* Schematics Subcircuit * *------------------------------------------------------------------------ * OPA657 Non-Unity Gain Stable, FET Voltage Limiting Amplifier * REV. A - Created 1/21/02 Rea Schmid * REV. B - Created 2/26/02 Rea Schmid - Purpose to adjust voltage and noise curves * REV. C - Created 6/27/06 Xavier Ramus - to correct input stage oscillation * REV. D - Created 10/23/06 Xavier Ramus - To correct Noise * REV. E - Created 11/22/06 Xavier Ramus - To correct behavior in transimpedance applications * * * NOTES: * 1- This macromodel predicts well: DC, small-signal AC, * noise, and transient performance under a wide range * of conditions * 2- This macromodel does not predict well: distortion * (harmonic, intermod, diff. gain & phase, ...), * temperature effects, board parasitics, differences * between package styles, and process changes * 3 - Known Problems: - none * * |-------------------------------------------------------------| * | This macro model is being supplied as an aid to | * | circuit designs. While it reflects reasonably close | * | similarity to the actual device in terms of performance, | * | it is not suggested as a replacement for breadboarding. | * | Simulation should be used as a forerunner or a supplement | * | to traditional lab testing. | * | | * | Neither this library nor any part may be copied without | * | the express written consent of Texas Instruments Corp. | * |-------------------------------------------------------------| * * CONNECTIONS: * Non-Inverting Input * | Inverting Input * | | Output * | | | Positive Supply * | | | | Negative Supply * | | | | | * | | | | | * | | | | | .SUBCKT OPA657 p n Out Vp Vn ** Removed parameters and replaced by hard coded values for ** eldo/spectre syntax-Nagendra ** ** .PARAM x2=0.25 ** .PARAM x4=0.5 ** .PARAM x8=1 ** .PARAM x10={x2*5} ** .PARAM x16=2 ** .PARAM x24=3 ** .PARAM x64=8 ** .PARAM xFET=3 R_R13 N_0001 Vp 520 I_I2 N_0002 N_0003 DC 580u R_R11 N_0004 Vp 195 R_R7 N_0006 N_0005 4 L_L2 Out N_0005 1nH C_C7 N_0005 0 45p R_R5 Vn N_0007 100 R_R6 Vn N_0008 100 R_R12 Vn N_0009 150 R_R14 Vn N_0010 520 I_I1 N_0011 N_0012 DC 513.33uA R_R9 N_0014 N_0013 22.5 R_R10 N_0016 N_0015 22.5 I_I3 N_0017 N_0018 DC 722.3u X_F7 N_0018 N_0019 N_0014 Vn OPA657schm_F7 X_F8 N_0019 Vn N_0016 Vn OPA657schm_F8 X_F10 N_0020 N_0017 Vp N_0021 OPA657schm_F10 X_F9 Vp N_0020 Vp N_0022 OPA657schm_F9 Q_Q5 N_0024 N_0023 N_0025 PNP8 area=1 m=8 Q_Q9 N_0011 N_0011 N_0026 PNP8 area=0.25 Q_Q14 N_0023 N_0027 N_0028 NPN8 area=0.5 Q_Q12 N_0029 N_0029 N_0027 NPN8 area=0.5 Q_Q11 N_0023 N_0011 N_0030 PNP8 area=0.5 Q_Q10 N_0029 N_0011 N_0031 PNP8 area=0.5 Q_Q3 Vp N_0031 N_0032 NPN8 area=1 m=3 Q_Q7 Vp N_0025 N_0006 NPN8 area=1 m=16 Q_Q19 N_0002 N_0002 N_0001 PNP8 area=0.25 Q_Q21 N_0003 N_0003 N_0010 NPN8 area=0.25 Q_Q13 N_0028 N_0028 N_0008 NPN8 area=0.25 m=5 Q_Q15 N_0027 N_0028 N_0007 NPN8 area=0.25 m=5 Q_Q6 N_0032 N_0023 N_0033 NPN8 area=1.2 m=8 Q_Q20 N_0033 N_0003 N_0009 NPN8 area=0.125 m=8 Q_Q18 N_0025 N_0002 N_0004 PNP8 area=0.25 m=2 Q_Q4 Vn N_0007 N_0024 PNP8 area=1 m=3 Q_Q22 Vn N_0033 N_0006 PNP8 area=1 m=40 X_F1 N_0012 Vn N_0034 Vn OPA657schm_F1 J_J29 N_0021 p N_0013 JX6_3 area=3 J_J30 N_0022 n N_0015 JX6_3 area=3 R_R3 N_0031 Vp 600 R_R4 N_0030 Vp 600 R_R8 N_0026 Vp 2.8k Q_Q24 Vn N_0016 N_0022 PNP8 1 Q_Q2 N_0030 N_0016 N_0034 NPN8 area=1 m=2 Q_Q1 N_0031 N_0014 N_0034 NPN8 area=1 m=2 Q_Q23 Vn N_0014 N_0021 PNP8 1 C_C6 Vn N_0023 1.1p .MODEL NPN8 NPN + IS = 7.604E-18 BF = 1.570E+02 NF = 1.000E+00 VAF= 7.871E+01 + IKF= 3.975E-02 ISE= 3.219E-14 NE = 2.000E+00 BR = 7.614E-01 + NR = 1.000E+00 VAR= 1.452E+00 IKR= 8.172E-02 ISC= 7.618E-21 + NC = 1.847E+00 RB = 1.060E+02 IRB= 0.000E+00 RBM= 2.400E+00 + RE = 2.520E+00 RC = 1.270E+02 CJE= 1.120E-13 VJE= 7.591E-01 + MJE= 5.406E-01 TF = 1.213E-11 XTF= 2.049E+00 VTF= 1.813E+00 + ITF= 4.293E-02 PTF= 0.000E+00 CJC= 8.208E-14 VJC= 6.666E-01 + MJC= 4.509E-01 XCJC=8.450E-02 TR = 4.000E-11 CJS= 1.160E-13 + VJS= 5.286E-01 MJS= 4.389E-01 XTB= 1.022E+00 EG = 1.120E+00 + XTI= 1.780E+00 KF = 3.500E-16 AF = 1.000E+00 FC = 8.273E-01 .MODEL PNP8 PNP + IS = 7.999E-18 BF = 1.418E+02 NF = 1.000E+00 VAF= 4.158E+01 + IKF= 1.085E-01 ISE= 2.233E-15 NE = 1.505E+00 BR = 3.252E+01 + NR = 1.050E+00 VAR= 1.093E+00 IKR= 5.000E-05 ISC= 6.621E-16 + NC = 1.150E+00 RB = 6.246E+01 IRB= 0.000E+00 RBM= 2.240E+00 + RE = 2.537E+00 RC = 1.260E+02 CJE= 9.502E-14 VJE= 7.320E-01 + MJE= 4.930E-01 TF = 1.303E-11 XTF= 3.500E+01 VTF= 3.259E+00 + ITF= 2.639E-01 PTF= 0.000E+00 CJC= 1.080E-13 VJC= 7.743E-01 + MJC= 5.000E-01 XCJC=8.504E-02 TR = 1.500E-10 CJS= 1.290E-13 + VJS= 9.058E-01 MJS= 4.931E-01 XTB= 1.732E+00 EG = 1.120E+00 + XTI= 2.000E+00 KF = 3.500E-16 AF = 1.000E+00 FC = 8.500E-01 .MODEL JX6_3 NJF + BETA=0.35e-3 RD=13.3 RS=13.299 BETATCE=-1.994 LAMBDA=28.67E-9 ISR=0 NR=2 IS=5.956E-15 N=1 XTI=3 + ALPHA=2.7155E-9 VK=1 CGD=2.025E-12 M=0.57 PB=1 FC=0.5 CGS=11.7E-13 AF=1 KF=0 + VTOTC=0.0025 VTO=-2.85 .ENDS OPA657 .subckt OPA657schm_F7 1 2 3 4 F_F7 3 4 VF_F7 1.00165517241 VF_F7 1 2 0V .ends OPA657schm_F7 .subckt OPA657schm_F8 1 2 3 4 F_F8 3 4 VF_F8 1.00165517241 VF_F8 1 2 0V .ends OPA657schm_F8 .subckt OPA657schm_F10 1 2 3 4 F_F10 3 4 VF_F10 1.33600996816 VF_F10 1 2 0V .ends OPA657schm_F10 .subckt OPA657schm_F9 1 2 3 4 F_F9 3 4 VF_F9 1.33600996816 VF_F9 1 2 0V .ends OPA657schm_F9 .subckt OPA657schm_F1 1 2 3 4 F_F1 3 4 VF_F1 4 VF_F1 1 2 0V .ends OPA657schm_F1