outputs of the two filters, the bias component cancels out.

At this point, we would like to distinguish the proposed technique for companding

from the one presented in [39]. Pseudo-differential circuits are used in that reference to

implement instantaneously-companding filters. Although the system in Fig. 3.1(a) may be

topologically similar to the circuits presented in [39], the goal here is syllabic compand-
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ing. The circuits in [39] share some of the disadvantages of instantaneously companding

circuits pointed out in section 3.3.

Dynamic biasing as syllabic companding

It was mentioned in section 2.2.3 dynamic biasing in log-domain filters is analogous to

syllabic companding. This fact can be confirmed by observing the internal voltage swings

of the filter. The voltage Vb1p at the base of Q1p in Fig. 3.1(b), which is the sum of the base

emitter voltages of Q1p and Q2p, is given by:

Vb1p = Vt ln

(

u + Ibias

Is

)

+ Vt ln

(

I2

Is

)

(3.7)

where Vt is the thermal voltage and Is is the saturation current of the transistors. For

dynamic biasing, Ibias is made proportional to the envelope of u. Let Ibias0 be the bias

current for a given input u = u0. If u is increased by a factor α to αu0, the bias current

increases by the same factor to αIbias0. The voltage at the base of the transistor in these

two cases, denoted respectively by Vb1p,a and Vb1p,b, are

Vb1p,a = Vt ln

(

u0 + Ibias0

Is

)

+ Vt ln

(

I2

Is

)

(3.8)

Vb1p,b = Vt ln

(

αu0 + αIbias0

Is

)

+ Vt ln

(

I2

Is

)

= Vt ln

(

u0 + Ibias0

Is

)

+ Vt ln

(

I2

Is

)

+ Vt ln(α)

= Vb1p,a + Vt ln(α) (3.9)

Therefore, when the input amplitude increases by α and dynamic bias is derived from the

input envelope, Vb1p experiences no change in its ac component and only a dc shift Vt ln(α).

Since i4p is linearly related to i1p, i4p is increased by the same factor α. This means

that vp, the base emitter voltage of Q4p too sees only a dc shift of Vt ln(α). It can similarly

be reasoned that Vb1n and vn in Fig. 3.1(b) experience only a dc shift when the input is

increased.
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Thus the ac component of the voltage signals Vb1p or vp remains the same, provided

the bias is increased in proportion to the signal. Vb1p and vp are respectively the input

and output voltages of the voltage mode filter enclosed by dashed lines. Vb1p, which is

the voltage applied to this filter, has a constant amplitude regardless of the amplitude

of the input u. This is precisely the syllabic companding action described in Chapter 2,

where a filter is driven by a signal dependent gain stage, so as to always operate with a

constant amplitude near the top of its dynamic range. The input transistor Q1p and the

output transistor Q4p are analogous to the input and output amplifiers in Fig. 2.19 whose

“gain” (current to voltage and voltage to current respectively) is modified by varying the

bias current.

In general, in a higher order log-domain filter, all the internal voltages experience a

dc shift provided all the bias and signal currents are increased in the same proportion.

Distortion in dynamically biased log-domain filters

Fig. 3.3 shows the general structure of a high-order dynamically-biased log-domain filter.

Only one half of the filter is shown. For simplicity it is assumed that proper quiescent

currents in all the transistors of the filter can be established using only the bias at the input

rendering the auxiliary bias sources (see Fig. 2.11) described in section 2.2.1 unnecessary.

But the following discussion holds even in presence of such auxiliary bias currents as long

as they are changed in the same proportion as the input bias current. The filter consists

of an input structure using Q1−2 that converts the sum of the input signal current and the

bias current to a logarithmically compressed voltage denoted by vin. vin is fed to the core

of the filter consisting of translinear loops and capacitors across certain nodes. The filter

core’s output voltage vout is connected to an output transistor Q4 realizing the exponential

nonlinearity at the output.
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Figure 3.3: Generic structure of a high order log-domain filter

Some of the capacitors in the filter’s core may be connected to ground. The only other

connection to ground is through current sources used to control the time constants of the

circuit. These are labeled Itune in Fig. 3.3 to distinguish them from the “bias” currents used

at the input. It is assumed that the current sources have infinite output resistances. Under

these conditions, it is clear that the core of the filter is “floating” at dc1. This implies that a

dc shift in vin causes an equal dc shift in all the node voltages in the core of the filter and

in the voltage vout. The voltages across any two nodes in the circuit remains unchanged.

As described earlier, in a dynamically biased filter, an increase in the input causes only

a dc shift in the voltage vin applied to the filter’s core. Thus the filter’s core, which is

floating for dc, sees the same ac input regardless of the input amplitude, for a given input

waveform. Therefore, the distortion contributed by the filter’s core does not change with

the input amplitude in a dynamically biased log-domain filter. If the input and the output

stages do not add any distortion, a dynamically biased filter has a distortion performance

that is independent of the signal strength for a given input waveform. The filter can thus

be designed to have a constant “performance” over a wide dynamic range of inputs.

In practice, the input and the output stages do add distortion. But due to their sim-

plicity, these stages are far easier to optimize than the large dynamic range linear amplifiers
1Other topologies of log-domain filters, for example, the one in Fig. 2.16, also possess this property.
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required in the classical syllabic companding filter of Fig. 2.19. The finite output resistance

of the current sources Itune also causes some deviation from the ideal behavior described

above.

3.2.1 Simulation results

HSPICE simulations were carried out to test the validity of the dynamic biasing scheme

described above. Bipolar transistors with βF = 50, VAF = 10 V were used in the simula-

tion. The pseudo differential filter in Fig. 3.1(b) was used with I2 = I3 = 1 µA and C = 61.5

pF to realize a low pass filter with a dc gain of unity and a -3 dB frequency of 100 kHz.

A sinewave at 100 kHz with a changing envelope as shown in Fig. 3.4(a) was fed

to the filter. Having the input at the -3 dB frequency as opposed to deep in the passband

ensures that substantial currents flow through the capacitor and that the circuit truly be-

haves like a dynamic nonlinear circuit as opposed to a static nonlinear circuit. Two cases

were simulated. In the first case, a dynamic bias current Ibias whose value was 10% larger

than the envelope of the input signal was used. This corresponds to dynamic biasing as

described in Section 3.2. The envelope was assumed to be generated from an ideal enve-

lope detector. In the second case, a constant bias which was 10% larger than the largest

input envelope (= 2 µA in Fig. 3.4(a)) was used. This case corresponds to classical class-A

operation.

The differential outputs in the two cases are overlaid in Fig. 3.4(b). As expected, they

are exactly identical.

Fig. 3.4(c, d) show the base emitter voltage of Q4p in the two cases. From Fig. 3.4(c)

it is clear that the change in input amplitude causes only a dc shift in the internal voltage

and that the internal peak-peak swing is being held constant. This confirms the syllabic

companding action in the dynamically biased filter. With a constant bias, as can be seen
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in Fig. 3.4(d), the internal voltage swing varies in accordance with the input amplitude. If

equal noise is added to these two waveforms, it is clear that the one in Fig. 3.4(d) would

be corrupted much less than the one in Fig. 3.4(c).

The results of transient noise simulation2 of the two cases using HSPICE is shown

in Fig. 3.4(e, f). Two versions of the filter, with and without noise, are simulated and

the difference in their outputs taken to determine the output noise. The noisy version of

the filter has uncorrelated noise current sources that are connected between the collector

and emitter of each transistor. The variance of each noise source is made proportional

to the corresponding collector current. The reduction in output noise current for small

signals in the dynamically biased filter (Fig. 3.4(e)) when compared to the constant biased

filter (Fig. 3.4(f)) is evident.

These results prove the external linearity and syllabic companding nature of the pro-

posed dynamically biased filter. For visual clarity, the envelope in these simulations is

changed only by a small factor of four. The change in the envelope, and consequent sav-

ings in noise at small currents, can be much larger in real situations. It is limited mainly

by the range of currents over which the input and output devices behave as exponential

devices.

3.2.2 The dynamic biasing signal

Several factors that need to be considered while choosing the dynamic bias that is added

to a given ac input signal are listed below.

1. In practice, the bipolar transistors in a log-domain filter need to be operated above a

certain minimum collector current in order for them to have sufficient bandwidth [18,

7]. Therefore, the dynamic bias should not be decreased below a predetermined
2Chapter 6 deals with this technique in greater detail.
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minimum level. Above this level, it can be varied in proportion to the input signal.

2. It must be ensured that the currents in all the transistors of the log-domain filter

stay positive and above the minimum value required for sufficient bandwidth at all

times. The general technique [30] for ensuring adequate quiescent currents in all the

transistors of a log-domain filter was outlined in section 2.2.1 and Fig. 2.11.

3. The amount by which the bias Ibias is above the peak value of the input signal is

determined by distortion considerations.

Issues related to the generation of the dynamic biasing signal are discussed in the

next chapter.

3.3 Comparison to other companding filter realizations

3.3.1 Syllabic companding

The difficulties in implementing a syllabic companding filter using the general ideas of

[3] (Fig. 2.19) were discussed in section 2.2.2. The state variable compensation circuit and

the high dynamic range amplifiers at the input and the output can significantly increase

the design complexity of the syllabic companding filter.

The dynamic biasing scheme proposed in [18, 30] (and described here in section 2.2.3)

simplifies the implementation of syllabic companding log-domain filters. The amplifiers

at the input and the output are eliminated. But the state variable compensation circuit is

still required and necessitates extra design effort. Its complexity depends on the main filter

being implemented. On the other hand, the technique proposed here needs no extra effort,

since the required filter is merely duplicated.

When a circuit is duplicated and operated pseudo-differentially, its power consump-

tion and signal to noise ratio (in terms of mean-squared quantities) are doubled. The latter
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Figure 3.5: (a) Class-A single ended log-domain filter, (b) Dynamic biasing as in sec-
tion 2.2.3, (c) Dynamic biasing as in section 3.2.

is because the amplitude of the signal is doubled from its single ended value (a 6 dB in-

crease) whereas the mean square value of noise is doubled3 (a 3 dB increase). Thus, for

a given power consumption, the pseudo-differential circuit has the same signal to noise

ratio as the single ended circuit. If the values of the bias currents and the capacitors in

each half of the pseudo-differential circuit are half the corresponding values in the single

ended circuit, the single ended and the pseudo-differential versions have identical power

consumption and signal to noise ratio.

The approaches to distortionless dynamic biasing in section 2.2.3 and section 3.2 can

now be compared. Fig. 3.5(a) shows a single ended class-A log-domain filter with certain

bias currents and capacitor values. Fig. 3.5(b) shows a dynamically biased version of this

filter with a state variable compensation circuit as described in section 2.2.3. The core filter

has the same bias currents and capacitors as before. Fig. 3.5(c) shows a pseudo-differential

version of the class-A filter where the capacitors and bias currents in each section have

been halved. It is clear from the above discussion that the power consumed and the noise

contributed by the core filter in Fig. 3.5(b) and by the pseudo differential filter in Fig. 3.5(c)

are identical. But there will be additional noise and power consumption in Fig. 3.5(b) due
3The noise from the two halves of the filter are uncorrelated.
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to the state variable compensation circuit. It can thus be seen that the dynamically biased

filter described in section 3.2 (Fig. 3.5(c)) is superior to the one in section 2.2.3 (Fig. 3.5(b))

in terms of signal to noise ratio per unit power consumption.

3.3.2 Instantaneous companding

High dynamic range log-domain filters can also be realized using class-B or class-AB ([6,

19]) operation. These filters have differential inputs whose difference equals the desired

input signal. The individual inputs can be half-wave rectified waveforms, or waveforms

whose geometric mean is held constant. Recently [39] proposed the use of another type of

input waveforms—waveforms with their harmonic mean held constant—with a pseudo-

differential filter structure for instantaneous companding.

In this author’s opinion, syllabic companding using the dynamic biasing technique

described in this chapter has several advantages over instantaneous companding tech-

niques for enhancement of the dynamic range of log-domain filters. These are listed below.

1. The preprocessing circuit: The envelope detector’s accuracy is relatively unimpor-

tant as long its output is larger than the actual envelope, whereas the class-AB splitter

has to accurately reproduce the input signal in its difference output to avoid added

distortion.

2. The envelope detector is simpler to design than a class-AB splitter, partly due to the

reduced accuracy requirement.

3. Mismatch between two halves of the filter leads to distortion because of internal

nonlinearity in a class-AB filter and incomplete cancelation of bias components in a

dynamically biased filter. But slow varying bias components may be more acceptable

than intermodulation distortion in many cases.
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Figure 3.6: (a) Input with a changing envelope, (b) Geometrically split inputs for a class-AB
filter, (c) Input with a dynamic bias added to it.

4. Fig. 3.6(a) shows a sinusoidal signal with a changing envelope. If this signal has to be

fed to a class-AB filter, the signal pair shown in Fig. 3.6(b) must be generated. If it is

to be fed to a dynamically biased filter, the signal pair in Fig. 3.6(c) must be used. For

the smaller envelope, the inputs to the class-AB filter (Fig. 3.6(b)) is nearly identical

to that to the dynamically biased filter (Fig. 3.6(c)). But for the larger envelope, the

inputs to the class-AB filter reach near-zero values, whereas the inputs to the dynam-

ically biased filter do not. The current swings over a much larger relative range in

the former case. So even in absence of any mismatch, the class-AB configuration is

more likely to distort than the dynamically biased class-A configuration.

5. The envelope detector’s noise cancels at the output of the dynamically biased filter,

whereas the noise in the class-AB splitter’s outputs appears in opposite phases of the

input signal for large signals and do not cancel. This may degrade the filter’s SNR.



Chapter 4

Generation of the Control Signal for
Dynamic Biasing and Syllabic
Companding

Syllabic companding filters, of which the dynamically biased log-domain filters are a sub-

set, need an average measure of the input signal strength to adopt themselves to the chang-

ing input signal. Generating a suitable control signal is non-trivial and requires careful

consideration of the context in which the filter operates. This chapter briefly deals with the

issues involved in the generation of the control signal for syllabic companding or dynamic

biasing.

In many systems, an example of which is given in the following section, the envelope

of the signal may be known in “advance” and no control generation circuitry is required.

In cases where no such prior knowledge of the signal strength is available, a measure of the

average strength must be derived from the signal itself. Such averaging introduces some

inherent limitations in syllabic companding systems and they are discussed section 4.2.

Section 4.3 deals with a few techniques for envelope detection that can be used to generate

the control signal for dynamic biasing or syllabic companding.

59
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4.1 Situations where envelope detection is unnecessary

There are many systems in which a complicated analog signal may be obtained by feeding

a digital version of the signal to a D/A converter. The digital version of the envelope

of the analog signal may already be present in the system or may be generated with the

addition of a small amount of digital circuitry. An analog version of the envelope can be

generated by using a D/A converter. As mentioned in the previous chapter, the dynamic

bias added to the filter need not be very accurate provided it is larger that the signal peaks.

Thus a fairly low resolution D/A converter can be used in its generation. Such “advance”

knowledge of the envelope eliminates the need for envelope detection circuits and the

problems associated with them.

Fig. 4.1(a) shows an amplitude shift keyed signal that is used in some forms of digi-

tal communication systems. The amplitude of a carrier is modulated by multi-level digital

data1. The modulated signal can be generated digitally at a low frequency and converted

to analog form using a D/A converter. In this case, a smoothing filter is required to remove

the high frequency components of the sampled signal. If a dynamically biased filter is in-

tended to be used for smoothing, the dynamic bias need not be generated from Fig. 4.1(a).

Since the transmitted data is known, the envelope (Fig. 4.1(b)) is known beforehand. As

mentioned earlier, a low resolution D/A converter can be used in this situation to generate

the dynamic bias.
1Fig. 4.1(a) shows a single phase carrier. Two carriers in quadrature can be used with independent data

modulating each of them—QAM.
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Figure 4.1: (a) Amplitude shift keyed waveform, (b) Envelope of (a).

4.2 Problems due to the averaging present in strength detection.

4.2.1 Syllabic companding systems

The syllabic companding system with memoryless channels shown in Fig. 1.1 is shown

in Fig. 4.2 with the addition of an envelope detector and a circuit for generation of the

gain control signal. The input and output of the input amplifier are denoted by u and û

respectively. In general, as the signal strength va increases, the gain g of the input amplifier

decreases. In this example, it is assumed that the gain g is proportional to the inverse

square root2 of the detected signal strength va. The input u is assumed to be a sinusoid

with a changing envelope given by

u = a(t) cos(ωt) (4.1)

In ideal conditions, va = a so that the output û of the input amplifier is û =
√

a cos(ωt). It

is assumed that the input amplifier saturates for û greater than 2.5. A noise n which has a
2This is an arbitrary choice used here for the purpose of illustration. Such a variation in gain compresses

the dynamic range of the input signal (in dB) by factor of two and has been employed in [2, 40].
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Figure 4.2: Companding with memoryless noisy channels.

constant variance over time is added to the signal û in the channel3.

Fig. 4.3(a) shows a sinusoidal input u whose envelope is initially 0.5, changes to 4.0

at t = 1 s and returns to 0.5 at t = 5 s. Under ideal conditions, the detected envelope va and

the gain control signal g are as shown in Fig. 4.3(b) and Fig. 4.3(c) respectively. Fig. 4.3(d)

shows the ideal compressed signal û. A factor of 8 variation in u is compressed to a factor

of 2
√

2 variation in û. Fig. 4.3(e) shows the output signal of the system in Fig. 4.2 and it is

identical to the input. Fig. 4.3(f) shows the noise no at the output of the system.

In practice, when the envelope of the input signal changes abruptly as shown in

Fig. 4.3(a), it is impossible to obtain the signal that perfectly represents the envelope.

Fig. 4.4 shows a more realistic situation. Fig. 4.4(a) shows the input signal u, which is the

same as in Fig. 4.3(a). The signal va representing the envelope of the input and its inverse

square root are shown in Figs. 4.4(b) and 4.4(c) respectively. The latter is used to control

the gain of the amplifier in Fig. 4.2. During long periods of constant input envelope, the

signal va in Fig. 4.4(b) faithfully represents the input envelope. But abrupt changes in the

input envelope are not tracked. This behavior results if the average of the rectified input
3The parameters of the system are chosen such that the nonideal effects that we wish to highlight are clearly

seen.
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lope, (b) va, the detected envelope of u, (c) Gain g of the input amplifier, (d) Compressed
signal û, (e) Output signal of the system, (f) Output noise of the system.

signal (described in section 4.3.3) is used to estimate the input envelope. Fig. 4.4(d) shows

the signal û. There is an overshoot (i.e. insufficient compression) in û immediately follow-

ing the increase in the input envelope at t = 1 s. Due to the swing limit of the amplifier,

the signal that overshoots is clipped at 2.5. This happens because the gain g is not ad-

justed immediately to the value that is appropriate for the increased input amplitude. The

information in the signal is irretrievably lost in this period. Similarly, after the envelope

decreases at t = 5 s, the input is compressed “too much” before attaining the correct steady

state. Fig. 4.4(e) shows the output signal of the system. Immediately following the enve-

lope increase at t = 1 s, the output signal is smaller than the ideal case shown in Fig. 4.4(e).

This is due to the clipping observed in Fig. 4.4(d). The output noise is shown in Fig. 4.4(f).

It is larger than in Fig. 4.3(f) just after the decrease in the input envelope at t = 5 s. This is

due to the slowly changing gain control signal.
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velope, (b) va, the detected envelope of u, (c) Gain g of the input amplifier, (d) Compressed
signal û, (e) Output signal of the system, (f) Output noise of the system.

The two nonidealities described above, namely (i) Overload following an increase

in the input envelope and (ii) Decreased signal to noise ratio following a decrease in the

input envelope are characteristic of syllabic companding systems.

4.2.2 Syllabic companding filters

The implementation of syllabic companding filters (Fig. 4.5) poses an additional problem

that is not encountered in syllabic companding systems with memoryless channels. When

the input to the filter is a single sinusoid, the peak values of the signal at various points

in the filter are related to the peak value of the input through the magnitude responses of

the filter from the input to these points. This is no longer the case when a combination of

frequencies is fed to the filter because different frequencies can experience different phase

shifts in a filter (unlike the memoryless channel in Fig. 4.2). Fig. 4.6(a) shows the first five

harmonics of a square wave at a frequency f0. The sum of these waveforms is shown at
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the bottom and resembles a square wave. Fig. 4.6(b) shows five harmonics which have the

same amplitude as in Fig. 4.6(a). The third and the seventh harmonic are inverted. The

sum of these is shown at the bottom [41]. It has a peak value nearly twice as large as that

of the square wave in Fig. 4.6(a). While this is an extreme example, it illustrates that the

peak values of the internal signals in the filter can be quite different from that of the input.

Adjusting the value of the added dynamic bias based on the peak values of all the state

variables of the filter can solve this problem. But this requires a peak detector for each of

the state variables of the filter and is impractical. The dynamic bias added to the input

must therefore be based on the transfer function of the filter from the input to the state

variables and some assumptions regarding the nature of the input signal [30].

4.2.3 Dynamically biased filters

The dynamically-biased log-domain filter (Fig. 3.1(b)) described in the previous chapters

shares the above described shortcomings inherent to syllabic companding systems. In case

of dynamic biasing, instead of a multiplicative gain g, a bias is added to the input signal.

The bias is derived from the average signal strength and cannot follow abrupt changes in
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Figure 4.6: (a) First five harmonics of a square wave and their sum, (b) Same as (a), but
with the third and seventh harmonic inverted.

the input envelope. This has the following consequences which are analogous to those

depicted in Figs. 4.4(e, f).

1. Immediately after an abrupt increase in the input envelope, the added bias is insuffi-

cient to keep the overall input (i1p in Fig. 3.1(b)) to the log-domain filter positive at all

times. The negative peaks of the overall input are clipped by the input transistor (Q1

in Fig. 3.1(b)), resulting in distortion.

2. Immediately after an abrupt decrease in the input envelope, the added bias is too

large for the small input signal. This results in an excessive output noise (see (2.35)),

compromising the signal to noise ratio of the signal.
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4.3 Estimating signal strength

4.3.1 Peak detector

Fig. 4.7(a-i) shows the classical peak detector using an ideal diode and D and an RC net-

work. In this context, an ideal diode is one which has a zero voltage drop across it when a

forward current is flowing through it and a zero current through it when a reverse voltage

is applied across it. If the input voltage tends to be larger than the output voltage, the diode

is turned on and the output voltage follows the input voltage (Fig. 4.7(a-ii)). When the in-

put voltage Vin is less than the output voltage Vout , the diode is turned off (Fig. 4.7(a-iii))

and Vout decays exponentially due to the discharge of the capacitor C through the resistor

R.

Fig. 4.8(a) shows the output of such a peak detector for a sinusoidal input of a con-

stant amplitude. The output voltage (on the capacitor C) is recharged to the positive peaks

through the diode and droops between successive peaks. The amount of droop is deter-

mined by the product of the time constant of the RC filter and the input frequency.

Fig. 4.9(a) shows the output of such a peak detector for a sinusoidal input with a

changing envelope. The “attack”—the response to an increase in the input envelope—is
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filters in Fig. 4.7(a-i), Fig. 4.7(b-i) and Fig. 4.7(c) is ten times as long as the period of the
input.

fast since the capacitor C is charged rapidly through the diode D which is on (Fig. 4.7(a-

ii)). The “decay” is slow—it is the exponentially decaying natural response of the RC

combination (Fig. 4.7(a-iii)).

The peak detector responds to the peak value of the input regardless of the input

waveform.

4.3.2 RMS detector

The envelope of the input signal can also be determined using an rms detector whose

output is multiplied by the crest factor (The crest factor is the ratio of the peak value to the

rms value of a signal).

Fig. 4.7(b-i) shows the well-known block diagram of an rms detector [42]. In steady

state, the feedback network comprising the squarer-divider and the low-pass filter has an

output Vout that is the root mean squared value of Vin .
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This can be understood as follows [43, 44]: Denoting the input to the low-pass filter

in Fig. 4.7(b-i) by Vlp the equation governing the low pass filter can be written as follows

dVout

dt
= −ωRVout + ωRVlp (4.2)

where ωR is the cutoff frequency of the low pass filter. Substituting Vlp = V 2
in/Vout (the

squarer divider in Fig. 4.7(b-i)) in this equation we obtain

dVout

dt
= −ωRVout + ωR

V 2
in

Vout
(4.3)

dV 2
out

dt
= −2ωRV 2

out + 2ωRV 2
in (4.4)

where the second equation is obtained from the first by multiplying both sides with 2Vout

and using the relation 2VoutdVout/dt = dV 2
out/dt. Fig. 4.7(b-ii) shows the equivalent system

realizing (4.4). The output voltage Vout is the square root of the average (low pass filtered

value) of the square—the root mean square (rms) value—of the input Vin .
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Fig. 4.8(b) shows the output of the rms detector for a sinusoidal input of a constant

amplitude. The output voltage is multiplied by4
√

2 to obtain the peak of the signal.

The output voltage has a ripple at twice the frequency of the sinusoid. This is the

result of filtering V 2
in (4.4). The amplitude of the ripple is determined by the time constant

of the filter relative to the period of the input signal.

Fig. 4.9(b) shows the output of such a circuit for a sinusoidal input with a changing

envelope. The attack and decay times are similar and are determined by the time constant

of the filter used in the rms detector in Fig. 4.7(b).

Current mode rms detectors using translinear circuits (realizing the differential equa-

tion (4.4)) are presented in [43, 44].

4.3.3 Rectifier + averaging

Another measure of the input signal strength can be obtained using the combination of

full wave rectification5 and averaging shown in Fig. 4.7(c). Ideal diodes are assumed to be

used. The full-wave rectified input is filtered and multiplied by an appropriate scale factor

in order to obtain the peak value of the input.

Fig. 4.8(c) shows the output of Fig. 4.7(c) for a sinusoidal input of a constant ampli-

tude. The output voltage is multiplied by6 π/2 to obtain the peak of the signal.

The output voltage has a ripple at twice the frequency of the sinusoid. This is the

result of filtering the full wave rectified input. The amplitude of the ripple is determined

by the time constant of the filter relative to the period of the input signal.

Fig. 4.9(c) shows the output of such a circuit for a sinusoidal input with a chang-

ing envelope. As with the rms detector, the attack and decay times are similar and are
4This value is specific to a sinusoidal input. It depends on the shape of the signal.
5Half wave rectification can also be used.
6This value is specific to a sinusoidal input. It depends on the shape of the signal.
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determined by the time constant of the filter used in the rms detector in Fig. 4.7(b).

This method does not respond to the peak value of the input signal. The averaged

rectified output must be multiplied by a suitable factor to estimate the peak value.

4.3.4 Comparison

Figs 4.8 and 4.9 can be used to compare the three types of peak detectors described above.

The peak detector in Fig. 4.7(a) provides a fast attack which helps minimize the over-

shoot/clipping illustrated in Fig. 4.4(d) and the consequent distortion shown in Fig. 4.4(e).

The decay is slower than the attack, but is faster than the decay of the rms and the aver-

age detectors7. The envelope detector responds to the peak value of the input. Therefore,

its output can be used directly for dynamic biasing (after scaling up to obtain the desired

overhead). Among the three detectors, the envelope detector has the largest ripple in its

output for the same input period and the time constant of the filter used.

The rms detector has a slow attack and decay which means that the nonidealities

depicted in Figs 4.4(e, f) will both be present. The rms detector has the advantage that it

is not confused by the phases of the frequency components of the input signal: i.e. the

rms detector responds identically to the two waveforms shown at the bottom of Fig. 4.6(a,

b). But the output should be amplified by the expected maximum crest factor before being

used for dynamic biasing.

The attack, decay and the output ripple of the combination of the rectifier and aver-

aging shown in Fig. 4.7(c) are similar to that of the rms detector. Its virtue is that it is the

easiest to design among the three detectors presented above.

None of the detectors has a fast decay which means that the signal to noise ratio is

always compromised after an abrupt decrease in the input amplitude.
7When low-pass filters of equal time constants are used in the three detectors shown in Fig. 4.7. A time

constant that is ten times the input period was used to obtain the simualtion results in Fig. 4.8 and Fig. 4.9.
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Under ideal conditions, the ripple in the dynamic biasing signal does not appear at

the output of the dynamically biased filter. But mismatch between the two halves of the

filter can cause some of the ripple to leak to the output and manifest itself as distortion of

the input signal.

The peak detector was chosen for the dynamically-biased filter in this work mainly

because of its fast attack characteristics. The design of a current mode peak detector is

described in Chapter 7.

More sophisticated envelope detectors can be used to tailor the attack and decay

times as required. A technique using a combination of slow and fast average detectors is

outlined in [41].

4.3.5 Choosing the time constant of the strength detectors

The time constant of the filter used in any of the techniques described above to measure the

input signal strength has an influence on the attack and decay times as well as the ripple

in the output. The choice of the time constant depends on the frequency components of

the expected input signal (i.e. the signal u in Fig. 4.5).

Wideband input signals

Fig. 4.10(a) shows the representative power spectral density of a wideband input signal.

The center frequency fc is comparable to half the bandwidth fb, or equivalently, the upper

frequency limit fu is much larger than the lower frequency limit fl. This situation can be

expected when the filter that is to be designed is a low pass filter8. For dynamic biasing

the envelope of the signal that can have any frequency component in this band has to

be detected. Since the average strength of a signal at a frequency fl (the lowest possible
8Note that there is always a lower limit fl below which the spectral components are of no interest to us

since we are unwilling to wait infinitely long for a “dc” signal.
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Figure 4.10: Power spectral density of (a) A narrowband signal, (b) A wideband signal.

frequency) has to be detected, the cutoff frequency (∼ reciprocal of the time constant) of

the filter used in the envelope detector has to be smaller than fl.

Narrowband input signals

Fig. 4.10(b) shows the representative power spectral density of a narrowband signal. The

bandwidth fb is much smaller than the center frequency fc or equivalently, the upper fre-

quency limit fu and the lower frequency limit fl are close to each other. The envelope

variations of such a signal are constrained to frequencies less than fb/2. In such a case, it is

possible to use any one of the envelope detectors described above and track the variations

in the envelope. The cutoff frequency (∼ reciprocal of the time constant) of the filter used

in the envelope detector must be smaller than the center frequency fc and larger than the

bandwidth fb. The output of the envelope detector tracks the envelope with a delay that

is related to the time constant of the envelope detector. Since the time constant is much

smaller than the period (∼ reciprocal of fb) of the envelope, the output of the envelope

detector practically follows the envelope of the input signal.

Such narrowband signals are present in AM radio receivers where the bandwidth of

the modulating signal is much smaller than the center frequency. Diode-RC peak detectors

are successfully used in the envelope detection of AM radio signals.

However, complications can arise if such a signal is passed through a bandpass

filter (e.g. the filter in Fig. 4.5 could be a bandpass filter). Fig. 4.11(a) shows an ampli-
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tude modulated waveform whose carrier frequency is 20 times the modulating frequency.

This is passed through a second-order bandpass filter with a quality factor of 10 cen-

tered at the carrier frequency. Fig. 4.11(b) shows the output of the bandpass filter. The

curves Fig. 4.11(c-i) and Fig. 4.11(c-ii) respectively show the envelopes of Fig. 4.11(a) and

Fig. 4.11(b) as detected by an envelope detector whose time constant is smaller than the

period of the modulating signal. Fig. 4.11(c-i) can be added as a dynamic bias to the signal

in Fig. 4.11(a) to obtain a signal that is always positive. But the same is not necessarily true

when Fig. 4.11(c-i) is added as a dynamic bias to the signal in Fig. 4.11(b) for the following

reasons:

1. The envelope of Fig. 4.11(b) is delayed w.r.t. the envelope of Fig. 4.11(a).

2. The sidebands are attenuated by the bandpass filter resulting in a smaller modulation

index in Fig. 4.11(b) than in Fig. 4.11(a). This causes the minima in the envelope of

Fig. 4.11(b) to be larger than those in Fig. 4.11(a).

The effect of these phenomena can be seen in Fig. 4.11(c) where the curve (ii) is above curve

(i) during certain intervals.

To remedy this situation, there are three possibilities:

1. A large safety margin must be added to Fig. 4.11(c-i) before using it as the dynamic

bias so that it is sufficient for both Fig. 4.11(a) and Fig. 4.11(b). If the minima of

Fig. 4.11(c-i) are very small the safety margin has to be very large in order for the dy-

namic bias to be larger than the phase shifted envelope in Fig. 4.11(b). This technique

results in a waste of power during the signal peaks.

2. The dynamic bias added at the input and the output should be generated using sep-

arate envelope detectors at the input and the output. This methods needs extra hard-
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Figure 4.11: (a) Amplitude modulated signal, (b) Output when (a) is passed through a
bandpass filter with Q = 10, (c-i) Envelope of (a), (c-ii) Envelope of (b), (c-iii) Envelope of
(a) as detected by a “slow” peak detector.

ware.

3. Fig. 4.11(c-iii) shows the envelope of Fig. 4.11(a) detected using a long time constant.

This must be used instead of Fig. 4.11(c-i) for dynamic biasing. Increasing the time

constant results in longer attack and decay times.

It can therefore be concluded that although a narrowband signal lends itself to fast

envelope detection, the phase shifts of the envelope as it passes through a narrowband

filter may force us to use a slower detection.

The time constant of the filter used in the envelope detector is therefore likely to

be larger than the time constants in the filter with either narrowband or wideband input

signals. Consequently smaller bias currents and larger capacitors have to be used. With

low frequency filters, this may necessitate the use of external capacitors. Note however

that high density nonlinear capacitors can be used since the linearity of the filter used in

the envelope detector is unimportant.



Chapter 5

Log-Domain Filters in Pure CMOS
Technologies

Log-domain filters, which represent the most promising form of instantaneous compand-

ing filters, need an exponential nonlinearity for their realization. The exponential non-

linearity of the bipolar junction transistor has been used successfully to implement log-

domain filters in Bipolar/BiCMOS technologies. This chapters briefly discusses ways of

implementing log-domain filters in pure CMOS1 technologies.

5.1 MOS transistors operating in weak inversion

MOS transistors operating in weak inversion have a drain current that is exponentially

related to the gate-source and the bulk-source voltages. The drain current ID can be related

to the gate-source voltage VGS and the bulk-source voltage VBS using the expression [45]

ID = K
W

L
exp

(

VGS − VT 0

nVt

)

exp

(

n − 1

n

VBS

Vt

)

(5.1)

where K is a constant, VT 0 is the threshold voltage and n is the subthreshold slope factor

which is typically about 1.5.

Log-domain filters using MOS transistors in weak inversion have been investigated

in the literature, notably in [46, 47, 48].
1The advantages enjoyed by plain digital CMOS processes over other technologies have been discussed ad

nauseum in the present day literature on integrated circuits.
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Log-domain filters can be realized substituting MOS transistors whose source and

bulk are tied together in place of bipolar transistors in well known log-domain circuits (e.g.

[6]). But such a technique requires MOS transistors with individual wells. In commonly

available technologies, this implies that only pMOS transistors can be used. Also the rel-

atively large parasitic capacitance from the well to the substrate that would be present at

the signal carrying nodes limits the frequency response.

A better way to utilize the MOS transistors is to design circuits that make use of the

bulk terminal advantageously as shown in [47, 49]. A log-domain filter topology in which

the bulk nodes of all the transistors are grounded is presented in [48].

The range of currents over which the exponential law is obeyed is much smaller for

an MOS transistor in weak inversion than for a bipolar junction transistor. Another disad-

vantage of exponential nonlinearity realized using MOS transistors when compared to its

bipolar counterpart is the presence of the slope factor n in the argument of the exponential

which reduces the transconductance (from the gate-source voltage to the drain current) for

given current by the same factor. For example, if the log-domain filter in Fig. 2.7(c) were

realized using MOS devices, the pole would be located at I3/nCVt instead of I3/CVt. This

implies that a larger current is required to realize a given pole frequency of the filter.

The threshold voltage of MOS devices is an additional source of mismatch when

compared to bipolar devices2. Mismatch introduces distortion in class-AB filters due to

their internal nonlinearity. It has been demonstrated through simulations in [47] that the

mismatch in threshold voltage is a dominant source of distortion in class-AB log-domain

filters that use MOS devices in weak inversion.
2Bipolar transistors have mismatches in their saturation currents. This mismatch can be represented equiv-

alently by an offset voltage source at the base. The offset voltage, or VBE mismatch, is smaller than the
mismatch in the threshold voltages of the MOS transistors.
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At this point, not enough experimental results are available to judge the viability of

using MOS devices in weak inversion to realize log-domain filters.

5.2 Lateral PNP transistors

Another alternative worth exploring for the realization of log-domain filters in CMOS tech-

nologies is the use of lateral bipolar transistors3. The most common use of lateral bipolar

transistors in a CMOS technologies is in bandgap references [50]. But these are static cir-

cuits; i.e. the currents and voltages in the circuits are constant with time. Lateral bipolar

transistors have been used previously to realize variable gain amplifiers [51, 52] and an

assortment of translinear circuits such as multipliers [53].

5.2.1 Conventional lateral bipolar transistors

Fig. 5.1(a) shows the simplified cross section of a lateral PNP4 transistor. The “source” and

“drain” regions of a pMOS transistors form the collector and emitter and the n- well of

the pMOS transistor forms the base. The gate is tied to the most positive voltage in the

circuit (commonly done in order to push the carriers below the surface, to avoid imperfec-

tions associated with the latter) and has little influence on the operation of the transistor5.

Fig. 5.1(b) shows the circuit equivalent of Fig. 5.1(a). A vertical transistor QS whose collec-

tor is the (grounded) substrate is inevitably present along with the desired lateral transistor

QL.

This lateral bipolar transistor has the following disadvantages.

1. Due to the parallel connection of QL and QS , only a fraction of the emitter current
3The vertical PNP transistor available in plain CMOS technologies has its collector connected to the

ground (p-substrate) and hence, its collector current is not accessible. Therefore they are not considered here.
4The PNP transistor is the only usable species of the lateral transistor since the base of the lateral NPN

transistor is grounded in commonly available technologies.
5Note that the gate is almost always present. The transistor may be malformed in its absence [52].



79

n+p+ p+ p+

C BE

n+p+ p+ p+

C BE Sub

QL

QL

QS

QS

(a) (b)

(c) (d)

∆VBE

"source" and 
"drain" junctions

well plug

n- well

p- substrate

n- well

p- substrate

substrate plug

WBL

WBS

G

gate

base region of QSbase region of QL

E C B
gate

(e)

Sub

Sub

Sub
(D)
C E

(S)
B

(G) (D)
C

(S)
E

(G)
B

Figure 5.1: (a) Simplified cross section of a conventional lateral PNP transistor, (b) Electri-
cal equivalent of (a), (c) Simplified cross section of an enhanced lateral PNP transistor, (b)
Electrical equivalent of (c), (e) Top view of a practical lateral transistor.
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reaches the collector. This results in a larger bias current (and hence, power con-

sumption) to realize a given transconductance because the collector current of QS

flows to the substrate and cannot be tapped.

2. While large values of the current gain β have been reported in the literature, the

overall β (defined as the ratio of the collector current of QL to the sum of the base

currents of QL and QS) of the structure in Fig. 5.1 in the technology available to

this author was not very large. The current gain β of the bipolar transistor worsens

with increasing base width. In the currently available short channel technologies,

the lateral transistor QL has a base width WBL that is small enough for it to have a

current gain as high as a hundred. But the current gain of the vertical transistor QS

is poor due to the large distance between the bottom of the emitter diffusion and the

bottom of the n- well. Since the bases of QL and QS are connected together, the net

current flowing into the base can be so large as to reduce the apparent β of the lateral

transistor to be about ten.

Such small values of β are inconvenient even for the β-immune log-domain filter

shown in Fig. 2.16 [19, 20]. The compensating current shown in that figure has to be

used. The nonlinearities due to variation of β with the collector current are worsened

by a low value of β.

5.2.2 Enhanced lateral bipolar transistors

A solution to the problem of the poor current gain of bipolar transistors is given in [54, 55].

Fig. 5.1(c) shows the simplified cross section of the transistor presented in [54, 55]. The

gate of the pMOS transistor is connected to the base. This is the exact opposite of the con-

ventional practice of tying the gate to the most positive voltage. In this case, as a negative
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VBE is applied, the channel tends to invert. The transistor operates as a combination of a

subthreshold device and a lateral bipolar device. The device can be thought of as a bipolar

transistor with the assistance of the gate or as a pMOS transistor whose threshold is low-

ered by the application of a negative bulk-source voltage. The result of tying the gate to

the base is the realization of very large dc current gains, and suppression of the substrate

transistor action to a great extent [54, 55].

A crude explanation for the behavior of this device is as follows [56]. As shown in

Fig. 5.1(c), the base region of the lateral transistor QL is near the surface of the device and

the base region of the substrate transistor QS is deep inside the well underneath the p+

diffusion of the emitter. On applying a negative VGS to the pMOS transistor, an electric

field is created underneath the gate. This causes a voltage rise from the surface of the

device to the region deep inside the well. This is denoted by ∆VBE in Fig. 5.1(d). The

voltage across the base of QL and the emitter is larger than the voltage across the base of

QS and the emitter by ∆VBE . Comparing Fig. 5.1(d) to Fig. 5.1(b), it can be seen that for

given VBE , the collector current of QS is smaller in the latter. Thus the substrate transistor

QS is suppressed.

It is reported in [54, 55, 56] that the lateral PNP transistor shown in Fig. 5.1(c) has a

dc current gain in the thousands for small collector currents.

Thus the enhanced lateral PNP transistor can be used in log-domain filters without

the problem of base currents. One of the biggest disadvantages of lateral bipolar transistors

is the large parasitic capacitance from the base (well) to the substrate. But when these

transistors are used in the log-domain filter shown in Fig. 2.16 [19] they do not affect the

performance seriously because this capacitance appears either across voltage sources or

across a desired capacitance. In the latter case, the parasitic capacitance can be absorbed
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into the desired integrating capacitance. The parasitics at the base do however limit the

largest cutoff frequency that can be achieved.

Compared to MOS transistors operating in weak inversion, the enhanced lateral

bipolar transistor has

1. A slope factor of unity, resulting in a larger transconductance for a given current.

2. A larger range of exponential behavior [54].

3. Hopefully better matching; because of its closer adherence to the classical bipolar op-

eration, the threshold voltage may not have as much influence on the drain current.

Both the MOS transistor in weak inversion and the lateral bipolar transistor have a fre-

quency response that is inferior to that of a conventional bipolar transistor. This is because

the MOS transistor in weak inversion is operated at small current densities and the lateral

PNP transistor has a large parasitic capacitance from the n- well that acts as its base.

Figs. 5.1(a, b) depicted a simplified cross section of the lateral PNP transistors in

which the collector was on one side of the emitter. In practice, to maximize the collector

efficiency, the emitter is surrounded by the collector as shown in Fig. 5.1(e). The base

contact is placed outside the collector ring. A circular shape for the collector and emitter

provides the best performance by minimizing the area of the substrate emission area, but

an octagonal layout may be more convenient and not very sub-optimal.

5.2.3 Use of MOS capacitors in log-domain filters

Since the voltages across the capacitors in a log-domain filter have a limited peak-peak

swing of a few Vts, nonlinear capacitors can be used safely without causing distortion [47].

MOS capacitors in accumulation behave practically linearly over such small voltages [57].
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This enables the use of large capacitors which are required if a large signal to noise ratio is

demanded from the filter.



Chapter 6

Noise Analysis of Companding Filters

6.1 Introduction

Although companding filters are linear and time-invariant between their input and out-

put, they are by construction internally nonlinear. The signal dependent output noise

caused by such a nonlinearity is in fact the chief motivation for considering compand-

ing techniques to improve the dynamic range per unit power consumption of filters. Es-

timation of output noise of such filters is essential to determining their signal to noise

ratio and dynamic range. But the presence of such nonlinearities between the internal

noise sources and the output terminal implies that the traditional methods of noise calcu-

lation/simulation (linearization around the bias point, e.g. “.AC” in SPICE) do not suffice.

The behavior of noise in companding filters has been intuitively pointed out in [3].

Several papers have been published to date outlining the steps for calculating the noise in

companding filters[32, 33, 36]. In this chapter we describe a generally applicable method

for noise analysis of instantaneously companding filters using a first order filter as an ex-

ample. While the method outlined in the next section is applicable to all instantaneous

companding filters, log-domain filters are used as examples for the most part since they

are the only types whose practical realization has been sufficiently investigated to date.

Simulation methods for calculating the noise and possible simplifications for important

84
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Figure 6.1: (a) Linear first order filter, (b) Instantaneous companding first order filter.

special cases are also pointed out.

6.2 General technique

6.2.1 Noise in instantaneously-companding filters

A first order companding filter is used as an example. Fig. 6.1(a) shows a linear first order

filter whose state variable is denoted by x. Fig. 6.1(b) shows its companding equivalent

which has an output nonlinearity f() and a transformed state variable v as described in

Chapter 2 [26].

The relation between the input u and the output y of these filters in the frequency

domain is given by

H(s) =
Y (s)

U(s)
=

k

s + a
(6.1)

where k and a are known constants. The state variable description of the first order com-
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panding filter in terms of the transformed state variable v, input u and the output y is given

by (2.12) and (2.13)

v̇ = −a
f(v)

f ′(v)
+

k

f ′(v)
u (6.2)

y = f(v) (6.3)

Noise can be added to various points in the system in Fig. 6.1(b). Noise added to the

input will be processed in a linear time invariant fashion with the transfer function given

in (6.1). Noise at the output of the nonlinearity f() is simply added to the output. More

interesting is the behavior of noise added to the internal nodes. Fig. 6.2 shows three such

possibilities. Noise n1 in Fig. 6.2(a) is added at the input of the output nonlinearity f().

Noise n2 in Fig. 6.2(b) is added after the input amplifier. Noise n3 in Fig. 6.2(c) is added

to the feedback path. no1, no2 and no3 denote the output noise in Fig. 6.2(a), (b) and (c)

respectively. Noise added to other points can be reduced to either one or a combination of

these cases. These three possibilities will be separately treated below.

It is clear that in Fig. 6.2(a), the addition of noise n1 does not alter the state variable

v from its value in the noiseless case (Fig. 6.1(b)). Only the input to the nonlinearity f() is

changed. The new output of the filter y1 is given by

y1 = f(v + n1) (6.4)

Assuming that n1 is sufficiently small, which presumably would be the case in a usable

filter, the output can be approximated to

y1 = f(v) + f ′(v)n1 (6.5)

The output noise no1 is the difference between the noisy output y1 and the noiseless output

y (given by (6.3)).

no1(t) = y1(t) − y(t) (6.6)
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Figure 6.2: (a) Noise added at the input of the output nonlinearity, (b) Noise added after the
input amplifier, (c) Noise added in the feedback path.
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Figure 6.3: Noise equivalent circuit for Fig. 6.2(a).

= f ′(v(t)) n1(t) (6.7)

= µ(t) n1(t) (6.8)

where µ(t) is defined as

µ(t) = f ′(v(t)) (6.9)

µ(t) denotes the time-varying small-signal gain of the output nonlinearity f(). The result-

ing small signal model is shown in Fig. 6.3. The added noise is multiplied by a signal

dependent gain. The calculation of the output power spectral density is given later in this

section.

This result is hardly surprising. As described in the first two chapters, in the intro-

duction to companding, a signal dependent gain is placed at the output of the filter to alter

the overall output noise in accordance with the signal strength. It was also mentioned that

the expanding nonlinearity f(v) used at the output of instantaneously companding filter

has a derivative that increases with increasing v. Therefore, the noise n1 is multiplied by

small gains when the output signal is small and by large gains when the output signal is

large.

The case shown in Fig. 6.2(b) where noise n2 is added to the output of the input

block is slightly more involved. In this case, the state variable v is altered from its noiseless

value to a new value v2. The effect of the noise n2 at the filter’s output can be determined
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Figure 6.4: Transformation of Fig. 6.2(b) to a convenient form.

using the transformation shown in Fig. 6.4. Fig. 6.4(a) (same as Fig. 6.2(b)) shows noise n2

being added after the input amplifier. As shown in Fig. 6.4(b), this can be transferred to

the amplifier’s input after dividing by the gain of that amplifier 1/f ′(v2). It can be easily

seen that the part of the resulting circuit enclosed within dotted lines is the filter in Fig. 6.1

with the transfer function given by (6.1). Thus noise n2 is multiplied by a signal dependent

factor f ′(v2), added to the input u and filtered. This multiplying factor itself depends on

noise through v2. But for small noise, which would be the case in a practical circuit, and a

nonlinearity f() with a continuous first derivative, the factor f ′(v2) can be approximated

by f ′(v) so that it can be calculated using the solution to the noiseless circuit. The filter

enclosed by dotted lines, which is linear and time invariant, has an output y + no2 for an
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n2(t)
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v(t)

no2(t)
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k
s + a

Figure 6.5: Noise equivalent circuit for Fig. 6.2(b).

input u + n2f
′(v). The same filter has an output y for an input u (Fig. 6.1(b)). Thus no2 can

be computed as the output of the linear time invariant filter shown in Fig. 6.1 for an input

n2f
′(v) where v is the noiseless state variable of the filter for an input u. Fig. 6.4(b). Fig. 6.5

shows the resulting equivalent circuit (with µ(t) defined as before) from which the output

noise no2 can be computed.

The case in Fig. 6.2(c) in which noise is added in the feedback path can be treated

similarly. Fig. 6.6(a) (same as Fig. 6.2(c)) shows noise n3 added to the feedback path. In

this case, the quantity fed back to the input of the integrator v3fb is given by

v3fb =
a

k

f(v3 + n3)

f ′(v3 + n3)
(6.10)

=
a

k
f1(v3 + n3) (6.11)

where a new symbol f1() is introduced to denote f()/f ′(). Assuming that n3 is sufficiently

small, the following approximations can be made.

v3fb ≈ a

k
f1(v3) +

a

k
f ′
1(v3)n3 (6.12)

=
af(v3)

kf ′(v3)
+ νn3 (6.13)

where ν in the last equation is given by

ν(v3) =
a

k
f ′
1(v3) (6.14)

=
a

k

(

1 − f(v3)f
′′(v3)

(f ′(v3))2

)

(6.15)
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Fig. 6.6(a) can be transformed into Fig. 6.6(b) where the two terms of the fed back quantity

v3fb given by (6.13) are added separately at the input of the integrator. Fig. 6.6(c) shows a

further transformation whereby a noise µ3(t)n3(t) is added to the input. µ3 is given by

µ3(t) = f ′(v3(t))ν(v3(t)) (6.16)

≈ f ′(v(t))ν(v(t)) (6.17)

=
a

k

(

f ′(v(t)) − f(v(t))f ′′(v(t))

f ′(v(t))

)

(6.18)

where, as before, the functions are evaluated at the noiseless state variable v instead of the

noisy state variable v. The circuit inside the dotted lines is again seen to be the filter in

Fig. 6.1(b) with the transfer function in (6.1). no3 can thus be computed as the output of

a linear time invariant filter to an input −µ3(t)n3(t). The equivalent circuit so obtained is

shown in Fig. 6.7.

A feature common to the three cases is multiplication of noise by a signal dependent

factor which results in signal-dependent output noise.

The equivalent circuits obtained above can also be derived analytically as demon-

strated in [33] for the cases in Fig. 6.2(a, b).

6.2.2 Response to stationary white noise in the presence of a periodic input

While an analytical solution for the output noise spectral density is impossible to obtain

in the general case with arbitrary inputs and random noise, the special case of periodic

inputs and stationary white noise is tractable and is dealt with below.

In steady state, if the input to the circuit in Fig. 6.1(b) is periodic, the state variable

v and the output y will be periodic as well. This means that the multiplying factors in

Figs. 6.3, 6.5 and 6.7 will be periodic. Therefore the equivalent circuits shown will be linear

periodically time varying systems. The output noise in such circuits can be computed
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Figure 6.6: Transformation of Fig. 6.2(c) to a convenient form.
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Figure 6.7: Noise equivalent circuit for Fig. 6.2(c).

using the response of the system to delayed delta functions at the source of noise [58, 59].

A linear periodically time varying circuit is characterized by its response to a delayed

delta function δ(t − τ). In Fig. 6.3, if n1(t) is set to δ(t − τ), the output h1(t, τ) would be

h1(t, τ) = µ(t)δ(t − τ) (6.19)

= µ(τ)δ(t − τ) (6.20)

The response h2(t, τ) of the circuit in Fig. 6.5 to δ(t − τ) is given by

h2(t, τ) = (µ(t)δ(t − τ)) ∗ h(t) (6.21)

= µ(τ)(δ(t − τ) ∗ h(t)) (6.22)

= µ(τ)h(t − τ) (6.23)

where h(t) is the impulse response of the linear time invariant filter shown in Fig. 6.1 (equivalently,

the inverse Laplace transform of (6.1)) and ∗ denotes convolution.

Similarly, the response h3(t, τ) of the circuit in Fig. 6.7 to δ(t − τ) is given by

h3(t, τ) = (−µ3(t)δ(t − τ)) ∗ h(t) (6.24)

= −µ3(τ)(δ(t − τ) ∗ h(t)) (6.25)

= −µ3(τ)h(t − τ) (6.26)

If white noise with spectral density Sn is fed to a linear periodically time vary-

ing (LPTV) system whose response to δ(t − τ) is h(t, τ) the output spectral density can
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Table 6.1: Output noise PSDs in Fig. 6.2

Source h(t, τ) H(ω, τ) Output PSD

Fig. 6.2(a) n1 µ(τ)δ(t − τ) µ(τ)e−jωτ So1 =
Sn1

T

∫ T

0

µ2(τ)dτ

Fig. 6.2(b) n2 µ(τ)h(t − τ) µ(τ)H(jω)e−jωτ So2 =
Sn2

T

k2

a2 + ω2

∫ T

0

µ2(τ)dτ

Fig. 6.2(c) n3 −µ3(τ)h(t − τ) −µ3(τ)H(jω)e−jωτ So3 =
Sn3

T

k2

a2 + ω2

∫ T

0

µ2

3(τ)dτ

be evaluated using the following expression [58, 59].

So(ω) = Sn
1

T

∫ T

0

|H(ω, τ)|2dτ (6.27)

where T is the period of the periodic variation and H(ω, τ) is the Fourier transform of

h(t, τ) w.r.t. the variable t.

Thus the PSD of output noise no1, no2 or no3 can be computed analytically when

n1, n2 or n3 in Fig. 6.2 is white with a PSD Sn1, Sn2 or Sn3 respectively. For each of no1,

no2 or no3, the corresponding H(ω, τ) can be calculated using (6.20), (6.23) or (6.26) and

substituted in (6.27). The results so obtained are summarized in Table 6.1.

6.2.3 Computing the total output noise of a circuit

The previous section outlined the methods for calculating the contribution of noise n1, n2

or n3 in Fig. 6.1 when each noise source is acting alone. In a practical circuit, all these

sources are simultaneously present and the output noise is the sum of the output contri-

butions due to each noise source. If the sources are uncorrelated, the output PSD can be

computed simply by summing the output noise PSDs due to each source (Table 6.1).

The situation is complicated if the sources are correlated. Correlations could exist

between n1, n2 and n3 even though noise at the device level is uncorrelated. The correlation

could be due to a single device contributing noise to two different points of the circuit. An
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Figure 6.8: (a) Current mirror with correlated output noise, (b) Equivalent circuit.

Table 6.2: Output noise PSDs in Fig. 6.8

Source h(t, τ) H(ω, τ) Output PSD

ina µ(τ)(δ(t − τ) + h(t − τ)) µ(τ)(1 + H(jω))e−jωτ Soa =
Sna

T

(k + a)2 + ω2

a2 + ω2

∫ T

0

µ2(τ)dτ

inb µ(τ)δ(t − τ) µ(τ)e−jωτ Sob =
Snb

T

∫ T

0

µ2(τ)dτ

inc µ(τ)h(t − τ) µ(τ)H(jω)e−jωτ Soc =
Snc

T

k2

a2 + ω2

∫ T

0

µ2(τ)dτ

Total output noise PSD Sout = Soa + Sob + Soc

example of this is shown in Fig. 6.8(a) in which a reference current Ia is mirrored to obtain

two current sources. Noise currents ina, inb and inc from the three transistors Qa, Qb and

Qc are uncorrelated. The output noise from the two current source transistor Qb and Qc

are ina + inb and ina + inc respectively. Clearly, they are correlated.

These current sources could be used in the implementation of Fig. 6.1(b) such that

they contribute noise in the form of n1 and n2 (see Fig. 6.2) respectively. In this case, the

output noise PSD cannot be obtained simply by summing So1 and So2 given in Table 6.1.

Fig. 6.8(b) shows the equivalent circuit for this situation. no1 and no2 are related to n1 and
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n2 via the equivalent circuits in Figs. 6.3 and 6.5. n1 and n2 in turn are linear combinations

of ina, inb and inc. Thus the resulting circuit is yet another LPTV system with uncorrelated

noise inputs ina, inb and inc and an output nout. Assuming they are stationary and white,

the output power spectral density due to each of these three sources can be determined

as before from the corresponding responses to delayed delta functions. Since the three

sources are uncorrelated, the total output noise PSD can be obtained by summing them.

The results are summarized in Table 6.2.

Fig. 6.8(b) showed n1 and n2 as a linear combination of uncorrelated noise sources

ina, inb and inc. There may be cases where dependence of n1, n2 and n3 in Fig. 6.2 on noise

sources at the device level (such as ina, inb and inc) is not known. In such cases, the power

spectral density matrix of n1, n2 and n3, which would be the complete description of the

noise sources including their correlations can be used to calculate the output noise. The

power spectral density matrix of a set of k noise sources is an k×k matrix whose k diagonal

terms are the power spectral densities of each of the noise sources and off-diagonal terms

are the cross spectral densities [60, 4].

The k correlated noise sources can be generated as a linear combination of k uncor-

related noise sources.

~nc = M ~nuc (6.28)

where ~nc and ~nuc are the correlated and uncorrelated noise vectors respectively and M =

[mij ] is an k × k square matrix. M is not unique; only k(k + 1)/2 of its k2 elements are

independent. Extra constraints can be placed in order to fill in the rest of the matrix. For

example, M could be constrained to be symmetric or top diagonal1 and so on.

Fig. 6.9 shows n1, n2 and n3 being generated from a set of three uncorrelated noise
1This would be akin to Gram-Schmidt orthonormalization of vectors[61].
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Figure 6.9: Model for calculating the output noise due to correlated noise sources.
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Figure 6.10: First order class-A log-domain filter.

sources na, nb and nc. n1, n2 and n3 are fed to the equivalent circuits shown in Figs. 6.3,

6.5 and 6.7 to produce the output noise. This system is very similar to that in Fig. 6.8(b)

which was obtained using the known dependence of n1 and n2 to noise from the individual

devices. Again we have a linear periodically time-varying system with uncorrelated noise

sources as inputs. The response of the system to a delayed impulse from each of the noise

sources na, nb and nc is a linear combination of the responses to delayed impulse from the

sources n1, n2 and n3. The output noise can be obtained by summing the contributions

from each source which in turn can be obtained by substituting the appropriate H(ω, τ) in

(6.27).

6.2.4 Experimental verification

Measurements were performed on the discrete component versions of the first order log-

domain circuits of Fig. 6.10 and Fig. 6.11 using C = 10 nF and I2 = I3 = 20 µA. These
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Figure 6.11: First order class-B log-domain filter.

values result in k = a = 2π × 12.3 krad/s in Fig. 6.1. Current source in2 in these figures

denotes the externally injected interference and it corresponds to n2 in Fig. 6.2(b). Ex-

periments were performed both with a deterministic sinusoidal interference and random

noise. in2 was deliberately made large enough to be the dominant noise source in the

circuit so as to enable easy comparison to analytical results. The output current was con-

verted to a voltage using a transresistance amplifier, and the noise was measured using a

spectrum analyzer. The experiments performed are described below.

1. Class–A circuit (Fig. 6.10):

• in2 was a sinusoidal interference of 0.1 µA cos(2π× 11kHz× t). The input to the

filter was 20 µA+5 µA cos(2π×2kHz×t). From the equivalent circuit of Fig. 6.5,

the intermodulation components were calculated. The calculated values and the

measured points are indicated on Fig. 6.12.

• White noise with a PSD of 0.35 nA/
√

Hz was injected as shown in Fig. 6.10. The

input to the filter was 20 µA + 5 µA cos(2π× 6kHz× t). The output noise power

spectral density was calculated using the last equation in the second row of

Table 6.1. The calculated curve and the measured points are shown in Fig. 6.13.

2. Class–B circuit (Fig. 6.11)

• A noise current with a PSD of 0.35 nA/
√

Hz was injected as in Fig 6.11. Again,
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Figure 6.12: Intermodulation due to sinusoidal interference—lines: calculated, circles:
measured.

the last equation in the second row of Table 6.1 is used to compute the output

noise PSD. The calculated curves and measured points are shown in Fig 6.11. It

is apparent that the noise increases with an increase in the input signal.

The analytical calculation of the output PSD in the above cases is based on the equivalent

circuit of Fig. 6.5. Good agreement is observed between calculations and measurements.

The details of calculation of the signal dependent multiplier µ(t) for the particular cases of

Fig. 6.10 and Fig. 6.11 can be found in [33].

6.3 Simulation methods

6.3.1 Transient noise analysis

A brute force method of simulating noise in nonlinear circuits is to run transient simulation

of the circuits including random noise sources with appropriate statistics. Two versions of

the circuit, one with noise sources and one without them are simulated and their difference
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Figure 6.15: (a) Discrete time random sequence, (b) Linearly interpolated continuous time
waveform.

taken. This difference is the output noise of the circuit for one set of noise waveforms.

This simulation is repeated several times with new uncorrelated waveforms for the noise

sources. The average of the magnitude squared of the Fourier transform of the resultant

noise waveforms is an estimate of the output power spectral density. The estimate gets

better as more waveforms are included in the averaging.

In order to simulate noise in log-domain filters, the shot noise of bipolar transis-

tors (and possibly the thermal noise from ohmic resistances) have to be modeled with ap-

propriate waveforms. HSPICE, which was used for the work in this thesis, as well as sev-

eral other simulators provide piecewise linear sources whose values at certain time points

can be specified. The value of the waveform between these time points is determined by

linear interpolation. This facility was used to generate the noise waveforms.

To model white noise, a sequence of independent identically distributed (i.i.d.) gaus-

sian samples with unit variance is generated externally (e.g. using MATLAB). The contin-
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Figure 6.16: (a) Spectral density of discrete time uncorrelated sequence, (b) Spectral den-
sity of linearly interpolated continuous time waveform.

uous time waveform that represents the noise takes the value of these samples at integer

multiples of a certain period Ts = 1/fs and successive samples of the waveform are con-

nected by straight lines (Fig. 6.15). The discrete time random sequence has a white power

spectral density (double sided) as shown in Fig. 6.16(a) [62]. Linear interpolation has a low

pass filtering effect and the interpolated waveform has the double sided power spectral

density shown in Fig. 6.16(b). For frequencies much smaller than the sampling frequency,

it appears “white”.

The subcircuit shown in Fig. 6.17(a) is used for each transistor in order to include the

shot noise. The value of the noise current source in parallel with the transistor is given by

in(t) = n0(t)
√

qfsic(t) (6.29)

where n0(t) is the piecewise linear waveform formed from a gaussian distributed random

sequence with unit variance, q is the electron charge, fs is the sampling frequency at which

the noise samples are specified, and ic(t) is the instantaneous collector current. When
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ic(t)

q fs ic(t)  n0(t) 2 k T R fs  n0(t)R

(a) (b)

Figure 6.17: (a) Noise model of a transistor, (b) Noise model of a resistor.

ic(t) = Ic, a constant current, it can be seen from the scaling factor in Fig. 6.16 and (6.29)

that the double sided spectral density at low frequencies reduces to qIc as it should. The

square root dependence on the instantaneous collector current is a common way (e.g. [63])

of taking into account the non-stationarity of the noise with time varying collector current.

In a similar way, a resistor’s thermal noise can be represented by a parallel current

source as shown in Fig. 6.17(b). The value of the current source is

in(t) = n0(t)
√

2kTRfs (6.30)

where n0(t) is the piecewise linear waveform formed from a gaussian distributed random

sequence with unit variance, k is the Boltzmann’s constant, T is the absolute temperature

R is the value of the resistor and fs is the sampling frequency at which the noise samples

are specified.

This technique has been used to obtain the signal dependent output noise of dy-

namically biased first order filters described in Chapter 2 and Chapter 3. Fig. 2.23 shows

the output noise spectral density of the filter in Fig. 2.21. Fig. 3.4 shows the output noise

waveform in time domain of the filter in Fig. 3.1. In both these cases, dependence of output

noise on input signal strength is clearly seen.

The technique described in this section is time consuming due to the fact that a large

number of transient runs are required to obtain the averaged power spectral density curve.
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Also, the sampling frequency used to represent the samples has to be high enough to

ensure that the power spectral density appears white in the frequency range of interest.

This implies long transient runs, but the technique is conceptually simple. Non-stationary

noise can be easily dealt with and no analytical calculations are required. A one time

effort to setup noise models (Fig. 6.17) and to automate the process of repeating transient

analyses and averaging their Fourier transform magnitude squared is involved. Once this

is done, simulation of a new circuit involves only the generation of an appropriate number

of noise vectors.

The method described in this section enables transient simulation of circuit that con-

tains white noise sources. For other types of noise, e.g. 1/f , shaping filters could be used

to modify the white sequence (Fig. 6.15(a)) appropriately. Also, the power spectral den-

sity shown in Fig. 6.16(b) could be made “whiter” by using a filter with an appropriate

frequency response. However, this would further increase the computations required.

6.3.2 LPTV simulations

As mentioned in section 6.2.2, the noise equivalent circuits for companding filters reduce to

LPTV systems whose noise can be computed using the response of the system to delayed

delta functions at the source of noise.

Another class of LPTV systems are mixers used for frequency translation in radios.

Their periodic nature arises from the local oscillator (frequency translating) signal being

periodic. A method for simulating noise in mixers using a SPICE-like simulator is de-

scribed in [64]. In this approach, the response at the output of the mixer hk(t, τ) to delayed

delta functions δ(t − τ) from a particular noise source nk in the circuit is simulated. The

response from one noise source can be simulated at a time. hk(t, τ), which is a function of

two variables and is periodic in τ , is approximated by a finite number of functions hkj(t, τj)
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of one variable t with a fixed τj . τj is incremented in steps from zero to T , where T is the

period of the LPTV system. Triangular pulses of narrow width are used to approximate

the impulses. Each simulation results in a function hkj(t, τj) for a particular value τj
2. An

approximate form of hk(t, τ) is thus determined. This can be used in (6.27), with the inte-

gral replaced by a summation, to determine the output noise due to the noise source nk.

The process is repeated for all noise sources in the circuit.

Compared to the method described in the previous section, the individual transients

to be simulated in this method are much shorter. However, a large number of them2, for

different values of τj and different noise sources in the circuit, need to separately simu-

lated. Still, for a complicated circuit, it would be less time consuming than the brute force

method.

6.3.3 Traditional “.AC” simulation

While “.AC” simulation in SPICE which computes noise by linearizing the circuit around

the dc operating point is not applicable to the most general case of companding, it is

nonetheless useful in several special cases. The class-A log-domain filter referred to in

section 6.2 is an example. Although internally nonlinear, since the signal is restricted to be

less than the bias, the nonlinearities are not greatly exercised. The difference between the

noise in quiescent condition, which is what is computed by a “.AC” simulation and the

noise when the signal swings as much as the bias is less than 2 dB [32, 33]. As a corollary,

noise in dynamically biased class-A log-domain filters can be computed in this manner as

well, by setting the bias point to various values. The result so obtained for the dynamically

biased filter in Fig. 2.21 is shown in Fig. 2.23 along with the result from transient noise anal-
2hkj(t, τj) for m values of τj can be determined either from m separate simulations or a single long simu-

lation with a train of m impulses. The interval between the impulses is made equal to an integer multiple of
T plus the increment in τj and must be long enough for the impulse response to die out sufficiently.
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ysis described in section 6.3.1. The negligible difference between the two is evident from

the plots. In general, this principle is applicable to syllabic companding filters where the

circuit parameters change slowly with signal. It would be possible in most cases to “hold”

the filter in one particular state in which it can be treated as a linear and time invariant

system and apply traditional “.AC” analysis. Phenomena like envelope transient noise [3],

however, are caused by the dynamics of syllabic companding and cannot be determined

in such a fashion. The dependence of noise on the signal has to be taken care of in the

simulation.



Chapter 7

Design of the Prototype Chips

7.1 Introduction

This chapter presents the design of several prototype chips used to evaluate the ideas pre-

sented in previous chapters. The technology available was a 0.25 µm BiCMOS technology

from Lucent Technologies which provided nMOS and pMOS transistors with a drawn

minimum length 0.25 µm and threshold voltages of 0.6 V and 0.9 V respectively and bipo-

lar transistors with minimum emitter area of (0.4 µm)2 and an Early voltage of about 12 V.

Metal-metal capacitors with a density of 0.8 fF/ µm2 were also available in this technology.

To test the ideas presented in section 3.2, a third-order pseudo-differential Butter-

worth filter with a -3 dB frequency of 1 MHz and a peak detector to generate the dynamic

bias were designed. Sections 7.2 to 7.5 deal with various aspects of this design.

Section 7.6 discusses the design of a second-order filter using enhanced lateral bipo-

lar transistors and pMOS accumulation capacitors which is used to test the feasibility of

log-domain filters in a pure CMOS technology as described in section 5.2.

The results of simulation of each of the designs are described in the respective sec-

tions.

107
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Figure 7.1: First order log-domain filter topologies (a) From [6], (b) From [19].

7.2 Third-order Butterworth ladder filter

The first order log-domain filters in Figs. 2.13 and 2.16 are redrawn in Fig. 7.1. As men-

tioned in section 2.2.1, the base current of Q4 introduces nonlinearities in the topology in

Fig. 7.1(a). With dynamic biasing, the collector current y in the output transistor Q4 varies

over a wide range and can be very large. In that case, the effect of the base current is

particularly disastrous. Therefore, the topology in Fig. 7.1(b) [19, 20] which is immune to

base currents is chosen for the dynamically biased filter in this work. The current source

I2/β used to compensate the reduction in pole frequency due to the base current of Q2

in Fig. 7.1(b) is not used in our design. In the BiCMOS technology used for the current

design, the current gain β of the bipolar transistors is large enough for this change in pole

frequency to be tolerable.

7.2.1 Filter synthesis

The first-order log-domain filter in Fig. 7.1(b) is redrawn in Fig. 7.2(a). Here onwards the

log-domain filters will be drawn in this fashion without the feedback loops to avoid clutter.

The presence of feedback loops will be indicated by a dashed line from the collector.

Fig. 7.2(b) shows a cascade of two first order log-domain filters. The output y1 of

the first filter is mirrored using a current mirror and fed to the second filter as the input



109

Q1 Q3 Q2 Q4

u I2

+
v-

I3

y

Q3a
Q2 Q4

I2

+
v-

I3

y

Q3bQ3cQ1cQ1bQ1a

ua ub uc

Q21 Q23 Q22 Q24

u2
I22

+
-

I23

y2

Q11 Q13 Q12 Q14

u1
I12

+
v1
-

I13

y1

+
− Vbase

+
− Vbase

current mirror

Q23 Q22 Q24

I22

+
-

I23

y2

Q11 Q13 Q12

u1
I12

+
v1
-

I13

+
− Vbase

+
− Vbase

vE12 vE21 = vE12

(b)

(c)

(d)

(a)

C

C

C

C

vE12

i3c i3c i3b i3a

ic

v2

v2

Figure 7.2: (a) First order log-domain filter in Fig. 2.16, (b) Cascading two stages, (c)
Eliminating redundancies in (b), (d) Modification to accept multiple inputs with positive and
negative weights.

u2. Q14 converts the voltage vE12 into a current through an exponential nonlinearity. This

current is converted back to a voltage vE21 by Q21. Since the transistors Q14 and Q21 carry

equal current and have their bases tied together, their emitter voltages vE12 and vE21 are

identical. Therefore a cascade of the two stages can be realized in the voltage domain as

shown in Fig. 7.2(c) by eliminating Q14 and Q21. Thus a cascade of log-domain filters can

be realized without voltage to current and current to voltage conversion at each interface.

Fig. 7.2(d) shows a modification of Fig. 7.2(a) to accommodate multiple inputs with
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both positive and negative weights ([19, 20]). The transistor pair Q1,3 in Fig. 7.2(a) is re-

placed by three pairs Q1a,3a, Q1b,3b, and Q1c,3c. Inputs ua, ub, and uc are fed to Q1a, Q1b,

and Q1c respectively. Q3a and Q3b are diode connected. The collector areas of Q3a, Q3b, and

Q3c are A3a, A3b, and A3c respectively. These areas determine the gain of the filter from the

respective inputs as will be shown below. The rest of the transistors in the circuit have

unit areas. The collector current of Q3c is fed back to its base through a current mirror to

accomplish a sign inversion, as will be seen below. This circuit can be analyzed by writing

the equations for the products of currents around the translinear loops (see (2.18), (2.19)

and the associated discussion).

i3a =
uaI2A3a

y
(Q1a-Q3a-Q2-Q4) (7.1)

i3b =
ubI2A3b

y
(Q1b-Q3a-Q2-Q4) (7.2)

i3c =
ucI2A3c

y
(Q1c-Q3a-Q2-Q4) (7.3)

ic = i3a + i3b − i3c − I3 (total current into C) (7.4)

The capacitor current can be related to the output current using the following equations.

v = VBE4 − VBE2

= Vt ln
y

I2

(7.5)

ic = C
dv

dt

=
CVt

y

dy

dt
(7.6)

(7.4) and (7.6) can be combined to obtain

CVt

y

dy

dt
=

uaI2A3a

y
+

ubI2A3b

y
− ucI2A3c

y
− I3 (7.7)

dy

dt
= − I3

CVt
+

A3aI2

CVt
ua +

A3bI2

CVt
ub −

A3cI2

CVt
uc (7.8)
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(7.8) is the differential equation of a first-order filter with an output y and inputs ua, ub

and uc. The relative weights of the inputs are determined by the areas A3a, A3b and A3c.

uc is filtered with a negative weight. More inputs can be added to the filter in a similar

fashion. Thus the circuit in Fig. 7.2(d) is seen to be a first-order stage with multiple inputs

whose weights can be set to arbitrary positive or negative values. This stage can be used

to synthesize higher order filters. As in Fig. 7.2(c) the input and output transistors can be

omitted when cascading several stages. The circuit enclosed within the dashed lines forms

the basic building block of a higher-order log domain filter.

The doubly terminated LC ladder filter in Fig. 7.3(a) is used as the prototype for

the desired Butterworth filter. With the values shown, the Butterworth filter has a -3 dB

bandwidth of 1 rad/s. The ladder filter is converted to the block diagram in Fig. 7.3(b)

which uses two lossy integrators and a lossless integrator. ωp in the figure is the desired

bandwidth of the filter in rad/s. The LC ladder prototype has an attenuation of 6 dB in

the passband. A gain of 2 is introduced at the input so that a passband gain of unity is

realized. The three stages are marked on the figure. The first is a lossy integrator with an

inverting and a non-inverting input. The second is a lossless integrator with an inverting

and a non-inverting input. The third is a lossy integrator with a single non-inverting input.

The log-domain version1 of this filter is shown in Fig. 7.3(c). The first-order log-

domain filter with multiple inputs shown in Fig. 7.2(d) is used for each of the stages. All

transistors are of unit areas except Q2 whose area is doubled to implement the input gain

of 2 mentioned above (see (7.8)). Note that the damping current is absent from the second

stage. The three stages are cascaded in a manner similar to Fig. 7.2(c). I0 = 5 µA and

C1 = C3 = 30 pF, C2 = 60 pF are used to obtain the desired cutoff frequency of 1 MHz for
1Details of the procedure for the synthesis of log-domain filters can be found in [7, 14, 27].
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Figure 7.3: Third-order Butterworth filter: (a) RLC prototype, (b) Block diagram using first
order stages, (c) Log-domain realization.

the Butterworth response.

In the initial stages of the design, it was envisioned that the input currents would

vary in a large range of about 50 nA to 500 µA whose center (on a log scale) is the internal

bias current I0 = 5 µA. A supply voltage of 2.5 V was chosen for the circuit. Since the

chief aim was the demonstration of dynamic biasing, no attempt was made to minimize

the operating voltage of the circuits.

In order to distinguish the dynamic bias applied to the input from the internal bias

current I0 (Fig. 7.3) used to set the bandwidth of the filter, here onwards, the latter is re-

ferred to as the tuning current.
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picture of (a).

7.2.2 Feedback circuit used to establish the collector currents

Fig. 7.4(a) shows the feedback circuit used in [19] (Fig. 2.15) to force the input current u into

the collector of Q1 and tuning currents I0 into the collectors of Q4, Q7 and Q9 in Fig. 7.3(c).

The following discussion uses the input stage with Q1 as an example, but it applies equally

well to the other cases.

In equilibrium, Mf ’s drain current equals the sum of emitter currents of all the tran-

sistors connected to it. Its gate voltage is adjusted appropriately by the feedback loop.

Fig. 7.4(b) shows the circuit in Fig. 7.4(a) with the feedback loop opened. The transcon-

ductance of this circuit between the gate of Mf and the collector current of Q1 is the small

signal conductance presented to the input u by the circuit in Fig. 7.4(a). If α is the fraction

of the small signal drain current id of Mf that flows through the transistor Q1 and gmf is

the transconductance of Mf , the small signal transconductance between gate of Mf and

the collector of Q1 is αgmf . If bipolar transistors connected to the drain of Mf as shown

in Fig. 7.4(c), the fraction of the drain current of Mf that flows through Q1 is the same for
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large and small signals2. Thus the conductance gin presented to the input u by the circuit

in Fig. 7.4(a) is given by

gin =
u

Idf
gmf (7.9)

where Idf is the total (large signal) drain current of Mf . Assuming that Mf operates as a

square law device in saturation, its transconductance is [45]

gmf =
2Idf

VGS − VT
(7.10)

and the transconductance gin presented to the input is

gin =
2u

VGS − VT
(7.11)

The voltage at the input node is VGS and is the sum of the voltages across Q1 and Mf . If this

voltage is too small, Q1 may be pushed into saturation where its log conformity degrades.

This is likely to happen with short-channel technologies where VT is small. The only way

to increase VGS is to reduce the W/L ratio of Mf which reduces gmf . Also, increasing

its VGS for the same drain current would tend to push Mf into the triode region, further

reducing gmf . The effect of reducing gmf is to increase the signal voltage swing at the input

node. As will be shown later, the finite Early voltage of the transistors is one of the main

sources of distortion in this log-domain filter. In view of this, a small voltage swing at the

collector node and thus a large gmf is desirable.

In a dynamically biased filter, the currents in the input and output transistors vary

over a wide range. This means that Mf ’s current varies over a large range. Consequently,

its VGS would experience wide variations and it is likely that either or both of Q1 and Mf

would be operating in undesirable regions at the extremes of input current variations.
2The small signal conductance of bipolar transistors is proportional to their large signal collector current,

owing to their exponential characteristic.
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Figure 7.5: Feedback circuit used in [22] to establish the collector currents.

It may be possible in a technology with an appropriate threshold voltage to maintain

Qf in the active region and size Mf so large that it would be operating in the subthreshold

region even for the largest input current. But this would imply a large gate capacitance at

the input node which would be unacceptable at the frequencies considered in this design.

A large capacitance has the following undesirable effects on the operation of this circuit.

1. The pole at the input node moves to lower frequencies and causes a deviation in the

small signal frequency response of the filter.

2. The input capacitance is across a nonlinear input conductance. This causes distortion

in the current that flows through Q1.

[22] presents a modified version of this circuit in which the MOS transistor Mf is

replaced by a bipolar transistor Qf as shown in Fig. 7.5. The input conductance in this case

is larger and the input voltage variations are limited to a few Vt. But the voltage at the

input node is VBE and could be smaller than in the previous case. This means that Q1 or

Qf could enter saturation region if their VCE ,SAT is larger than about 0.3 V.

A serious problem with this circuit is the base current of Qf which subtracts from the
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input current flowing into Q1 as shown in the figure. This current is non-linearly related

to the input and consequently results in distortion of the signal flowing into Q1’s collector.

This circuit too is therefore unsuitable for large dynamic range applications.

The circuit in Fig. 7.6(a) remedies the above problems. A source follower Mf is used

to drive the bipolar transistor Qf . Unlike the circuit in Fig. 7.5, no current is drawn by the

feedback network at low frequencies. The quiescent voltage at the input node is VBE +VGS

ensuring that Q1 stays in its active region. The source follower attenuates to some extent

due to the body effect of Mf . But the input conductance is still close to that in Fig. 7.5.

Insertion of the source follower adds another pole to the loop gain function and

hence the circuit in Fig. 7.6(a) needs frequency compensation to be assured of stability

over the entire range of input currents. A capacitor (nMOS transistor in inversion region)

is connected between the gate and source of Mf as shown in Fig. 7.6(b) to provide a feed-

forward path at high frequencies and eliminate the phase lag due to the source follower.

From simulations, this circuit is determined to be stable over the desired range of input

current. This feedback arrangement is used around Q1, Q4, Q7 and Q9 in Fig. 7.3(c).
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7.2.3 Transistor sizing at the input and the output

The exponential relation between the base-emitter voltage and collector current of a tran-

sistor deteriorates at high current densities due to increased voltage drop across parasitic

series resistances and high-level injection effects. At very low current densities—i.e. with

a very large transistor for a given current—the frequency response of a transistor deterio-

rates due to larger parasitic capacitances. The transistors in the log domain filters should

be sized to strike a compromise between these two conflicting requirements. As mentioned

above, the currents in the input and the output transistors (Q1 and Q10 in Fig. 7.3(c)) can

be much larger than the currents in the transistors comprising the filter core (Q2−9). For

this reason, the input and output transistors in the filter are made four times larger than

the transistors in the filter’s core as shown in Fig. 7.7. Increasing the size of both the input

and the output transistors in the same proportion leaves the transfer function of the filter

unaffected.

7.2.4 Feedback and feed-forward paths in the filter

In the Butterworth filter of Fig. 7.3, emitter followers (Q4, Q7 and Q9) are used for inter-

stage coupling. Of these, Q7 and Q9 drive two transistors each; one in the forward path
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and another in the feedback path. These paths are shown using thick lines in Fig. 7.8(a).

Consider Q9 in Fig. 7.8(a): This drives the output transistor Q10 and a feedback transis-

tor Q6. The current in Q10 varies over a wide range due to dynamic biasing. This means

that the emitter follower Q9 is loaded by a widely varying impedance causing its input-

output relationship (both gain and phase) to change as the output current changes. Thus

the feedback branch also suffers this variation in gain and phase. Any phase change in the

feedback path has a very severe effect on the overall frequency response. This was con-

firmed through simulations. Using separate transistors for the feedback and feed-forward

paths rectified this problem and the frequency response of the filter remained invariant

with changing bias current at the input. The resulting circuit is shown in Fig. 7.8(b) where

two separate emitter followers Q9a and Q9b are used. Emitter follower Q9a still suffers

from a changing load and consequent gain and phase changes, but these are now outside

the filter’s feedback loop and do not affect the frequency response as much. The small gain

and phase variations are added to the frequency response. The problem is not as severe

with Q7 driving Q8 and Q3 (Fig. 7.8(a)), both of which are inside the filter’s core and carry

currents that do not change with dynamic biasing. Nevertheless, this device was separated

as well into Q7a and Q7b as shown in Fig. 7.8(b). A slight improvement in the behavior of

frequency response with changing bias was seen as a result.

7.2.5 Effect of nonidealities

To determine the chief impediments to good performance of this filter, the single ended

circuit in Fig. 7.3(b) was simulated3. Idealized components with various non-idealities

added one at a time were used. Although the series resistance in the emitter causes the

transistor to deviate from the ideal exponential law, it was found that the distortion in-
3At the time of these simulations, the parameters of the technology described in section 7.1 were not avail-

able and device models from a different bipolar technology were used.
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Figure 7.8: Separating the feedback and the feed-forward paths.

troduced by practical values of emitter series resistance was insignificant. The finite Early

voltage (VA) of the transistors was the most important contributor to distortion. Fig. 7.9

plots the second and the third harmonic distortion of the single ended circuit of Fig. 7.3(c)

vs. bias current for Early voltages of 25 V and 10 V. The input tone used had a frequency

of one third the bandwidth and an amplitude that was 90% of the bias. The increase in

distortion with decreasing Early voltage is evident. Also notable is the deterioration in

the distortion performance for large values of the input bias current. The reason for this

is the large voltage swing that occurs at the collectors of Q1 and Q9 (in Fig. 7.3(c)) when

large signal swings accompany a large input bias. For this reason, it is necessary to have

as large a transconductance as possible in the feedback loop used to force the input cur-

rent u into Q1. Holding the collector voltages of these transistors constant by cascoding is

a possibility, but this requires a larger supply voltage and further complicates the circuit,

and therefore, it was not used in this implementation.
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Figure 7.10: (a) Current mirror, (b) Current source, (c) Current sink.

It is clear that the finite output conductances of the current sources and the current

mirrors in Fig. 7.3(c) affect the distortion in the same manner as finite output conduc-

tances of the transistors Q1−10. Therefore, cascode current sources and mirrors as shown

in Fig. 7.10 were used.

Aside from the noise contributed by the bipolar transistors which form the core of

the filter, extra noise is contributed by the current sources in Fig. 7.3(c). The noise from

the current sources can be particularly significant at low frequencies due to 1/f noise. To

minimize their thermal noise contribution, these current sources are operated with as large
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a VGS −VT as possible [45] within the power supply voltage available. VGS −VT ≈ 200 mV

was used in this design4. To minimize 1/f noise, long channel transistors [45] are used for

the current sources as shown in Fig. 7.10. Due to their large 1/f noise, nMOS transistors

with very long channels are used in the current sources.

7.2.6 Bias generation

Fig. 7.11 shows the circuit used to generate the bias voltages for the current sources and

mirrors. The bias lines are bypassed for high frequencies using the gate capacitance of

large transistors operating in strong inversion.

7.2.7 Pseudo differential version of the filter

For pseudo-differential operation, the filter in Fig. 7.8(b) is duplicated and laid out sym-

metrically.

7.2.8 Automatic tuning of the filter

The bandwidth of the third-order Butterworth filter discussed in the previous sections

is given by I0/(C1Vt) where I0 and C1 are the tuning current and the capacitor used in
4Assuming square law operation in saturation, the transconductance of a MOSFET with a drain current Id

is 2Id/VGS − VT and its drain current noise is 8kTgm/3 [45].
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Fig. 7.3(c) respectively, and Vt is the thermal voltage. The tuning current I0 is the electronic

control available to change the bandwidth as desired.

Two sources of variation of bandwidth of the filter are apparent:

1. The temperature dependence of the thermal voltage Vt causes the bandwidth to de-

crease with increasing temperature5. This effect can be countered by having I0 vary

in proportion to the absolute temperature (PTAT).

2. Process variations in the values of the capacitors used in the filter cause a correspond-

ing variation in the bandwidth. This can be corrected either by using a PTAT source

in combination with trimming for the correct bandwidth or using more sophisticated

automatic tuning techniques [35].

Since the chief aim of this design was the demonstration of the dynamic range capabilities

of dynamically-biased filters, none of these bandwidth correction schemes was incorpo-

rated in the fabricated chip.

7.2.9 Simulation results

Various simulations were carried out on the pseudo-differential third-order Butterworth

filter including the padframe. Most of the simulations were carried out with the bias cur-

rents in the range6 from 50 nA to 500 µA. However, 500 µA is not the largest bias current

that can be applied and it is expected that the experimental prototype will function even

beyond this bias level. As the bias current at the input is increased, the voltages at the col-

lectors of Q1 and Q10 in Fig. 7.7(a) and Fig. 7.7(b) respectively increase due to the following
5Vt = kT/q where k, T , and q are the Boltzmann constant, the absolute temperature, and the electron

charge respectively.
6Due to the limited time available in a summer term for the design and layout of the circuits described in

this chapter, the simulations carried out were limited in their scope. The simulations were extensive enough
to verify the satisfactory performance in the expected regions, but not to prcisely determine the boundaries of
performance of the chips.



123

reasons.

1. As the current carried by the feedback transistor used at the bottom (Fig. 7.7) in-

creases, its base-emitter voltage increases.

2. The VGS of the source follower transistor increases due to (i) the body effect and (ii)

an increase in the base current supplied to the base of the bottom transistor as the

bias current is varied over a wide range.

A sufficient increase in the voltage at the collector of Q10 causes the current source feeding

the collector to operate in the triode region. This results in a reduced current I0 fed to the

collector which in turn results in a change in the frequency response of the filter. With

the transistor sizes used in this design, it is expected that this limiting will occur at a few

milliamperes of bias current.

Frequency response

Fig. 7.12 shows the simulated magnitude response of the filter with input bias currents

varying from 500 nA to 500 µA. In these simulations, the current I0 in Fig. 7.3(c) and

Fig. 7.8 was set to 5 µA. The response stays practically constant over such a wide range

of input bias currents. Below 500 nA, the response exhibits slight peaking. This is be-

cause the frequency response of the feedback loop (Fig. 7.6) used to force the input current

is poor at small bias currents. Fig. 7.13 shows the passband detail of the magnitude re-

sponse. The variation in dc gain over the entire range is about 0.6 dB. Note that the curves

in Fig. 7.13, with the exception of the topmost one, are equally separated in the vertical

direction fromeach other. This implies that the bandwidth of the filter is unaltered with

changes in the bias current.

One possible reason for this gain variation can be understood by examining Fig. 7.7.
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Consider Fig. 7.7(a). The collector-emitter voltage VCE1 of Q1 increases with increasing

input bias current. The base-emitter voltage VBE1 of transistor Q1 is given by the following

relation.

VBE1 = Vt ln

(

u

Is(1 + VCE1/VA)

)

(7.12)

where VA is the Early voltage of the bipolar transistor. For a given input u, VBE1 decreases

as VCE1 increases. Thus, the effect of finite Early voltage is an apparent reduction in the

input signal by a factor (1 + VCE1/VA), or equivalently, a reduction in the gain of the filter.

As VCE1 increases with increasing input bias current, the gain of the filter decreases. A

similar effect occurs in the output stage shown in Fig. 7.7(b) due to an increase in the

collector-emitter voltage of the transistor Q9.

Assuming an increase ∆VCE of 300 mV in the collector-emitter voltages of Q1 and

Q9, and an Early voltage of 12 V the reduction in the gain of the filter can be calculated as

∆gain = 20 log
1

(1 + ∆VCE/VA)2
(7.13)

= 0.43 dB (7.14)

The observed reduction in the gain is slightly larger than the calculated value.

While the variation of dc gain with the input bias current reflects a non-ideality, its

effect on the performance of the dynamically biased filter is difficult to quantify. When

used in association with a peak detector, the bias at the input varies slowly due to the

long time constant of the peak detector. There is no gain variation within a cycle of the

input signal, and hence, no distortion. The gain variation in such cases can be eliminated

through automatic gain tuning, if desired. The gain variation would manifest itself as

nonlinear components in the output during envelope transients.
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Output noise and signal to noise ratio

Fig. 7.14 shows the output noise of the filter integrated from 100 kHz to 3 MHz. The output

noise increases as the square root of the bias for small bias currents and in proportion to

the bias for large bias currents as expected (section 2.2.3, [30]).

The output signal to noise ratio, assuming a single ended input peak current that

is 50% of the bias current is plotted in Fig. 7.15. Since the single ended input current is

50% of the input bias Ibias , the differential input peak is equal to Ibias . Therefore, the X-

axis denotes both the bias current used at the input and the differential input peak current

under this assumption. The S/N increases at 0.5 dB per dB of increase in the bias for small

currents and saturates for large currents.

It was pointed out earlier that the filter’s frequency response deteriorates to some

extent below a bias current of 0.5 µA. Assuming this to be the smallest usable bias, and

taking 500 µA as the upper limit7, the dynamic range of the filter is 60 dB. In this 60 dB
7As mentioned earlier, simulations were done only up to a bias current of 500 µA. The conclusions that

follow are based on this number.
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range, a S/N of 48.5 dB is maintained as can be seen from Fig. 7.15. A conventional linear

filter would be required to have a peak S/N of 48.5 + 60 = 108.5 dB to satisfy the same

criterion!

Distortion

The distortion performance of the filter was simulated using harmonic balance. This is

much less time consuming than taking Fourier transforms of long transient runs. A single

tone input at a frequency of 312.5 kHz was used. Fig. 7.16 shows the third harmonic distor-

tion as a function of the modulation index (ratio of peak signal current to bias current) for

different values of input bias current. The distortion is worse at low bias currents due to

the poor frequency response of the feedback loop used to force the input current (Fig. 7.6).

For bias currents larger than 500 nA, the distortion is the same for a given modulation in-

dex regardless of the value of the bias current. As explained in section 3.2, the peak-peak

voltage signal applied to the voltage mode filter embedded between the input and output
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“amplifiers” (Fig. 3.1(b)) is a function of the modulation index and does not depend on

absolute values of the input bias or signal currents. The distortion relative to the funda-

mental is below 60 dB for the most part and is lower than the noise level. Fig. 7.17 shows

the variation of distortion with input frequency when the single ended input signal peak is

50% of the bias current for various bias currents. It can be seen that the distortion increases

slowly with frequency.

Power consumption

The filter consumes 250 µA when the input bias is set equal to the internal bias level of

5 µA. When the input bias is decreased to very small values, it drops to 210 µA. With a

500 µA bias at the input, the total current drawn from the supply is 2.23 mA.

Power consumption and dynamic range: comparison to passive filters

As described in section 2.1.1 and Appendix A, the power consumption of the passive RC

filter varies with the input signal. In order to compare the pseudo-differential filter to the

RC filter, the dependence of the power consumption (from the power supply voltage) of
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Figure 7.18: (a) Pseudo differential filter biased from an ideal peak detector, (b) Current
mode RC filter with S/N = 48.5 dB for a 0.5 µA peak input, (c) Three first-order RC filters.

the former on the input signal has to be determined.

In a dynamically biased filter, the input bias Ibias is varied as function of the peak

value of the input signal. Assume that the bias required for a given input signal is twice

the peak value of that signal. Fig. 7.18(a) shows the pseudo-differential filter biased from

an ideal peak detector. A bias Ibias , which is equal to the peak value of u, is added to the

differential ac inputs u/2 and −u/2 and fed to the filter. The system in Fig. 7.18(a) with the

ideal peak detector will be compared with the RC filter in this section.
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The left and right Y-axes of Fig. 7.19 respectively show the current and the power

consumed by the Butterworth ladder filter as a function of the peak value of the input

assuming the arrangement shown in Fig. 7.18(a). As with Fig. 7.15, the X-axis denotes

both the bias current used at the input and the differential peak input current. This curve

depicts the dependence of the power dissipation of the pseudo-differential filter on the

input signal.

The signal to noise ratio of the pseudo-differential filter was shown in Fig. 7.15. The

minimum signal to noise ratio was 48.5 dB assuming that the smallest input had a differ-

ential peak value of 0.5 µA (with an input bias Ibias of 0.5 µA). Fig. 7.18(b) shows a current

mode first-order passive RC filter. The values of R and C are chosen such that:

1. The filter has a 1 MHz bandwidth, the same as the log-domain filter in consideration.

2. The output signal to noise ratio for a 0.5 µA peak input sinusoidal signal at 1 MHz is

48.5 dB, that same as that for the dynamically biased filter.

The output signal to noise ratio of both the pseudo-differential filter (Fig. 7.18(b)) and the



131

10
−2

10
−1

10
0

10
1

10
2

10
3

30

40

50

60

70

80

90

100

110

differential input signal peak / µA

S
/N

 (
dB

)

differential input signal peak = I
bias

dyn. biased filter
RC filter(1 pole) 

DR = 60 dB 

S/N 
min

 = 48.5 dB 

S/N 
peak

 = 108.5 dB 

Figure 7.20: Signal to noise ratio of the log-domain and passive RC filters.

filter in Fig. 7.18(b) are plotted versus the input signal peak in Fig. 7.20. As expected, the

signal to noise ratio of the passive RC filter increases linearly with the input signal whereas

the signal to noise ratio of the log-domain filter remains nearly a constant. Assuming

the minimum and the maximum input signal peaks to be 0.5 µA and 500 µA the usable

dynamic range of both filters is 60 dB. At the top end of this dynamic range, the signal

to noise ratio of the RC filter is 108.5 dB, which is wasteful, if the required S/N is only

48.5 dB.

The first order RC filter in Fig. 7.18(b) is repeated thrice as shown in Fig. 7.18(c)

to form a 3 pole system. Comparisons can now be made between the power dissipation

of the dynamically biased log-domain filter and the system enclosed by dashed lines in

Fig. 7.18(c), both of which have three poles. The power drawn from the signal source by

the first-order RC filter in Fig. 7.18(b) at the largest value of the input is 1.85 mW (see (2.1),

(A.10)). The three RC filters in Fig. 7.18(c) consume three times this power—5.55 mW. The
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ter (Fig. 7.18(a)) and passive RC filter (Fig. 7.18(c)).

power dissipation of the pseudo-differential filter at the highest input is 5.575 mW which

is barely larger than that of the passive RC filter with three poles.

The proposed filter achieves a much higher dynamic range per unit power consump-

tion that any of the filters listed in Table A.2, the best of which consumes about a hundred

times more power (normalized to the product of the order, the bandwidth, and the dy-

namic range) than the passive RC filter.

Fig. 7.21 shows the power dissipation of the pseudo differential filter and the passive

RC filter in Fig. 7.18 plotted against the input signal. For very small inputs, the passive

filter consumes several orders of magnitude smaller power than the dynamically-biased

filter. As the input signal increases, the power consumption of the RC filter approaches that

of the dynamically biased filter. For very large input signals, the power consumption of the

RC filter increases as the square of the input signal (see (A.7)) and that of the dynamically

biased filters increases linearly with the input signal. If dynamic biasing is extended to
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higher values, the two curves cross and the dynamically biased log-domain filter will be

more efficient than the passive RC filter.

As mentioned earlier, 500 µA is not the absolute maximum bias current that can be

applied to this filter. The fabricated chip was Bias currents upto 2.5 mA could be applied to

the fabricated chip while maintaining acceptable distortion performance for single ended

peak inputs that were 50% of the input bias.

7.3 Third-order Butterworth cascade filter with MOS capacitors

7.3.1 Filter synthesis

An alternative to the ladder (Fig. 7.3) realization of the third-order Butterworth filter is

the cascade realization based on the prototype in Fig. 7.22(a). A second-order filter with

a quality factor of 1 is cascaded with a first-order filter. Fig. 7.22(b) shows this filter con-

structed using lossless and lossy integrators. The log-domain version of this filter is shown

in Fig. 7.22(c). As before, the first-order log-domain filter with multiple inputs shown in

Fig. 7.2(d) is used for each of the stages. The desired bandwidth of 1 MHz is obtained by

setting C1 = C2 = C3 = 30 pF and I0 = 5 µA.

There are minor differences between the cascade (Fig. 7.22(b, c)) and the ladder (Fig. 7.3(b,

c)) realizations of the third-order Butterworth filter.

1. The gain of 2 used at the input of the filter in the ladder realization to obtain a unity

passband gain is not required in the cascade realization.

2. The feedback from the second stage to the first is absent in the cascade realization.

It was suggested in section 5.2.3 that the low voltage swings in log-domain filters

enable the use of non-linear capacitors without additional distortion. It was decided to use

pMOS accumulation capacitors for C1, C2 and C3 in Fig. 7.22(c) in the cascade realization of
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Figure 7.22: Third-order Butterworth filter: (a) Cascade prototype, (b) Block diagram using
first order stages, (c) Log-domain realization, (d) Separating the feedback and feed-forward
paths.

the filter to verify this assertion. A total of 180 pF of capacitance (in the pseudo differential

filter) occupies 0.048 mm2 as opposed to the 0.47 mm2 occupied by 240 pF of capacitance

used in the ladder filter described in section 7.2. The area saved by using MOS capacitors

is indeed significant.

7.3.2 Feedback circuit used to establish the collector currents

The issues discussed in section 7.2.2 regarding the design of the feedback circuit used to

establish the collector currents on the transistors of a log-domain filter apply to this filter
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as well. The feedback circuit in Fig. 7.6 was used with the cascade realization of the log-

domain Butterworth filter.

7.3.3 Transistor sizing at the input and the output

Since dynamic biasing is intended to be used with this filter, the transistor sizing given in

Fig. 7.7 is used with this filter.

7.3.4 Feedback and feed-forward paths in the filter

The separation of feedback and feed-forward paths discussed in section 7.2.4 is used in the

cascade realization of the filter. The emitter follower Q9 in Fig. 7.22(c) is split into Q9a and

Q9b as shown in Fig. 7.22(d).

7.3.5 Effect of nonidealities

The same considerations apply to the nonidealities in the cascade realization (section 7.2.5)

as in the ladder realization. The current sources and current mirrors shown in Fig. 7.10 are

used with this filter.

7.3.6 Bias generation

The bias generation circuit used with the cascade realization of the filter is the same as that

used with the ladder realization and is shown in Fig. 7.11.

7.3.7 Pseudo differential version of the filter

For pseudo-differential operation, the filter in Fig. 7.22(d) is duplicated and laid out sym-

metrically.

7.3.8 Automatic tuning of the filter

If desired, the methods mentioned in section 7.3.8 can be applied to the cascade realization

as well. No automatic tuning was incorporated into the current design.
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Figure 7.23: Frequency response with the bias current varied from 500 nA to 500 µA.

7.3.9 Simulation results

Simulations of the cascade realization of the pseudo differential third-order Butterworth

filter were carried out in order to assess its performance. The non-linearity of the capacitors

was not modeled. Since the voltage swing across the capacitors is a few tens of millivolts in

a log-domain filter, it was assumed that the distortion due to them would be negligible [57].

By comparing measured results to those from simulation, the distortion added (if any) by

the non-linearity of the MOS capacitors, can be determined. As before, bias currents in the

range 50 nA to 500 µA were used in the simulations although the latter is not a hard limit

on the bias current that can be applied to the circuit.

Frequency response

Fig. 7.23 shows the magnitude response of the filter with different bias currents. Peaky

response was observed with bias currents of 0.5 µA and smaller. Fig. 7.24 shows the pass-

band detail. The variation in dc gain with bias is about 0.6 dB.
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Figure 7.24: Passband detail of the frequency response with the bias current varied from
500 nA to 500 µA.

Output noise and signal to noise ratio

Fig. 7.25 shows the output noise integrated in the (100 kHz, 3 MHz) band. Fig. 7.26 shows

the signal to noise ratio assuming a modulation index of 50% (i.e. differential input peak

is equal to Ibias ). As expected, S/N increases by 0.5 dB per dB of bias for small bias and

saturates for large bias. If, as before, 0.5 µA is considered to be the lower limit of bias

current, the filter maintains a minimum S/N of 48 dB over a dynamic range of 60 dB (up

to 500 µA).

Distortion

Fig. 7.27 shows the third harmonic distortion with an input frequency of 312.5 kHz as a

function of modulation index for various bias currents. The distortion is higher than in the

previous case (Fig. 7.16). Fig. 7.28 shows the distortion vs. frequency for a few values of

bias current.
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Figure 7.25: Output noise integrated in the 100 kHz to 3ṀHz band.

10
−2

10
−1

10
0

10
1

10
2

10
3

35

40

45

50

55

60

input bias I
bias

 / µA

S
/N

 (
dB

)

S/N
 min

= 48 dB

DR = 60 dB

differential input signal peak = I
bias

Figure 7.26: Signal to noise ratio with single ended signal peak at 50% of the bias



139

10
−1

10
0

−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

signal peak as a fraction of bias

H
D

3 / 
dB

50nA bias   
500nA bias  
5µA bias  
50µA bias 
500µA bias

Figure 7.27: Third harmonic distortion as a function of the modulation index for various
values of bias currents.

10
4

10
5

10
6

−90

−85

−80

−75

−70

−65

−60

−55

−50

−45

H
D

3 / 
dB

frequency / Hz

500nA bias 
5µA bias 
50µA bias

Figure 7.28: Third harmonic distortion as a function of frequency.



140

u/2

-u/2

ioutp

ioutn

(a)

Ibias = upk

y = ioutp - ioutn

u y

6.04 pF 26.4 kΩ

(b)

u peak detector

pseudo-differential
cascade filter

u y

u y

u y

(c)

6.04 pF 26.4 kΩ

6.04 pF 26.4 kΩ

6.04 pF 26.4 kΩ

Figure 7.29: (a) Pseudo differential cascade filter biased from an ideal peak detector, (b)
Current mode RC filter with S/N = 48 dB for a 0.5 µA peak input, (c) Three first-order RC
filters.

Power consumption

The filter, excepting the input and output branches (a total of four in the pseudo-differential

circuit) draws 190 µA from the power supply. When the input bias is 500 µA, a total of

2.19 mA is consumed in the filter core and the input and output branches. The power con-

sumption is slightly smaller than that of the ladder filter due to the absence of the feedback

path from the second stage to the first stage (Fig. 7.22 vs. Fig. 7.3).

Power consumption and dynamic range: comparison to passive filters

Fig. 7.29(a) shows the pseudo differential cascade filter biased from an ideal peak detector.

The bias current Ibias at the input is set to twice the value of the single ended peak signals.

Fig. 7.29(b) shows a passive RC filter designed for a bandwidth of 1 MHz and an output

signal to noise ratio of 48 dB for an input current of 0.5 µA peak.

The left and right Y-axes of Fig. 7.30 respectively show the current and power drawn

by the cascade realization of the Butterworth filter from a 2.5 V power supply. As with

Fig. 7.19, the X-axes shows both the bias current Ibias used at the input and the peak value

of the differential input signal.

The simulated signal to noise ratio of the pseudo differential filter and the RC filter

shown in Fig. 7.29 is shown in Fig. 7.31. Both filters have a signal to noise ratio of 48 dB
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Figure 7.30: Power consumption of the pseudo-differential log-domain filter.

when the input signal is 0.5 µA. The peak signal to noise ratio of the RC filter is 108 dB.

As before, a 3 pole RC filter is formed as shown in Fig. 7.29(c) by simply repeating

the first order RC filter in Fig. 7.29(b) three times. Fig. 7.32 shows the variation of the

dissipated power with the input signal for the 3 pole filters in Fig. 7.29(a) and Fig. 7.29(c).

Again, with the largest input, the two filters dissipate nearly the same power. There is no

qualitative difference between the cascade and ladder realizations as far as their power

dissipation and dynamic range is concerned. The distortion of the cascade realization is

larger than that of the ladder realization, as has been seen.

7.4 Peak detector

7.4.1 General principle

In a dynamically biased log-domain filter, a means of measuring the input signal strength

is required. In this design, a peak detector was chosen for this purpose. Since the log-

domain filter operates in current mode, it is preferable to have the entire peak detector in

the current mode. A transconductor following a voltage mode peak detector is a possi-
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bility, but the design of a transconductor operating over the intended wide range of bias

currents is non-trivial.

7.4.2 The prototype peak detector

Fig. 7.33(a) shows the classical diode-RC peak detector. This circuit detects the peak value

of the input signal if an ideal diode is used. In this context, an ideal diode is one which

has a zero voltage drop across it when a forward current is flowing through it and a zero

current through it when a reverse voltage is applied across it. Due to the nonzero voltage

drop of real diodes the output dc of the peak detector in Fig. 7.33(a) is less than the peak

value of the input. This constitutes an error in the peak detector’s output and this error

increases in a relative sense as the peak value of the input decreases.

The current id of a diode is exponentially related to the voltage vd across it.

id = Is exp(mvd/Vt) (7.15)

where Is and Vt are the saturation current and the thermal voltage respectively. m is unity

for a real diode, but is introduced here to aid the following discussion. The exponential

in the equation above is plotted in Fig. 7.34 as a function of the normalized diode voltage

vd/Vt with m as a parameter. It is seen that the diode characteristics become “sharper”

with increasing m. m = ∞ corresponds to the ideal diode described above.

The peak detector circuit in Fig. 7.33(a) can be redrawn as a generalized block di-

agram shown in Fig. 7.33(b). The error Verr between the input and the output is fed to

an exponentiator which drives a low pass filter. V0 is a normalizing voltage. This block

diagram with V0 = IsRL, m = 1 and Verr = vd corresponds to Fig. 7.33(a).

From the curves in Fig. 7.34, it can be inferred that the accuracy of the peak detector

in Fig. 7.33(b) can be improved by increasing the multiplying factor m in the argument of
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the exponential. A large value of V0 helps as well, but not as effectively as a large m that is

inside the argument of the exponential.

Fig. 7.33(c) shows another well known circuit used to improve the accuracy of the

peak detector for small input signals. The error signal, which is the difference between the

input and the output is amplified by an amplifier of gain A before being exponentiated.

Initially assume that the offset voltage Voff is zero. In this case, the diode current id that

drives the current mode low pass filter is given by

id = Is exp

(

A(vi − vo) − vo

Vt

)

(7.16)

This expression is approximately the same as (7.15) with m = A. A large value of A can

be used to emulate the characteristic of the ideal diode as closely as possible and maintain

the accuracy of peak detection for small signals.

The generalized block diagram in Fig. 7.33(b) is used as the prototype for the current

mode peak detector required for this work.

While Fig. 7.34 suggests that the value of m used must be as large as possible, in

practice, there may not be much point to increasing m beyond a certain value due to the

following reasons.

1. If the exponentiator has an offset (illustrated in Fig. 7.33(c) with an offset voltage

Voff ), for small inputs, the error may be dominated by the offset and not by the

“sharpness” of exponentiation.

2. If a large gain A is realized using complicated circuitry with many poles, the loop

may be unstable.
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Attack and decay of the peak detector

When the error Verr in Fig. 7.33(b) is negative, i.e. when the input is smaller than the out-

put, the output of the exponentiator is nearly zero. The output Vo is thus the decaying

natural response of the low pass filter. For inputs Vi larger than the output Vo, the expo-

nentiator’s output shoots up, driving the low pass filter’s output up along with it. The

increase in the peak detector’s output is much faster than its decrease due to the exponen-

tiation of the error signal.

7.4.3 Current mode peak detector

The block diagram in Fig. 7.33(b) should be realized with current input and current output

to realize a current mode peak detector. The first-order filter in Fig. 7.1(b) can be used as

the low pass filter in Fig. 7.33(b). This filter is shown in Fig. 7.35(a) with u and y substituted

by I1 and I4 respectively. As discussed in earlier sections, this circuit behaves as a low pass

filter between the input I1 and the output I4. The emitter voltage Ve1 of transistor Q1 in
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Fig. 7.35(a) can be written as

Ve1 = Vbase − Vt ln

(

I1

Is

)

(7.17)

Now this circuit is modified as shown in Fig. 7.35(b) where the base of Q1 has been dis-

connected from the voltage Vbase and connected to another voltage Vbase − Vb. The emitter

voltage in this case is

Ve1a = Vbase − Vb − Vt ln

(

I1

Is

)

(7.18)

= Vbase − Vt ln







I1e
Vb

Vt

Is






(7.19)

(7.20)

(7.20) is identical to (7.17) except for the exponential multiplying I1. Since the circuit in

Fig. 7.35(a) filters I1, it can be concluded from (7.17) and (7.20) that the circuit in Fig. 7.35(b)

filters I1e
Vb

Vt .

Thus the behavior of the circuit in Fig. 7.35(b) between the voltage Vb and current

I4 is that of an exponentiator followed by a low-pass filter. The output of the low pass

filter I4 would be the output of the peak detector (Fig. 7.33(b)) in the final configuration. I4

can be subtracted from the input current Iin to generate an error current Ierr as shown in

Fig. 7.35(b). This error current Ierr must be converted into a voltage Verr and fed back as

Vbase − Vb to close the loop and form the peak detector.

The high impedance at the input node (output impedance of Q4) can itself be used

for current to voltage conversion with some clipping circuitry to limit the peak-to-peak

swing. The resulting voltage can be amplified to obtain the voltage Vbase − Vb that drives

the base of Q1. An inverting amplifier should be used to obtain negative feedback around

the loop. Fig. 7.36 shows the negative feedback incorporated around the exponentiator-

low pass filter combination.
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Diodes DL1 and DL2 with bias voltages VL1 and VL2 provide limiting of the voltage

at the input node. VL1 and VL2 should be chosen to ensure proper operation of the circuit.

We make the following observations:

1. Too small a difference between VL1 and VL2 results in a large peak-peak swing at the

input node. The voltage change at the input node is produced by the error current

charging the input capacitance. The error current is of the same order of magnitude

as the input current. Therefore, a large peak-peak swing implies a slower charging,

especially with small input currents, resulting a slower “attack” of the envelope de-

tector.

2. Too large a difference between VL1 and VL2 results in a small peak-peak voltage

swing at the input node which may not be sufficient to drive the filter to the desired

peak level.

3. Too large a value for VL1 (for a given difference VL1 − VL2) causes the input node

voltage to rise, which in turn causes a large quiescent output current I4.

4. Too small a value for VL2 (for a given difference VL1 − VL2) causes the input node

voltage to fall, resulting in small or zero output current I4.

A suitable clipping circuit is shown as an inset in Fig. 7.36. Vbase is used for VL. The current

IL3 and the area of QL3 determine VL1.

A gain A′ of 1 to 5 in the inverting amplifier was determined to be sufficient from

simulations. As mentioned in section 7.4.1, very large values of gain A′ result in instability.

Fig. 7.37 shows the inverting amplifier of near unity gain used in this design. A system-

atic offset is introduced in this amplifier (by using different tail currents and transistors of
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Figure 7.37: Inverting amplifier used in the feedback path of the peak detector.

different aspect ratios in Fig. 7.37) to ensure near zero quiescent output current in the peak

detector.

With the feedback loop closed, the circuit in Fig. 7.36 behaves as a peak detector.

I4 is the output of the peak detector. To bias the log-domain filter from this peak detector,

another copy of I4 is required. This can be derived as shown in Fig. 7.38 by adding Q3a and

Q4a in parallel with Q3 and Q4. Q4a is made 1.5 times larger than Q4 in order to provide

a 50% margin over the peak value of the signal in the added dynamic bias. If this margin

is too small, it increases the distortion in the dynamically biased filter. This is not a severe

problem, however. Since the inputs are fed separately to the peak detector and the filter in

the prototype, a larger input can be fed to the peak detector than to the filter to emulate a

larger margin.

The placement of the pole of the low pass filter is determined by the lowest expected

signal frequency. This varies with application. In a low pass filter, this can be very low. In

this design, an external capacitor was used for filtering to allow for easy experimentation

during testing. The bias currents I2 and I3 in Fig. 7.38 were 0.6 µA. With a 1 nF capacitor,

this results in a pole frequency of roughly 4 kHz.
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Figure 7.38: Complete circuit of the peak detector.

7.4.4 Simulation results

The single-ended peak detector in Fig. 7.38 (including the padframe) was simulated with

a sinusoidal input whose amplitude was varied in logarithmic steps from 50 nA to 5 mA.

Vdd = 2.5 V, Vbase = 1.3 V and C = 1 nF were used in the simulations. Fig. 7.39 shows the

output dc of the peak detector as a function of the input peak on a logarithmic scale. It can

be seen from the curve that the output maintains a near proportionality to the input peak

over a wide range.

For a more accurate picture, the ratio of the dc output to the input peak is plotted in

Fig. 7.40. A gain of about 1.4 is maintained for input peaks in the range 10 µA to 2 mA. At

very large currents, the circuit fails due to limiting of the internal voltage as described in

section 7.2. As can be seen in Fig. 7.40, the gain drops abruptly to 1.1 at 5 mA. The gain

of the peak detector drops gradually at low currents and is less than unity for currents

less than 0.3 µA. This is analogous to the effect of the “diode drop” seen in the circuit of

Fig. 7.33(a). Below a certain input amplitude, the diode current is too small to be able to
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Figure 7.39: Simulated dc output of the peak detector vs. input peak.

rapidly charge the capacitor. In general, a peak detector of the type shown in Fig. 7.33(b)

has lower gain at small signals because the error signal is too small for the exponentiator

to generate a large drive to the low pass filter. The output ripple as a fraction of the dc

output when the input is at a frequency of 1 MHz is shown in Fig. 7.41. The relatively

large ripple at the output implies that the output of the envelope detector must be filtered

further before being used to dynamically bias the filter.

The dc output of the peak detector was relatively uninfluenced by the input fre-

quency as long as it remained well above the filter’s cutoff frequency of 4 kHz.

7.4.5 Peak detector with a differential input.

A signal of wide relative bandwidth (defined here as the ratio of the upper frequency limit

to the lower frequency limit) can have a large number of harmonics. This implies exotic

shapes—periodic signals can have duty cycles quite different from 50%. A low-pass filter,

such as the one described in section 7.2, can be expected to have signals with varying duty

cycle at the input.
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Two differential waveform pairs, which could be the inputs to the pseudo-differential

log-domain low pass filters described in the earlier sections are shown in Figs. 7.42(a, b).

Each of these waveforms has a zero average value. The one in Fig. 7.42(a) has a 50% duty

cycle and the one in Fig. 7.42(b) has a duty cycle different from 50%. If a single ended

peak detector is used, only one of the waveforms of the differential signal can be fed to

the envelope detector. Assume that the waveform shown in dashed lines in Figs. 7.42(a,

b) is fed to the single ended peak detector shown in Fig. 7.38. It is evident that the peak

detector in Fig. 7.38 detects the positive peak of the input waveform I1. If the peak value

so detected is multiplied by 1.2 (to provide a 20% safety margin) and added to the wave-

forms in Figs. 7.42(a, b) for dynamically biasing the latter, we obtain the waveforms shown

in Figs. 7.42(c, d). The signals in Fig. 7.42(c) are always positive, whereas the signal shown

in dashed line in Fig. 7.42(d) is not. This is because the negative peak of the signal shown

in dashed line in Fig. 7.42(b) is larger than its positive peak (which was used for peak de-

tection and subsequent biasing). Clearly, the waveforms in Fig. 7.42(d) cannot be fed to a

log-domain filter.

The solution to this problem is a peak detector operating from differential signals

and having the larger of the two peak values as its output. This ensures that sufficient bias

is added to both the signals.

Fig. 7.42(a) shows a peak detector with differential inputs. The dc output is the

larger of the peak values of Vi and −Vi. This is a circuit commonly used as a rectifier

with center-tapped transformers in dc power supplies. The same circuit is shown as a

block diagram in Fig. 7.43(b). Two exponentiators are used to amplify the error between

the output and the negative of the input. The current mode circuit corresponding to this

block diagram can be synthesized in a manner similar to that described in section 7.4.3.
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The result is shown in Fig. 7.43(c). This circuit is a combination of two single current mode

peak detectors (Fig. 7.38) which have a common hold capacitor.

Due to time constraints, the differential version of the current mode peak detector

was not fabricated. The idea can however be tested using the fabricated single ended peak

detectors. Two chips can be used with a common hold capacitor as shown in Fig. 7.43(c).

The output can be taken from either envelope detector. Compared to an integrated dif-

ferential peak detector, the only disadvantage of this arrangement is the redundancy of

the on-chip bias circuitry. Mismatch between chips can cause asymmetry in its operation.

This is akin to using two diodes of different types in Fig. 7.43(a). However, matching be-

tween chips from the same fabrication run can be expected to be close enough to avoid

such problems.
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7.5 Combination of the filter and the peak detector

To bias the Butterworth filter from the peak detector, a current mirror is necessary. This

current mirror should be able to handle a wide range of currents. Fig. 7.44(a) shows a

simple pMOS current mirror. To be able to handle currents as large as a few mA, the tran-

sistors need to be very wide. But the resulting large input capacitance makes it unable for

the mirror to follow the fast attack of the peak detector at low currents. More importantly,

in this technology with a pMOS threshold voltage in excess of 0.9 V, the voltage at the gate

of the diode connected device M1 would be too large to be accommodated at the output of

the peak detector.

A solution to this problem is shown in Fig. 7.44(b). An NPN emitter follower is used

to drive the gates of the pMOS transistors. Due to the large VT of M1, this arrangement

results in a drain source voltage of about 0.3 V which is sufficient to keep it in saturation.

An Ibias of 1.5 µA results in a satisfactory frequency response of the current mirror.
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Fig. 7.45 shows the filter being biased from the peak detector using this current mir-

ror. The differential input current iin and −iin are fed to the filter as shown in Fig. 7.45.

7.6 Second-order filter using lateral PNP transistors and MOS ca-
pacitors.

It was proposed in section 5.2 that log-domain filters could be realized in a CMOS technol-

ogy using enhanced lateral PNP transistors which have a large dc current gain [54]. To test

the viability of such a scheme, a second-order log-domain filter was laid out using only the

CMOS part of the technology described in section 7.1. Due to the limited time available to

finish the layout of the chip before the fabrication deadline, not much attention was paid

to any design details.

Fig. 7.46 shows the block diagram of the filter. A second-order Butterworth filter

is formed by placing two lossy integrators in a unity gain feedback loop. The transfer
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Figure 7.46: Block diagram of a second-order Butterworth filter using two lossy integrators.

function is given by

Y (s)

U(s)
=

1/2

1 + (s/ωp) + (s/
√

2ωp)2
(7.21)

where ωp is the pole of the lossy integrator. The resulting Butterworth filter has a -3 dB

bandwidth of
√

2ωp. At the output of the first integrator, a bandpass characteristic with a

non-zero dc gain is obtained. Though this design is slightly more noisy than a second order

low-pass filter with one lossless integrator, it was chosen because its modularity enabled a

quicker layout.

Fig. 7.47(a) shows the schematic of the filter. Since no dynamic biasing was intended,

the simple feedback topology shown in Fig. 7.4(a) [19] (with transistors of opposite polar-

ity) was used to force input and bias currents into Q1, Q4 and Q7. pMOS devices in this

technology have a threshold voltage of 0.9 V which keeps both the bipolar and the MOS-

FET (e.g Q1 and M1) comfortably in the proper regions. Since the collector of Q1 (also Q4

and Q7) is at a Volt or so below the top supply rail, it is expected that the filter can operate

with a 1.5 V supply. Fig. 7.47(b) shows the schematic of the filter with enhanced lateral PNP

transistors (pMOS transistors connected as shown in the figure) and MOS capacitors. The

dc bias across the pMOS accumulation capacitors is nearly equal to the potential difference

between Vbase and ground. This can be about 0.7 V while operating from a 1.5 V supply. As

before, cascode current mirrors (Fig. 7.47(d)) and current sources (Fig. 7.47(c)) were used

in the design. The bias generation circuitry is shown in (Fig. 7.47(e)). pMOS accumula-

tion capacitors of approximately 140 pF each were used for C1 and C2. With a I0 = 5 µA,
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Figure 7.47: CMOS Log-domain realization of Fig. 7.46: (a) Log-domain topology, (b) Cir-
cuit in (a) redrawn with lateral PNP transistors (pMOS transistors with gate and bulk tied
together) and MOS capacitors, (c) Current mirror, (d) Current source, (e) Bias generator.
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the bandwidth of the Butterworth filter would be 31 kHz. Lateral bipolar transistors with

0.36 µm base width and 8×0.4 µm×0.4 µm emitter area8 were used in the circuit. No sim-

ulations were carried out since the models for lateral bipolar transistors were not available

at the time. It was ensured to the extent possible that the parasitic capacitances across the

two desired capacitances were equal by adding dummy devices. This ensures that the pole

frequencies of the two lossy integrators in Fig. 7.46 are equal, resulting in a Butterworth

response. Significant parasitics across C1 and C2 reduce the bandwidth, but the shape of

the magnitude response would be maintained. Some test lateral PNP devices were also

laid out so that they could be characterized.

8This is the emitter area as seen in the plan view of the transistor (Fig. 5.1(e)). The actual emitter action
takes place along the sidewalls of the square emitter.



Chapter 8

Testing Procedures and Measured
Results

8.1 Third order Butterworth ladder filter

Fig. 8.1 shows the setup used to measure the pseudo-differential Butterworth ladder fil-

ter (section 7.2). The input voltage vin from a signal generator is converted into differential

input currents iinp and iinn using a transformer and a pair of resistors Rin and fed to the low

impedance inputs of the pseudo-differential filter. The differential output currents ioutp

and ioutn of the filter are converted into a single-ended current using a transformer and

fed to a transimpedance amplifier to obtain an output voltage vout. The transimpedance

amplifier consists of a resistor Rout in feedback around a wideband op-amp LM 7121. The

5 µA reference sources are used to set the bandwidth of the filter to 1 MHz. Vbias in con-

junction with Rin is used to vary the input bias current Ibias of the filter. To vary Ibias over

a large range, Rin is varied from 2 kΩ to 1 MΩ.

Frequency response

To determine the frequency response of the filter, the frequency response between vin and

vout in Fig. 8.1 was measured twice; once with the filter in place and once with the filter re-

placed by short circuits between its respective inputs and outputs. The difference between

the two frequency responses so obtained is the frequency response of the filter between

161
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Figure 8.1: Setup used to measure the pseudo-differential ladder filter.

its differential inputs and outputs. The scaling factors due to Rin and Rout , the attenua-

tion in the cables and the non-flatness in the frequency response of the transimpedance

amplifier—if present—are approximately1 calibrated out using this method.

The measured magnitude response of the filter with Ibias varied from 3 µA to 2.5 mA

is shown in Fig. 8.22. It follows the expected shape of the Butterworth response (Fig. 7.12).

As was anticipated in Chapter 7, the filter is capable of handling bias currents greater than

500 µA. The inset in Fig. 8.2 shows the passband detail of the magnitude response. The

measured bandwidth is close to 930 kHz for all bias currents. There is a small variation (<

1 dB) in the passband gain when the bias is varied.

Fig. 8.3 shows the differential output of the filter when signals of identical phase

are fed to the two inputs. For this measurement, the two input resistors Rin in Fig. 8.1

are connected to one of the ends of the input transformer. Ideally, the differential output
1The loop gain around the op-amp is not the same in the two cases. Therefore, the calibration is only

approximate.
2For values of Ibias below 3 µA, the parasitic capacitances on the input leads of the filter on the printed

circuit board interfered with the measurements of the frequency response.
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Figure 8.2: Frequency response of the fabricated third order pseudo-differential Butterworth
ladder filter.

of the filter should be zero with such common mode inputs. But due to mismatches in

the two paths (in the filter as well as in the setup), complete cancellation does not occur.

Since the dynamic bias Ibias(t) is applied in common mode, such incomplete common

mode cancellation manifests itself as leakage of the time-varying bias to the output. The

response of the filter to differential input signals is also shown in Fig. 8.3. The measured

common mode response in the passband is at least 35 dB below the differential response

for all bias currents. The measurement of the common mode response in the stopband is

limited by noise.

Output noise

The output noise measured using the test setup in Fig. 8.1 is shown in Fig. 8.4. The input

voltage vin is set to zero and Ibias is varied. The power spectral density of vout in Fig. 8.1

is multiplied by (2/Rout )
2 to determine the power spectral density of the differential out-

put current noise of the filter. The power spectral density is integrated from 0 to 2 MHz
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to obtain the data in Fig. 8.4. The noise from the transimpedance amplifier referred to

the differential current output of the filter is also shown on the figure. It is clearly seen

that the noise from the setup is dominant for bias currents of 50 µA and less. For larger

values of bias currents, the measured noise is reasonably accurate and is seen to be pro-

portional to the bias current. The excessive noise from the setup in Fig. 8.1 is because the

low impedance of the output transformer at low frequencies results in a large gain from

the input referred voltage noise source of the op-amp to the output. This results in a larger

output voltage noise than expected from a transimpedance amplifier that is driven from a

current source.

An alternative arrangement to measure the filter’s noise is shown in Fig. 8.5. The

transformer used at the output of the filter for differential to single-ended conversion in

Fig. 8.1 is eliminated. Separate transimpedance amplifiers are used at each of the filter’s

outputs. The power spectral densities of vout1 and vout2 are added in a mean square sense
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and divided by Rout
2 to obtain the differential output noise of the filter. The output noise

integrated from 0 to 2 MHz is plotted in Fig. 8.6 versus the bias current Ibias . The noise

from the setup in Fig. 8.5 is also shown. The noise floor of the setup is about3 4 nA. The

measurement setup in Fig. 8.5 contributes much less noise than the one in Fig. 8.1.

Distortion

As the input frequency is increased, the harmonic distortion of a low-pass filter increases

initially and then starts decreasing as the harmonics fall outside the filter’s passband. The

distortion (both the second- and the third-order) is maximum when the input frequency is

somewhere between 1/3 and 1/2 the band edge. In this case, a 400 kHz tone, which results

in a large distortion at the output was used for the measurements. Fig. 8.7 shows a family

of curves depicting the measured second harmonic distortion versus the bias current at the
3This value is consistent with the input referred noise current of 1.9 pA/

√
Hz quoted for LM 7121 in its

data sheets. The input referred integrated current noise in the 0 to 2 MHz band from two transimpedance
amplifiers is

√
2 × 1.9 · 10−12 ×

√
2 · 106 = 3.8 nA. The input referred current noise of the op-amp ultimately

limits the lowest value of the current that can be measured using a transimpedance amplifier.
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input for different values of the modulation index4. Similar curves for the third harmonic

distortion are shown in Fig. 8.8. The second harmonic is not canceled perfectly at the

output due to mismatch and is of a similar magnitude to the third harmonic for the most

part. The distortion increases sharply for bias currents more than a mA. This is because of

the increasing voltage swing on the collectors of the transistors in the input and the output

stages of the filter (Fig. 7.7).

Performance of the filter with suitable biasing

For the following results, the bias current Ibias at the input of the pseudo-differential filter

is set to twice the value of the single-ended input peak, unless that value is less than 3 µA

in which case Ibias was maintained at 3 µA. With such a dynamic biasing arrangement,

the rms values of the differential output signal and the noise are plotted versus the dif-

ferential peak input5 in Fig. 8.9(a). As Ibias (= differential peak input) is decreased from
4The ratio of the single ended peak input to the bias current Ibias .
5For values greater than 3 µA the differential peak input is the same as the bias current Ibias .
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its maximum value of a few mA, the output noise decreases down to 4.4 nA rms, corre-

sponding to the smallest Ibias of 3 µA. The signal to noise ratio and the signal to total

harmonic distortion ratio curves with the biasing arrangement described above are over-

laid in Fig. 8.9(b). For differential input peaks greater than 3 µA the latter correspond to

the thick lines shown in Figs. 8.7 and 8.8. The signal to noise ratio is lower than the signal

to distortion ratio for bias currents below 1 mA. Near constant signal to noise and signal to

distortion ratios are maintained for bias (and signal) levels from 1 mA down to 5 µA. The

proposed filter maintains S/N > 0 dB and THD < −41 dB for total input values ranging

over 112 dB (Fig. 8.7(b)). A traditional linear active filter would need a maximum6 S/N of

112 dB to satisfy the same criterion.

The intermodulation distortion performance of the filter was determined by inject-

ing two tones separated by 40 kHz. Fig. 8.10 shows the ratio of the signal to the third
6Measured with an input amplitude that results in an output total harmonic distortion of 41 dB below the

fundamental.
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order intermodulation component when the input peak (of the combined two tone signal)

is 100 µA and the center frequency of the two tone input signal is varied from 100 kHz to

1 MHz. The bias current Ibias is varied to realize different values of the modulation index.

The distortion increases with increasing input frequency. For a modulation index of 0.5,

i.e. when the single ended input peak is 50% of Ibias , the intermodulation distortion is at

least 50 dB below the fundamental over the entire band.

Fig. 8.11 shows the intermodulation distortion performance as a function of the dif-

ferential input signal peak when dynamic biasing is applied as before (i.e. Ibias being twice

the signal peak subject to a minimum of 3 µA). Three curves corresponding to input fre-

quencies of 100 kHz, 400 kHz and 1 MHz are shown7. Below an input amplitude of 1 mA,

the ratio of the signal to the intermodulation distortion is more than 40 dB.
7The measurement of the intermodulation distortion at 100 kHz and 400 kHz is limited by noise.
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Input-output time invariance

The pseudo-differential log-domain filter is linear and time-invariant between its differ-

ential inputs and outputs even in presence of a time-varying bias Ibias(t) (chapter 3). To

verify this, an input 600 kHz with a single ended peak of 20 µA was fed to the filter and the

bias current was switched between 24 µA (which is 20% larger than the single-ended peak

input) and 114 µA. Fig. 8.12 shows the switched bias current and the differential output.

It is seen the output is practically unaffected by transients in Ibias . The results in Figs. 8.3

and 8.12 point to the input-output linearity time-invariance of the filter in presence of a

varying Ibias .

Power consumption

The measured current and the power consumed by the pseudo-differential filter is shown

in Fig. 8.13. It follows the expected curve shown in Fig. 7.19. When Ibias is at its maximum

value of 2.5 mA, the total power consumed is about 26.1 mW. In its quiescent condition,
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differential filter.

the filter draws 575 µW of power.

Power consumption and dynamic range: comparison to passive filters

The measured performance of the pseudo-differential filter can be compared to that of an

equivalent passive RC filter along the lines of section 7.2.9. Fig. 8.14(a) shows a pseudo-

differential filter biased using an ideal peak detector such the bias current at the input is

twice the peak value of the single ended input currents. Fig. 8.14(b) shows a current mode

passive RC filter that has a bandwidth of 930 kHz and a minimum signal to noise ratio

of 53.7 dB for an input current of 3 µA peak8. As was done in section 7.2.9, the pseudo-

differential ladder filter and the RC filter in Fig. 8.14 are compared in the following para-

graphs.

Fig. 8.15 shows the variation of signal to noise ratio with the input peak current for

the two filters in Fig. 8.14. At 3 µA input current, the two filters have equal signal to noise
8The values of R and C in this filter are quite different from those in Fig. 7.18(b). This is because, in the

simulations, the lower limit on the bias current, which translates to the lower limit on the signal current, was
0.5 µA whereas in the experiments, it was 3 µA. For a given S/N , the noise floor required depends on the
minimum signal current and hence, the different component values.
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ratios. At the maximum input current of 2.5 mA peak, the signal to noise ratio of the RC

filter is 112 dB. The power dissipation of the two filters in Fig. 8.14 is shown in Fig. 8.16 as

a function of the peak value of the input u. The qualitative behavior is similar to that in

Fig. 7.21. At the highest input current of 2.5 mA, the pseudo-differential filter dissipates

about 2.3 times more power than the RC filter.

Comparison to published filters

Table A.2, which lists the power dissipation, the bandwidth, the order, and the dynamic

range of several previously published power efficient filters is repeated here as Table 8.1

for convenience. The table also shows these quantities for the pseudo-differential ladder

filter presented here. The dynamic range specified is the range of input signals over which

THD ≤ 40 dB9 and S/N > 0 dB are maintained. Of the listed filters 3, 5, and 8 are com-

panding (log-domain class-AB) filters and the rest are conventional linear filters. For the
9Except for 7 [68] which uses the criterion THD ≤ 49 dB
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Figure 8.16: Power dissipation versus the input signal: Pseudo-differential ladder filter and
passive RC filter.

latter, the dynamic range as defined above is also the S/N when the THD is 40 dB9 (See

Chapter 2).

For the filters listed in Table 8.110, the power dissipation normalized to the band-

width and the order is plotted in Fig. 8.17 versus the dynamic range of the filter. The

straight line corresponds to the passive RC filter.

A measure of the efficiency of a filter is the ratio of the power consumed by the first-

order RC filter (Appendix A) to the normalized power consumed by the filter in question.

The efficiencies and dynamic ranges of the filters in Table 8.1 are shown in Fig. 8.18. The

proposed filter represents over an order of magnitude improvement in power efficiency.

Fig. 8.19 shows the photograph of the chip. The entire circuit excluding the pads

occupies 0.52 mm2. The area is dominated by the metal-metal capacitors. Table 8.2. sum-

marizes the measured performance of the chip.
10In cases where two values are given for the same filter in Table A.2, the “better” number is plotted.
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Table 8.1: Power dissipation per S/N , signal frequency and filter order for published active
filters.

Vdd Power f-3dB ord. DR power per power per Ref.
pole, f-3dB pole, f-3dB, DR

(V) (dB) (×10−12 J) (×10−18 J)
1 1.0 10.5 µW 100 kHz 5 68 (max.) 21.0 3.3 [69]

57 (min.) 21.0 41.9
2 2.5 40 µW 70 kHz 2 75 285.7 9.03 [70]
3 1.2 65 µWq 320 kHz 3 65 67.7q 21.4q [19]

170 µWm 177.1m 56.0m

4 1.5 375 µW 525 kHz 5 67 142.9 28.5 [71]
5 1.2 6.5 mWq 30 MHz 3 62.5 72.2 40.6 [22]
6 1.2 23 µW 320 kHz 3 57 24.0 47.9 [20]
7 2.5 13 mW 600 kHz 7 77x 3095.0 61.8x [68]

71x 3095.0 240.3x

8 1.2 6.5 mWq 100 MHz 3 50 21.7 217.0 [22]
9 5 580 µW 40 MHz 2 41.3 7.25 537.5 [72]
10 2.5 21.6 mWm 930 kHz 3 112 9350 0.059 This work

q In quiescent condition.
m With the maximum input signal.
x [68] quotes a maximum signal of 2 Vpp, a noise floor of 196 µVrms and a dynamic range of
77 dB. These numbers are inconsistent. The value corresponding to the quoted maximum
signal and noise is 71 dB.
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Table 8.2: Performance summary: Third-order Butterworth filter (Fig. 7.8).

Technology 0.25 µm BiCMOS
Area (excl. pads) 0.52 mm2

Supply voltage 2.5 V
-3 dB BW† 930 kHz
Ibias 3 µA 2.5 mA
Power diss. 575 µW 26.1 mW
Output noise 4.4 nA 1.5 µA
THD -64.3 dB -41 dB
Dynamic range‡ DR 112 dB

Max. Power Diss.
Order·BW 9.35 nJ

Max. Power Diss.
Order·BW·DR‡ 5.9 × 10−20 J

†BW: Bandwidth
‡ Dynamic range, see text;

8.1.1 Dynamic range of a companding filter

The proposed filter maintains S/N > 0 dB and THD < −41 dB for total input values rang-

ing over 112 dB (Fig. 8.9(b)). It is emphasized here that the proposed filter is not equivalent

to a conventional filter with a 112 dB dynamic range as the latter would have S/N = 112 dB

with the largest input. However it would need orders of magnitude larger power dissipa-

tion in order to achieve this [1]. The dynamically biased filter presented here is suitable for

cases where a modest S/N and a near-optimum power dissipation must be maintained

over a large range of input amplitudes.

If the sum of two signals is present at the input, it is the peak value of the sum that

determines the output noise in the proposed filter. Thus a 1 µA signal appearing simul-

taneously with a 2.5 mA signal results in an output noise of about 1.5 µA (Fig. 8.9(a)) rms

and a signal to noise ratio of about 60 dB (Fig. 8.9(b)) for the total signal. Thus, in situations

where signals separated by more than 60 dB appear simultaneously at the input, this filter
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processes the larger signal with sufficient fidelity and not the smaller one. On the other

hand this filter is well-suited for spectral shaping applications in which the total input sig-

nal is sometimes large and sometimes small, as in the latter case a large reduction in the

power consumption and the output noise can be achieved.

8.2 Peak detector

8.2.1 Single-ended operation

Fig. 8.20 shows the setup used to characterize the peak detector (Fig. 7.38). The bias cur-

rents on chip are mirrored from two external 5 µA sources (The bias generation circuit is

shown in Fig. 7.11). A 2.5 V supply is used for the chip. The capacitor used for the filter in

the peak detector’s loop is 1 nF and is connected as shown in the figure. The ac coupled

input voltage Vin is converted to an input current using a series resistor Rin. As mentioned

in section 7.4.3, the input node of the peak detector experiences voltage variations. With

a large input amplitude, the voltage across Rin is nearly equal to Vin and input current

equals Vin/Rin. Values of Rin between 5 kΩ and 10 MΩ are used to vary the input cur-

rent from a few mA down to a fraction of a µA. The output current Iout is converted to a

voltage Vout using an opamp with a resistor Rout in feedback. The capacitor Cout provides

first-order filtering of the output current and is used while measuring its dc component.

Fig. 8.21 shows the gain of the peak detector (i.e. the ratio of the output dc com-

ponent to the input amplitude) for inputs at dc, 200 kHz and 1 MHz. Although the peak

detector would never be used with dc inputs, testing with them helps establish the basic

functionality. The input is varied from 1.4 µA to 2.8 mA. The measured gain is close to,

but less than the desired value of 1.5. The deviation from 1.5 is conjectured to be due to

a combination of mismatch and measurement errors. As can be seen, the ratio is close to



180

−

+

+
−

+
−

IN OUT

Iref1 Iref2 VbaseCfil

1nF

Vdd

1.3V 2.5V

2.5V

Rin

Rout

Cout

+

-
Vout-

+
Vin

5µ
A

5µ
A

Cin

Iin
Iout

Figure 8.20: Measurement setup for the peak detector.

1.5 for sinusoidal inputs at 200 kHz and 1 MHz as well for input above 10 µA. The mea-

surement setup in Fig. 8.20 is unsuitable for low current (< 10 µA) measurements at “high”

frequencies (beyond a few tens of kHz). This is because, to supply small currents, the input

resistance Rin in Fig. 8.20 has to be very large and its shunt capacitance tends to dominate

over the resistive part, resulting in inaccurate input voltage to current conversion. There-

fore, the smallest current shown in the curves for 200 kHz and 1 MHz inputs in Fig. 8.21 is

14 µA.

Fig. 8.22 shows the peak-peak ripple at the output as a fraction of the output dc com-

ponent for input frequencies of 200 kHz and 1 MHz. As can be expected, the ripple is lower

with a higher frequency input. The peak-peak ripple is very large with an input frequency

of 200 kHz. About half of the measured peak-peak is contributed by very narrow spikes

which occur each time the capacitor is charged. They can be filtered using a low pass filter.

Since the spikes have their energy concentrated at high frequencies, the low pass filter can

have a relatively high cutoff frequency so that the dynamic behavior (attack and decay)

of the peak detector is not affected. In order to use this peak detector at low frequencies,
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either the filtering capacitance of the peak detector must be increased or an additional low

pass filter must be used at the output of the peak detector.

Fig. 8.23 shows the frequency response (i.e. variation of the gain with the input fre-

quency) of the peak detector. It can be seen that a relatively flat response is maintained

up to 2 MHz. As expected, the gain decreases at low frequencies. This is due to increased

ripple. For the lowest input current (10 µA), the gain increases with frequency. This is due

to the capacitance of the 1 MΩ input resistor. The gain also increases with frequency for

the highest input current of 2 mA. The reason for this behavior is not clear.

The dynamic performance of the peak detector is measured by feeding a 200 kHz

sinusoid whose envelope is a square wave at 2 kHz. The amplitude of the sinusoid alter-

nates between Ipk and 0.5 Ipk as shown in Fig. 8.24. Fig. 8.25 shows the attack and decay

times plotted versus Ipk. The attack and decay times are the time intervals between be-

tween 10% and 90% of the output step11. As expected, the attack is much faster than the
11Due to the ripple in the output, very precise measurements are not possible. The local average of the
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Figure 8.24: Input used to measure the attack and the decay times of the peak detector.

decay. As mentioned in section 7.4, the time constant of the first-order filter in the peak

detector is 43.2 µs. With this time constant, the time taken for the output to decay from

90% to 10% when the input amplitude abruptly decreases by a factor of 2 would be 23.6 µs.

The measured decay time is larger than this value for very small and very large currents.

The possible reasons are:

• With very small input currents, extra band-limiting in the loop may be slowing down

the circuit to some extent.

• If the ripple is large (as it is, with large currents), the actual step in the output current

is greater than 0.5Ipk and the time taken for this decay is correspondingly longer.

The current consumed by the peak detector (including the output current Iout in

Fig. 8.20) is plotted versus the input amplitude in Fig. 8.26. The quiescent current drawn

from the power supply is about 65 µA. Out of this, 20 µA is consumed in the bias gen-

eration circuit (Fig. 7.11) which is the same as that used for the Butterworth filter. Since

waveform on the oscilloscope screen was established visually.
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Figure 8.25: (a) Attack time and (b) Decay time of the peak detector as a function of the
bias current.

the internal current levels in the peak detector are much lower (≈ 0.6 µA), the quiescent

current can be reduced by about a fourth by redesigning the bias circuit. The current con-

sumed increases with increasing output current. It does not vary appreciably with input

frequency.

Fig. 8.27 shows the chip photograph. Table 8.3 summarizes the performance of the

single ended peak detector.

Table 8.3: Performance summary: Single ended peak detector.

Technology 0.25 µm CMOS
Chip area (excl. pads) 0.12 mm2

Supply voltage 2.5 V
Quiescent power dissipation 162.5 µW

Input range ≈ 1.4 µA to 2.8 mA
Attack time ≤ 1.2 µs
Decay time ≤ 40 µs
Bandwidth > 2 MHz

Envelope gain 1.3–1.5
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Figure 8.27: Photograph of the single ended peak detector chip.



186

+
−

+
−

1nF 1.
3V

2.
5V

+

-
2Vin

Vin

-Vin

-

+

-

+

Vout1

Vout2

CHIP #1

CHIP #2

−

+

IN OUT

Iref1 Iref2 VbaseCfil Vdd 2.5V

Rin

Rout

Cout

+

-

5µ
A

5µ
A

Cin

Iout

−

+

IN OUT

Iref1 Iref2 VbaseCfil Vdd 2.5V

Rin

Rout

Cout

+

-

5µ
A

5µ
A

Cin

Iout

Iin

-Iin

Iout1

Iout2

(envelope detector)

(envelope detector)

Figure 8.28: Setup to measure a differentially responding peak detector.

8.2.2 Differential operation

The arrangement in Fig. 8.28 is used to characterize the differentially responding peak de-

tector proposed in section 7.4.5. Two chips are connected to a single 1 nF filtering capacitor

and are fed with differential inputs. The outputs Iout1 and Iout2 of the two chips are iden-

tical under perfectly matched conditions and either of them can be taken as the output for

dynamically biasing the log-domain filter (chapter 3).

The input voltage Vin and the input resistor Rin are adjusted such that when ac cou-

pled, the peak value of Iin (and −Iin) is 120 µA for any duty cycle. Fig. 8.29 shows such

a signal when its duty cycle changes from 0.2 to 0.6. The signals have unequal positive
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and negative peaks, but the larger of the two is 120 µA. For duty cycles less than 0.5, the

positive peak is larger than the negative peak. The input frequency is 200 kHz.

Fig. 8.30 shows the gain of the peak detector (ratio of output dc to 120 µA) as the

input duty cycle is varied from 0.1 to 0.9. The measured gain is nearly a constant. Since the

two peak detectors are coupled, the output is the larger of the positive and negative input

peaks.

For comparison, differential inputs with a variable duty cycle are fed to uncoupled

peak detectors, each with a 1 nF filtering capacitor. In this condition, the peak detectors

measure the positive peak of the respective input currents. The measured gain is plotted

versus the duty cycle in Fig. 8.31. As expected, the gain of “chip #1” drops off for duty

cycles larger than 0.5. “chip #2” shows the opposite behavior.

These results prove the feasibility of the differential responding peak detector. Detec-

tion of the larger of the positive and negative peaks of the input makes this circuit suitable

for generating an appropriate dynamic bias for filters with differential inputs when widely
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varying duty cycles are expected at the input.

Fig. 8.30 shows an asymmetry in the output around a duty cycle of 0.5. Also the

outputs from the two chips are unequal. This is due to mismatch between the chips. Since

the two chips are in separate packages, differences in temperature between accentuate the

mismatch. Better results can be expected when both halves of the circuit are integrated on

the same die.

8.3 Second-order filter using lateral PNPs and MOS capacitors

Fig. 8.32 shows the DC characteristics of the lateral bipolar transistors with the gate tied

to the base as described in section 5.2. The variation of the collector current IC vs. base

emitter voltage VBE is plotted on a log scale for two values of collector-emitter voltage and

two different base widths (gate lengths). As expected the transistor with a narrower base

has a higher saturation current, and a lower Early voltage (greater separation between the

curves for the same change in collector-emitter voltage). Log conformity is good up to a

collector current of about 0.5 µA for both transistors. The deviation from the exponential

seems to be greater for the transistor with the narrower base. The measured slope factors12

of the transistors with base-widths of 0.32 µm and 0.36 µm are 1.08 and 1.04 respectively.

The transistor with the wider base (0.36 µA) was used in the fabricated filter described in

section 7.6. Its Early voltage13 VA is about 2.3 V.

Fig. 8.33 shows the experimental setup used to characterize the filter in Fig. 7.47(b).

The internal bias current Itune that determines the filter’s time constants and the input bias

current Ibias (see Fig. 8.33) can be varied using Vtune and Vbias respectively. In all of the

following measurements, Itune and Ibias are set to equal values. Note that this filter is not
12The collector current of the transistor is given by Ic = Is exp(VBE/ηVt) where η is the slope factor.
13The small signal output conductance of a transistor is given by Ic/(VA + VCE) in the active region.
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Figure 8.32: Characteristics of the lateral pnp transistor with its base and gate tied together.

tested as a dynamically biased filter, but as a tunable filter.

Fig. 8.34 shows the magnitude response of the filter with various bias currents. As

before, the magnitude response of the measurement setup without the filter is subtracted

from the magnitude response of the setup with the filter in place to determine the magni-

tude response of the filter. The dc gain is more than the expected -6 dB (Equation (7.21))

because of the Early effect in the output transistor Q8 (Figs. 7.47(a, b)). Since the collector

of the output transistor is at 0 V due to the measurement setup (Fig. 8.33), its VCE is larger

than that of other transistors in Figs. 7.47(a, b) by about 500 mV. Due to the low Early

voltage of the transistors, this difference is enough to change the gain by about 1.3 dB. At

larger values of bias currents, the proportionality of bandwidth to the bias current is not

seen. This due to the transistors deviating from the exponential behavior (Fig. 8.32). With

0.5 µA bias current, the bandwidth is about 23 kHz. This is 25% less than the expected

value of 31 kHz (section 7.6). Taking into account the slope factor η of 1.04, the capacitance

corresponding to a 23 kHz bandwidth can be calculated to be 181 pF. This would imply an
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additional 41 pF across the intended 140 pF capacitors in Fig. 7.47. This seems too high to

be entirely due to parasitics of the transistors connected to that node. The PMOS accumu-

lation capacitor could itself have a larger value than expected due to process variations.

Such errors in the bandwidth can be corrected by the use of an automatic tuning circuit.

Fig. 8.35 and Fig. 8.36 show the second- and third-harmonic distortion with bias cur-

rents set to 0.5 µA and 1 µA respectively. The larger second-order distortion in this single-

ended filter is predominantly due to the small Early voltage. Still, in Fig. 8.35, the second

harmonic is more than 35 dB below the fundamental even when the signal input is equal to

the bias current. For a given modulation index14, the distortion is significantly lower with

0.5 µA bias. This is due to increased deviation from the exponential behavior (Fig. 8.32) of

the transistor at 1 µA. The distortion increases slightly with the input frequency.

The output fundamental component, noise and harmonic distortion products are

plotted in Fig. 8.37 and Fig. 8.38 respectively for bias currents of 0.5 µA and 1 µA. The

output noise is integrated up to 50 kHz when the bias is 0.5 µA and 100 kHz when the bias
14The ratio of the input signal peak to the bias current Ibias .
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Figure 8.36: Distortion performance of the filter with 1µA bias current.

current is 1 µA. The input amplitude at which the total harmonic distortion is 40 dB and the

signal to noise ratio at this input amplitude is marked on the respective figures. The values

of S/N when the second harmonic or the third harmonic equals the noise are also shown.

The signal to noise ratio with THD=40 dB are 56.1 dB and 47.0 dB respectively with bias

currents of 0.5 µA and 1.0 µA. The maximum value of S/N + HD2
15 for the same two bias

currents are 44.9 dB and 40.5 dB respectively. A log-domain filter should ideally maintain

the same performance when all the bias currents are changed in the same proportion. But

the maximum value of S/N + HD2 is smaller with 1 µA bias current than with 0.5 µA bias

current. This again reflects the increased deviation from the exponential at 1 µA. Since

the third harmonic is smaller than the second harmonic, performance can be improved by

using pseudo differential operation to cancel the former.

As expected, the filter operates satisfactorily over the entire range of bias currents

shown in Fig. 8.34 with a supply voltage of 1.5 V. The supply voltage can be increased
15This is a measure of the maximum signal to garbage ratio.
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Figure 8.37: Signal, noise and distortion in the second order filter with 0.5µA bias current.
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Figure 8.39: Current consumption of the second-order filter.

to 2.5 V (upper limit for this technology) without any change in performance except for a

slightly increased dc gain (Due to the increased VCE of the output transistor Q8 in Fig. 7.47).

The current drawn from the power supply is plotted as a function of bias current in

Fig. 8.39.

Fig. 8.40 shows the chip photograph. Table 8.4 summarizes the performance of the

chip.

With a bias current of 0.5 µA the power dissipation per pole, bandwidth and dy-

namic range (assuming 1% THD) of the fabricated filter is 0.229 fJ. This is about five times

larger than the corresponding value for the single ended class-A log-domain filter using a

BiCMOS technology described in [19]. It is however a respectable value considering that

this filter was not “designed” in the proper sense of the term. The results do demonstrate

the feasibility of log-domain filters using lateral transistors available in standard CMOS

processes. Suggestions to improve the performance of filters using lateral PNP transistors



196

pMOS accumulation
capacitor (0.022 mm2)

active circuit 0.085 mm2

Figure 8.40: Photograph of the 2nd order filter chip using lateral PNP transistors and pMOS
accumulation capacitors.

are given in section 8.4.4.

8.4 Conclusions and possible improvements

8.4.1 Third-order ladder filter

Minimizing gain variations with bias current

It was mentioned in section 7.2.9 that Early effect in the transistors in the input and the

output stages (Fig. 7.7) was responsible for the variation in the dc gain with the bias cur-

rent. Fig. 8.41(a) shows the feedback circuit used to establish the collector currents. The

gate-source voltage of Mf and the base-emitter voltage of Qf are denoted by VGSf and

VBEf respectively. The collector-emitter voltage VCE1 of Q1 increases with increasing bias

current due to an increase in VGSf and VBEf . A cascode transistor Qx can be used as

shown in Fig. 8.41(b) in order to solve this problem. In this case, VCE1 is held constant.

The increasing VGSf and VBEf have only a second order effect.

The disadvantages of this technique are (a) Increased supply voltage requirements

and (b) Introduction of another pole in the feedback loop.
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Table 8.4: Performance summary: Second order filter with lateral PNPs and MOS capaci-
tors (Fig. 7.47).

Technology 0.25 µm CMOS
Chip area (excl. pads) 0.085 mm2

Supply voltage 1.5 V
Bias current (Ibias = Itune ) 1µA 2µA
-3 dB bandwidth (kHz) 22 41
Power dissipation (µW) 4.1 8.3
Output noise (rms nA) 0.25 0.46

(0 to 50 kHz) (0 to 100 kHz)
Dynamic range (THD < 40 dB)† 56.1 dB 47.0 dB
Dynamic range (max(S / N+THD))‡ 44.9 dB 40.5 dB
Power dissipation
order·Bandwidth 93.2 pJ 101.2 pJ

Power dissipation
order·Bandwidth·DR† 2.29 × 10−16 J 2.02 × 10−15 J

Power dissipation
order·Bandwidth·DR‡ 3.01 × 10−15 J 9.02 × 10−15 J
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Fig. 8.41(c) shows an alternative technique in which a resistor Rx is placed in series

with the collector. The variations in VCE1 can be minimized by choosing the correct value

of Rx. For a given Rx, as the input current increases VCE1 increases initially due to increas-

ing VGSf and VBEf . As the current is increased further, the voltage drop across Rx counters

the increase in VGSf and VBEf . Eventually, the increasing voltage drop across Rx domi-

nates and VCE1 decreases with increasing bias current. A small Rx can be chosen such that

the maximum of VCE1 versus the bias current occurs near the largest intended bias current.

This technique provides a partial remedy to the variation of the gain with the bias current

and can only be used at the input (Fig. 7.7(a)) and not at the output16 (Fig. 7.7(b)).

In addition to these, techniques that maintain identical collector-emitter voltages of

opposing transistors in a translinear loop can also be used [12].

Dynamic biasing in discrete steps

Fig. 8.42(a) shows the schematic of the log-domain filter in a general form. The core of the

filter is embedded between logarithmic input and exponential output stages. The simple

feedback stage shown in Fig. 7.4 is shown here to avoid cluttering the figure. But the

following techniques are applicable to to other feedback circuits (e.g. Fig. 7.5, Fig. 7.6). The

bias Ibias is varied continuously as a function of the input signal u.

Discrete variation of Ibias as shown in Fig. 8.42(b) can be used instead. Current

sources are switched in and out in order to increase or decrease the bias current fed to

the filter. The chief advantage of this technique is that the ripple that exists in Ibias when it

is derived from one of the detectors described in Chapter 4 is avoided.

A further variation of discrete dynamic biasing is shown in Fig. 8.43. Fig. 8.43(a)

shows the general form of the log-domain filter. The emitter follower QE in the filter core
16Because the current in the corresponding branch in Fig. 7.7(b) is a constant and a variable voltage drop

cannot be produced by connecting a resistor.
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Figure 8.42: (a) Log-domain filter drawn in a general form, (b) Dynamic biasing in discrete
steps.

that is used to drive the output stage is shown explicitly. The input and output cells are

marked. The feedback transistor in the output stage is split into two parts MfE and Mfo.

The aspect ratios and hence the drain currents of MfE and Mfo are in proportion to the

quiescent current in QE (the emitter follower) and Qo (the output transistor) respectively.

It was mentioned in section 7.2.3 that increasing the size of both the input and the

output transistors in the same proportion leaves the transfer function of the filter unaf-

fected. Thus instead of switching the bias currents at the input as shown in Fig. 8.42(b),

entire input and output stages can be switched.

Fig. 8.43(b) shows an array of N input cells connected in parallel. Each of the cells

is activated by turning on the appropriate switches. For example, cell-1 is active when S1

is closed and inactive when S1B is closed. Each of the cells is designed for the minimum
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required bias current. The number of cells turned on is varied according to the strength

of the input signal u. Fig. 8.43(c) shows N output cells which can be turned on and off

similarly. The two advantages of this scheme over using continuous variation of the input

bias current are:

1. The collector voltage of the input transistor Q1 and the final emitter follower QE do

not vary with the bias current used at the input. Since each unit feedback transistor

Mfi and Mfo used at the input and the output carries a constant current, there is no

variation in their gate source voltages. Thus the variation in the dc gain of the filter
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with the bias current is eliminated. Since the gate source voltage of the feedback

transistor is no longer varying, the simpler feedback structure in Fig. 7.4 can be used

instead of the feedback circuit with high transconductance shown in Fig. 7.6 even

when the bias current is varied over a large range17.

2. The ripple in the output of the envelope detector used to measure the signal strength

does not appear at the input of the filter.

When the input bias current is intended to be varied over a large range, the scheme in

Fig. 8.43 requires a large number of cells. The parasitics resulting from a large array of cells

can limit the maximum usable frequency of such a scheme. In such cases, a combination

of discrete and continuous variation of bias currents can be used to strike a compromise

between the high frequency capabilities of the circuit and the constancy of its dc gain over

a wide range. Also when a large variation in Ibias is intended, the number of cells that are

turned on in consecutive steps can be increased; e.g. in a binary weighted fashion.

If input cells are switched and a single fixed cell is used at the output, the system

in Fig. 8.43 behaves like as a combination of a filter and a variable gain amplifier that

maintains a near constant output amplitude18. This provides a simple way of adding

AGC (automatic gain control) to the filter.

Measurement of the filter

Difficulties were encountered in the measurement of the filter at small bias currents. These

were mainly due to the parasitics of the printed circuit board at the input node. Fig. 8.44(a)

shows the schematic of the input stage including the parasitics on the board. Typically

the board parasitic CBOARD (≈ 3 − 10 pF) is quite a bit larger than the on-chip parasitic
17Assuming of course that the threshold voltage of Mfi and Mfo are such that Q1 and QE are operating in

their active regions.
18The extent of variation of the output amplitude depends on the manner in which input cells are switched

as a function of the input amplitude.
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to isolate the board parasitics.

CPAD (≈ 0.5 − 1 pF). The effect of the parasitic CBOARD (and CPAD ) is to cause peaking in

the closed loop frequency response of the feedback loop used to establish the input current.

The measured frequency response at low bias currents is thus inferior to the situation in

which the filter is driven from an on-chip source (CBOARD is absent).

The integrated circuit can be designed to isolate the board parasitics from the input

node of the filter. If PNP devices are available in the technology, a cascode transistor Qx

can be used at the input to isolate CBOARD from the input node of the filter as shown

in Fig. 8.44(b). A small Qx can be used for wide bandwidth of cascoding. Fig. 8.44(c)

shows an alternative using a pMOS cascode device Mx in case suitable PNP devices are

unavailable. The base (gate) bias Vbx (Vgx) must be chosen as large as possible to avoid

limiting the voltage swing at the collector of Q1 while keeping Qx in the active region. If

Vbx or Vgx is chosen to be close to Vdd , the voltage on the input pad swings above the power

supply. It must be ensured that no junctions break down under this condition. Also, the

diode that is customarily connected between the pad and Vdd in order to protect the circuit
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from electrostatic discharge must be omitted as there is a risk of it being forward biased

and shunting input current away from Qx.

In our setup CBOARD was minimized using a single-sided printed circuit board and

scraping off the metal around the input leads.

8.4.2 Third-order cascade filter

The improvements suggested above for the ladder filter also apply to the cascade filter.

8.4.3 Dynamically biased filter

The output of the envelope detector has a fairly large ripple at low frequencies. To avoid

added distortion in the filter, the output of the envelope detector must be filtered before be-

ing used as the bias for the dynamically biased filter. A possible way of including filtering

in the current mirror is shown in Fig. 8.45. C can be a nonlinear capacitor.

8.4.4 Second-order filter using lateral PNP transistors

Minimizing distortion due to Early effect

Comparison to existing log-domain filters in Bipolar/BiCMOS technologies suggests that

there is room for improvement in the distortion performance of log-domain filters using

lateral PNP transistors. Although no simulations of the filter in Fig. 7.47(b) were under-

taken, the curves in Fig. 7.9 suggest that the awfully low Early voltage of the lateral PNP

transistors (Fig. 8.32) may be responsible for the distortion in the filter. Larger base widths
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the gm of the feedback path, (b) Generating Vbase , (c) Using a cascode transistor equalize
collector voltages of all the transistors.

can be used to increase the Early voltage. A transistor with a wider base has a lower

current gain β, but some degradation of β is acceptable since the current gain of the en-

hanced lateral bipolar transistor is large enough[54, 55]. As suggested earlier, cascoding

of transistors and increasing the transconductance of the feedback loop used to establish

the collector currents can be used as well. The latter is shown in Fig. 8.46(a). If Qf1 is an

enhanced lateral bipolar with a current gain of 1000, the distortion introduced by its base

current can be insignificant especially if dynamic biasing is not intended to be used at the

input and the output. The feedback transconductance is higher than if a pMOS were used

in place of Qf1.

Sensitivity to variations in the power supply

For the circuit in Fig. 7.47(b) to be insensitive to the power supply, Vbase should be a con-

stant with respect to Vdd . If Vbase is a constant with respect to ground, a variation in Vdd
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produces corresponding variations in the collector emitter voltages of Q1,4,7. These vari-

ations act as spurious inputs to the filter. To remedy this situation, Vbase should be held

constant with respect to Vdd in Fig. 7.47(b). Fig. 8.46(b) shows a technique for generating a

constant voltage with respect to Vdd . If the current densities in Q1 and M1 are identical to

the corresponding bipolar and pMOS transistors used in the filter (i.e. Q1 & M1, Q7 & M7,

Q7 & M7 in Fig. 7.47(b)), the quiescent VCB s of the transistors in the filter will be zero. The

current density in Q1 and M1 can be altered to obtain the desired quiescent VCB s for the

transistors in the filter. With this arrangement, a change in Vdd causes an equal change in

the voltages at all the nodes except the collectors of Q3 and Q8 (Fig. 7.47(b)). The collector

voltage of Q3 in Fig. 7.47(b) is defined with respect to ground (by the diode connected tran-

sistor of the current mirror). The arrangement in Fig. 8.46(c) can be used to bootstrap the

collector voltage of Q3 to Vdd . Q3 is cascoded by Qx whose base voltage Vbx is referenced

to Vdd using a technique similar the one in Fig. 8.46(b). Analogous techniques can be used

with Q8. The resulting circuit is insensitive to variations in Vdd .



Chapter 9

Conclusions and Suggestions for
Future Work

9.1 Conclusions

The use of companding for improving the dynamic range of log-domain filters for a given

power consumption was investigated in this thesis. The limitations of traditional linear

active filters and existing methods of companding used to overcome these were discussed

in Chapter 2.

A simplified technique for dynamic biasing in log-domain filters was given in Chap-

ter 3. It was shown that owing to its simplicity, the proposed technique enjoys various

advantages over the presently known methods. The issues involved in the generation of a

dynamic biasing signal based on the input signal strength were discussed in Chapter 4.

Based on the ideas presented in Chapter 3, the design of pseudo-differential filters

that maintain external linearity in presence of dynamic biasing was presented in Chapter 7.

The measured results presented in Chapter 8 confirm the ability of these filters to handle

large dynamic range input signals. The design and the measured performance of a peak

detector that can be used for dynamic biasing was also presented in these chapters.

Possible techniques for the realization of log-domain filters in using a standard CMOS

process and experimental results from a prototype second-order filter were presented in

206



207

Chapters 5 and 8. These filters are attractive for use at low frequencies in view of CMOS

being the dominant technology of the day.

9.2 Future work

Companding filters are relatively new entrants into the arena of analog filters. The follow-

ing are few areas that need further investigation.

Companding in presence of blockers

The degradation of signal to noise ratio in presence of large signals in the stopband is

inherent to companding filters. This point was alluded to in section 8.1.1. The problem

of processing a small signal with a sufficient signal to noise ratio in presence of a large

signal needs to be investigated. In presence of a large signal in the stopband, the input

amplifier (Fig. 1.1) is constrained to have a small gain[3]. This situation can perhaps be

remedied by applying companding to the individual stages instead of the filter as a whole.

Since the blocker in the stopband is progressively attenuated by the filter, the amount of

compression applied can be reduced. This ensures that the desired small signal is not

buried in noise.

Applying companding filters in practical situations

Companding filters have to be tailored for use in practical situations. Companding is most

beneficial in applications that require modest signal to noise ratios to be maintained over

a large range of input signals. Examples of this are hearing aids. The use of log-domain

filters in the former is presented in [65, 66]. A translinear gain control circuit with quiescent

control for hearing aids is presented in [67]. The dynamic biasing techniques presented

in this dissertation could perhaps be used to combine the gain control and the filtering

functions in a hearing aid.
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Another place where large dynamic range signals are encountered and the signal

to noise ratio demanded is modest is in radio receivers used in digital communication

systems. However, such systems also encounter large out of band blocking signals. Com-

panding filters in the present form offer no advantages over traditional active filters in

such situations. The problem of degradation of signal to noise ratio in presence of block-

ing signals has to be tackled before companding filters can be used in radio receivers.
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[33] L. Tóth, Y. Tsividis, N. Krishnapura, “Analysis of noise and interference in compand-

ing signal processors”, Proc. 1998 ISCAS, vol. 1, pp. 143-146, Jun 1-3 1998, Monterey,

California.

[34] D. Frey, “Synthesis of distortion compensated log-domain filters using state space

techniques”, Proc. 1998 ISCAS, vol. 1, pp. 321-324, Monterey, 1998.

[35] Y. P. Tsividis and J. O. Voorman (editors), Integrated Continuous-Time Filters—Principles,

Design and Applications, IEEE Press, Piscataway, 1992.

[36] M. Punzenberger and C. Enz, “Noise in instantaneous companding filters”, Proc. 1997

ISCAS, vol. 2, pp. 337-340, Hong Kong, 1997.

[37] N. Krishnapura, Y. Tsividis, and D. R. Frey, “Simplified technique for syllabic com-

panding in log-domain filters”, Electronics Letters, vol. 36, no. 15, pp. 1257-1259, 20 Jul.

2000.



213

[38] D. R. Frey, “On instantaneous vs. syllabic companding in log domain filters”, Proc.

1999 ISCAS, vol. 2, pp. 672-676, Orlando, 1999.

[39] R. M. Fox, “Enhancing dynamic range in differential log-domain filters based on the

two-filters approach”, Proc. 2000 ISCAS, vol. 2, pp. 617-620, Geneva, 2000.

[40] C. C. Todd, “A Monolithic Analog Compandor”, IEEE Journal of Solid State Circuits,

vol. 11, no. 6, Dec. 1976.

[41] S. Armstrong, “The dynamics of compression: Some key elements explored”, The

Hearing Journal, vol. 46, no. 11, pp. 1-4, Nov. 1993.

[42] D. Sheingold, Nonlinear Circuits Handbook, Analog Devices Inc., Norwood, MA, 1996.

[43] D. R. Frey, “Explicit log-domain square root detector”, United States Patent no.

5585757, Dec. 1996.

[44] J. Mulder, A. C. van der Woerd, W. A. Serdijn, and A. H. M. van Roermund, “An

RMS-DC converter based on the dynamic translinear principle”, IEEE Journal of Solid

State Circuits, vol. 32, no. 7, Jul. 1997.

[45] Y. Tsividis, Operation and Modeling of the MOS Transistor, Second edition,

WCB/McGraw-Hill, 1999.

[46] C. Toumazou, J. Ngarmnil, and T. S. Lande, “Micropower log-domain filter for elec-

tronic cochlea”, Electronics Letters, vol. 30, pp. 1839-1841, 27 Oct. 1994.

[47] C. C. Enz and M. Punzenberger, “1-V log-domain filters”, Proc. Advances in Analog

Circuit Design 1998, Apr. 1998.



214

[48] Dominique Python, Manfred Punzenberger and Christian Enz, “A 1-V CMOS log-

domain integrator”, Proc. 1999 ISCAS, vol. 2, pp. 685-688, 1999.

[49] J. Mulder, Static and Dynamic Translinear Circuits, PhD dissertation, Delft University

Press, 1998.

[50] Y. P. Tsividis and R. W. Ulmer, “A CMOS voltage reference”, IEEE Journal of Solid State

Circuits, vol. 13, no. 6, pp. 774-778, Dec. 1978.

[51] E. A. Vittoz, “MOS transistors operated in the lateral bipolar mode and their appli-

cations to bipolar technology”, IEEE Journal of Solid State Circuits, vol. 18, no. 3, pp.

273-279, Jun. 1983.

[52] T. Pan and A. Abidi, “A 50-dB variable gain amplifier using parasitic bipolar tran-

sistors in CMOS”, IEEE Journal of Solid State Circuits, vol. 24, no. 4, pp. 951-961, Jul.

1989.

[53] X. Arreguit, Compatible Lateral Bipolar Transistors In CMOS Technology: Model And Ap-

plications, PhD thesis, EPFL, Lausanne 1989.

[54] S. Verdonckt-Vandebroek, S. S. Wong, J. C. S. Woo, and P. K. Ko, “High-gain lateral

bipolar action in a MOSFET structure”, IEEE Transactions on Electron Devices, vol. 38,

no. 11, Nov. 1991.

[55] S. Verdonckt-Vandebroek, J. You, J. C. S. Woo, and S. S. Wong, “High-gain lateral p-n-

p bipolar action in a p-MOSFET structure”, IEEE Electron Device Letters, vol. 13, no. 6,

Nov. 1992.

[56] A. Annema, “Low-power bandgap references featuring DTMOST’s”, IEEE Journal of

Solid State Circuits, vol. 34, no. 7, Jul. 1999.



215

[57] S. Pavan and Y. Tsividis, High Frequency Continuous Time Filters in Digital CMOS Pro-

cesses, Kluwer, 1999.

[58] S. O. Rice, “Response of periodically varying systems to shot noise–Application to

switched RC circuits”, Bell System Technical Journal, vol. 49, no. 9, pp. 2221–2247, Nov.

1970.

[59] T. Ström and S. Signell, “Analysis of periodically switched linear circuits”, IEEE TCAS

vol. CAS-24, pp. 531-541, Oct 1977.

[60] A. Papoulis, Probability, Random Variables and Stochastic Processes, McGraw Hill, 1965.

[61] E. Kreyszig, Advanced Engineering Mathematics, John Wiley, 1998.

[62] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice Hall,

1989.

[63] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators”,

IEEE Journal of Solid State Circuits, vol. 33, no. 16, pp. 1547-1548, Aug. 1998.

[64] C. D. Hull and R. G. Meyer, “A systematic approach to the analysis of noise in mixers”,

IEEE Transactions on Circuits and Systems I, vol.40, no. 12, pp. 909-19, Dec. 1993.

[65] W. A. Serdijn, M. Broest, J. Mulder, A. C. van der Woerd, A. H. M. van Roermund,

“A low-voltage ultra-low power translinear integrator for audio filter applications”,

IEEE Journal of Solid State Circuits, vol. 32, no. 4, Apr. 1997.

[66] L. P. L. van Dijk, A. C. van der Woerd, J. Mulder, and A. H. M. van Roermund, “An

ultra-low-power, low-voltage electronic audio delay line for use in hearing aids”,

IEEE Journal of Solid State Circuits, vol. 33, no. 2, Feb. 1998.



216

[67] A. C. van der Woerd, W. A. Serdijn, J. Davidse, and A. H. M. van Roermund, “Fully

integrable class-AB rear-end with smart quiescent current control for a general pur-

pose hearing aid chip”, Proc. 1996 European Solid State Circuits Conference, pp. 162-165,

1996.

[68] F. Yang and C. C. Enz, “A low distortion BiCMOS seventh-order Bessel filter operating

at 2.5 V supply”, IEEE Journal of Solid State Circuits, vol. 31, pp. 321-330, Mar. 1996.

[69] D. Python, A. S. Porret and C. Enz, “A 1 V 5th-order Bessel filter dedicated to digital

standard processes”, Proc. 1999 CICC, pp. 505-508, 1999.

[70] D. G. Python and C. C. Enz, “A 40 µW, 75 dB dynamic range, 70 kHz bandwidth bi-

quad filter based on complementary MOS transconductors”, Proc. 1999 European Solid

State Circuits Conference, pp. 38-41, Duisburg, Germany, 1999.

[71] R. H. Zele and D. J. Allstot, “Low-power CMOS continuous-time filters”, IEEE Journal

of Solid State Circuits, pp. 157-168, vol 31, no. 2, Feb. 1996.

[72] Y. P. Tsividis, “Minimal Transistor-only micropower integrated VHF active filter”,

Electronics Letters, vol. 23, no. 15, pp. 777-778, Jul. 1987. 1.1, 1.1, 2.1.1, 4, 8.1.1, A

1.1, 1.2, 2 1.1, 1.1, 1.2, 2.1.3, 2.2.1, 2.2.2, 5, 3.3.1, 6.1, 6.3.3, 9.2 1.1, 6.2.3 1.1, 1.2, 2.1.3,

5 (document), 1.1, 1.2, 2.2.1, 2.2.1, 2.2.1, 3.2, 3.3.2, 5.1, 7.1 1.1, 1.2, 2.2.1, 2.2.1, 1, 1 1.2,

2.1.3, 2.2.2, 5 1.2, 5, 5 1.2 1.2, 2.2.1, 2.2.1 1.2, 2.2.1, 2.2.1, 52 1.2 1.2, 2.2.1, 2.2.1, 1 1.2

1.2, 2.2.1 1.2, 5 1.2, 1.3, 7, 3.2, 1, 3.3.1 (document), 1.2, 2.2.1, 2.2.1, 2.2.1, 2.2.1, 2.2.1, 3.2,

3.3.2, 2, 5.2.2, 7.1, 7.2, 7.2.1, 7.4, 7.2.2, 7.6, 8.1, 51, A.2 1.2, 2.2.1, 2, 7.2, 7.2.1, 8.1, A.2 1.2

(document), 1.2, 2.2.1, 7.5, 29, 8.1, A.2 1.2 1.2, 1.3 2.1.1, A 2.2.1, 2.2.1, 6.2.1 2.2.1, 2.2.1,

2.2.1, 1 2.2.1 2.2.1 2.2.1, 7, 2, 3.3.1, 4.2.2, 33 2.2.1 2.2.1, 2.2.3, 6.1, 6.3.3 2.2.1, 2.2.3, 6.1,

6.2.1, 6.2.4, 6.3.3 2.2.1 2.2.1, 2 2.2.3, 6.1 3.1 3.2 3.2, 3.3.2 2 4.2.2, 18 4.3.2 4.3.2, 15 4.3.2,



217

15 5.1, 29, 30, 31, 4 5.1 5.1, 21, 5.2.3 5.1 5.1 22 22 22, 5 22 5.2.2, 2, 7.6, 8.4.4 5.2.2, 8.4.4

5.2.2 5.2.3, 7.3.9 6.2.2, 6.2.2 6.2.2, 6.2.2 6.2.3 1 6.3.1 6.3.1 6.3.2 9.2 9.2 9.2 9, 8.1, 2, A.2

8.1, A.2 8.1, A.2 8.1, A.2 8.1, A.2



Appendix A

Power Dissipation for a Given Signal
to Noise Ratio

In this appendix, the analytical expressions [1, 25] for the power consumed in simple first-

order circuits for a given signal to noise ratio ( S/N ) are derived. The conformity of higher

order filters to these expressions is examined through simulation.

A.1 First-order RC filter

Fig. A.1(a) shows a first-order filter using a resistor R and a capacitor C. The -3 dB band-

width of the filter is given by ωp = 1/RC. The transfer function of the filter is given by

Vc(s)

Vi(s)
=

1

1 + s/ωp
(A.1)

Thermal noise from the resistor results in noise at the filter’s output. The integrated noise

at the output is given by the well known expression

v2
on =

kT

C
(A.2)

where k denotes the Boltzmann constant and T the absolute temperature.

The power drawn from the input source and the output S/N depends on the applied

input signal. A sinusoid at the -3 dB frequency of the filter is chosen to be the representative

input. A voltage vi(t) = Vp cos(ωpt) is applied to the filter’s input. The output voltage vc is
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Figure A.1: (a) First-order RC filter, (b) Class-AB circuit driving a capacitor, (c) Class-A
circuit driving a capacitor.

given by

vc(t) =
Vp√

2
cos(ωpt − 45o) (A.3)

The output S/N is the ratio of the mean-square value of signal vc to that of noise.

S/N =
V 2

p C

4kT
(A.4)

The current drawn by the circuit with the given input vi is

ii(t) =
Vp√
2R

cos(ωpt + 45o) (A.5)

The power drawn from the input source is given by

Pi =

∫ Tp/2

−Tp/2

vi(t)ii(t)dt (A.6)

=
V 2

p

4R
(A.7)

where Tp = 2π/ωp is the period of the sinusoidal input.

Vp can be eliminated from (A.7) and (A.4) to relate the power dissipated in the circuit

Pi to the output signal to noise ratio.

Pi =
kT S/N

RC
(A.8)

= kTωp S/N (A.9)

= 2πkTfp S/N (A.10)
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where fp is the filter’s bandwidth in Hz. The power dissipation is proportional on the

bandwidth ωp and the signal to noise ratio S/N .

A.2 Capacitor driven from an ideal class-B driver

Fig. A.1(b) shows an ideal class-B driver driving a capacitor C. The positive output cur-

rents in an ideal class-B driver are drawn from the positive supply (Vdd ) and negative out-

put currents from ground. The mean squared integrated noise voltage on the capacitor is

assumed to be kT/C, the same as if a resistor was shunting the capacitor. The output S/N

can be calculated assuming a sinusoidal voltage vc(t) = Vp cos(ω0t) across the capacitor.

The peak voltage Vp can at most be Vdd/2 since the output voltage is limited by the supply

rails. With this peak swing, the output S/N is given by

S/N =
V 2

ddC

8kT
(A.11)

The current through the capacitor when the voltage across it is vc(t) = (Vdd/2) cos(ω0t) is

ic(t) = −ωCVdd

2
sin(ω0t) (A.12)

Thus, the current ii drawn from the positive power supply is a train of half sinusoidal

pulses of amplitude ω0CVdd/2. The power drawn from this supply is1

Pi = Vdd

∫ Tp/2

−Tp/2

ii(t)dt (A.13)

=
ω0CV 2

dd

2π
(A.14)

Eliminating Vdd from (A.11) and (A.14), the power dissipation can be related to S/N as

Pi =
8kTω0 S/N

2π
(A.15)

= 8kTf0 S/N (A.16)
1The average value of a half wave rectified sinusoid of unit amplitude over one period is 1/π.
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where f0 is the frequency of the capacitor voltage in Hz.

The proportionality constants in (A.10) and (A.16) are different, but not by a great

amount. In both cases, the power dissipation is proportional to S/N and frequency.

A.3 Capacitor driven from an ideal class-A driver

Most filters use class-A output stages to drive capacitors. A constant bias current I0 then

flows through the output branch. The peak value of the current that can be driven into the

capacitor is equal to this bias current. Fig. A.1(c) shows a capacitor being driven from a

class-A driver. If the voltage across the capacitor has the same amplitude and frequency

as considered in the previous section, the minimum permissible value for this bias current

is ω0CVdd/2. The power drawn from the power supply in this case is

Pi = VddI0 (A.17)

=
ω0CV 2

dd

2
(A.18)

= 8πkTf0 S/N (A.19)

This is π times larger than the power drawn from a class-AB driver. This is consistent

with the well known result that the maximum power efficiencies of class-A and class-B

amplifiers (when no inductors are used) are 1/4 and π/4 respectively.

A.4 Summary

(A.10), (A.16), and (A.19) are derived using some simplifying assumptions for circuits with

a single capacitor. For higher order filters, it is assumed that equal power is dissipated

in each pole-forming circuit. The power dissipated in a first-order filter is multiplied by

the filter’s order n to estimate the overall power dissipation. It is not proven that the

power dissipation in the expressions above are the minimum required for a given S/N ,
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Table A.1: Power dissipation per S/N , signal frequency and filter order (T = 300 K).

Pi/( S/N fp n) (J)
filter analytical calculated/

expression simulated value
First-order RC filter 2πkT 2.6 × 10−20

Capacitor with class-B driver 8kT 3.3 × 10−20

Capacitor with class-A driver 8πkT 10.4 × 10−20

Second-order Butterworth — 3.62 × 10−20

doubly terminated RLC
Third-order Butterworth — 5.12 × 10−20

doubly terminated RLC
Third-order Butterworth — 1.69 × 10−20

singly terminated RLC

although it is certainly hard to imagine a circuit that would consume less power than a

passive RC filter. Nevertheless they are often used as the fundamental lower limits for

the power dissipation in filters for a given S/N . The power dissipation for a given S/N ,

signal frequency and filter order for several passive filters, including the ones considered

above are listed in Table A.1. The numbers for higher order filters are arrived at using

SPICE simulations. In each case, the input to the filter is a sinusoid at the -3 dB frequency.

It can be seen that the resulting numbers are quite close to that derived analytically for the

first-order RC filter.

Table A.2 lists the power dissipation, the bandwidth, the order, and the dynamic

range of several previously published active filters. The list is arranged in the ascending

order of the normalized power dissipation (normalized to the order, the bandwidth, and

the dynamic range).

The dynamic range specified is the range of input signals over which THD ≤ 40 dB2

and S/N > 0 dB are maintained. Of the listed filters 3, 5, and 8 are companding (log-

domain class-AB) filters and the rest are conventional linear filters. For the latter, the
2Except for 7 [68] which uses the criterion THD ≤ 49 dB.
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Table A.2: Power dissipation per dynamic range DR, -3 dB bandwidth, and filter order for
published active filters.

Vdd Power f-3dB ord. DR power per power per Ref.
pole, f-3dB pole, f-3dB, DR

(V) (dB) (×10−12 J) (×10−18 J)
1 1.0 10.5 µW 100 kHz 5 68 (max.) 21.0 3.3 [69]

57 (min.) 21.0 41.9
2 2.5 40 µW 70 kHz 2 75 285.7 9.03 [70]
3 1.2 65 µWq 320 kHz 3 65 67.7q 21.4q [19]

170 µWm 177.1m 56.0m

4 1.5 375 µW 525 kHz 5 67 142.9 28.5 [71]
5 1.2 6.5 mWq 30 MHz 3 62.5 72.2 40.6 [22]
6 1.2 23 µW 320 kHz 3 57 24.0 47.9 [20]
7 2.5 13 mW 600 kHz 7 77x 3095.0 61.8x [68]

71x 3095.0 240.3x

8 1.2 6.5 mWq 100 MHz 3 50 21.7 217.0 [22]
9 5 580 µW 40 MHz 2 41.3 7.25 537.5 [72]

q In quiescent condition.
m With the maximum input signal.
x [68] quotes a maximum signal of 2 Vpp, a noise floor of 196 µVrms and a dynamic range of
77 dB. These numbers are inconsistent. The value corresponding to the quoted maximum
signal and noise is 71 dB.

dynamic range as defined above is also the S/N when the THD is 40 dB2 (See Chapter 2).

To the best of the author’s knowledge, these are the filters with the highest dynamic

range per unit power consumption. It can be seen that even the best of these is more than

a hundred times as power hungry as the passive RC filter.
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