VLSI Broadband Communication Circuits Miscellaneous topics

Nagendra Krishnapura

Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India

16 Nov. 2007

Outline

- Optimal equalizers
- LMS adaptation
- Validity of PLL linear model
- PLL lock and capture ranges
- Hogge phase detector offset correction
- Course summary

Intersymbol interference

- Channel response *h* of length $N \Rightarrow 2^N$ possible values
- Received values spread between $1 \sum_{k \neq 0} |h_k|$ and $1 + \sum_{k \neq 0} |h_k|$

Maximum likelihood sequence estimation (MLSE)

- Given received values, estimate the most likely sequence of symbols that generated the value
- Minimizes bit error rate
- Exponential complexity with N

Zero forcing linear feedforward equalizer

- ISI can be eliminated using the inverse filter $H^{-1}(z)$
- Noise enhancement at frequencies where $|H(z)| \ll 1$
- Truncated inverse filter in practice
- Minimizes $\sum_{k\neq 0} |f_k|$ ($f = h \otimes g$, g is the equalizer's response) if $\sum_{k\neq 0} |f_k| \leq 1$
- Determine optimal coefficients by truncating $H^{-1}(z)$ to the desired length

Least mean square linear feedforward equalizer

- Minimizes $\sum_{k\neq 0} f_k^2$
- Very little boost at frequencies where $|H(z)| \ll 1$
- Optimal performance in presence of noise—reduced noise enhancement
- Optimal coefficients $\overline{c} = (A^T A)^{-1} A^T \overline{b}$ where columns of A are delayed versions of the input sequence \overline{b} is $[0 \dots 010 \dots 0]$

LMS adaptation

$$y = \overline{c}^T \overline{g}$$

$$e = y - \operatorname{sgn}(y)$$

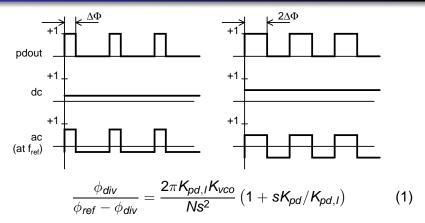
$$\overline{c}[k+1] = \overline{c}[k] - \mu \overline{\nabla}_c E(e^2)$$

$$\overline{c}[k+1] = \overline{c}[k] - \mu \overline{\nabla}_c e^2$$

- Steepest descent algorithm to minimize $E(e^2)$
- Use instantaneous value of e² instead of expectations (Woodrow)

LMS adaptation

$$\begin{array}{rcl} y & = & \overline{c}^T \overline{g} \\ & e & = & y - \operatorname{sgn}(y) \\ \overline{c}[k+1] & = & \overline{c}[k] - \mu e[n] \overline{g}[n] & \operatorname{Full LMS} \\ \overline{c}[k+1] & = & \overline{c}[k] - \mu e[n] \operatorname{sgn}(\overline{g}[n]) \\ \overline{c}[k+1] & = & \overline{c}[k] - \mu \operatorname{sgn}(e[n]) \overline{g}[n] \\ \overline{c}[k+1] & = & \overline{c}[k] - \mu \operatorname{sgn}(e[n]) \operatorname{sgn}(\overline{g}[n]) & \operatorname{Sign-sign LMS} \end{array}$$


- Steepest descent algorithm
- Gradients are the outputs of FIR delay stages
- Very easy to realize for a DFE—gradients are delayed decisions

Decision feedback equalizer

- ISI subtraction based on past decisions
- Can eliminate post cursor ISI without noise enhancement
- Much lower high frequency boost from the linear feedforward equalizer
- Possibility of error propagation—But works well enough in practice
- Closing feedback loop in one cycle is the biggest challenge

Phase frequency detector nonlinearity

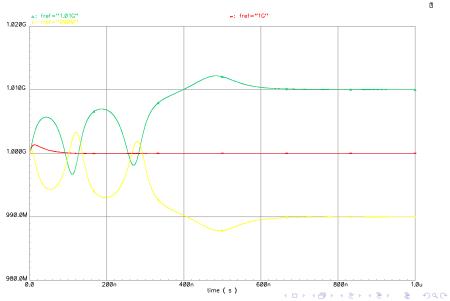
- When ∆Φ doubles, average value doubles, ac part doesn't
 ⇒ nonlinear
- If $|rac{\phi_{\it div}}{\phi_{\it ref}-\phi_{\it div}}|\ll$ 1 at $2\pi f_{\it ref}$, ac part is removed; approximately linear
- Linear analysis of the loop valid under this condition:

PLL lock and capture ranges

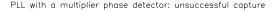
- Lock range: Range over which PLL can lock, given the right initial conditions—limited by the range of some component in the loop
 - Quasi-static operation
 - Start with a locked PLL
 - Sweep the input frequency very slowly until the PLL loses lock.
- Capture range: Largest frequency step that can be applied to a locked PLL such that it locks to the new frequency
 - Dynamic operation
 - Start with a locked PLL
 - Step the input frequency and see if the PLL acquires lock within a certain interval

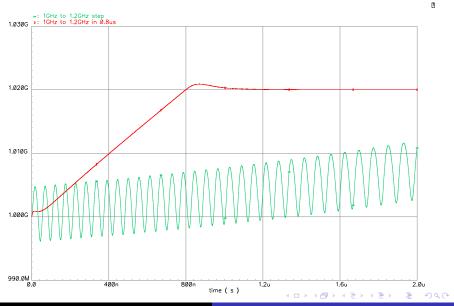
PLL lock range

- Type I PLL
 - May be limited by phase detector range
 - Build a type II PLL
- Type II PLL
 - Steady state phase error independent of frequency
 - Not limited by the phase detector
 - Limited by VCO range; loop fi lter output voltage range;
 - Increase these ranges to get rid of the limitation

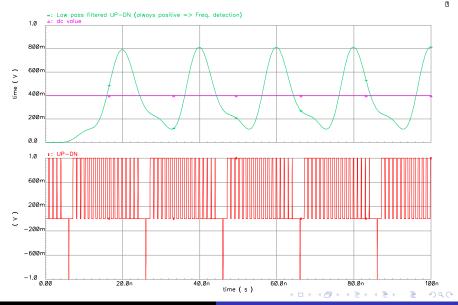

PLL capture range-Type II PLL

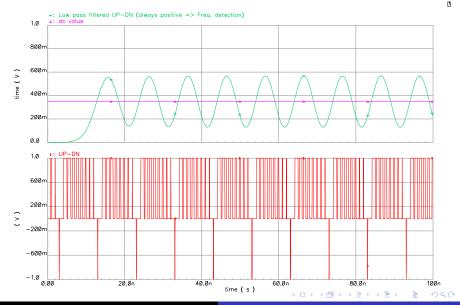
- Phase frequency detector
 - Non zero average output voltage in case of a frequency difference
 - This drives the VCO in the right direction
 - Capture range=lock range; But may take a very long time for a large frequency step
- Multiplier, XOR gate, Hogge phase detector, Alexander phase detector
 - Zero average output voltage in case of a frequency difference
 - Output contains difference frequency component which can drive the VCO in the right direction
 - If difference frequency component is severely attenuated by the loop, it may fail to capture
 - In practice, a frequency detector is used as an acquisition aid



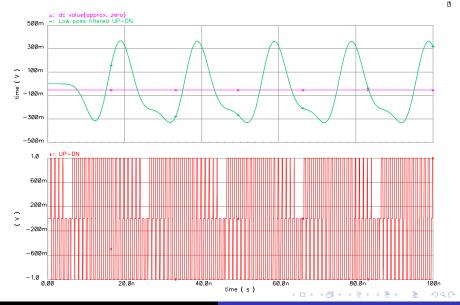

Successful capture

PLL with a multiplier phase detector: successful capture

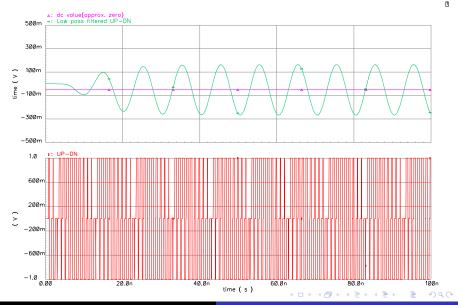

Unsuccessful capture-but stays locked over this range


Phase frequency detector: $f_c = 19/20 f_d$

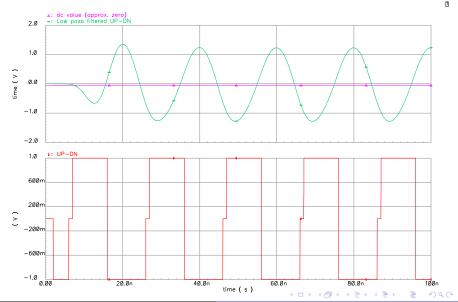
Phase frequency detector simulation; Tc=19/20*Td=1ns


Phase frequency detector: $f_c = 9/10 f_d$

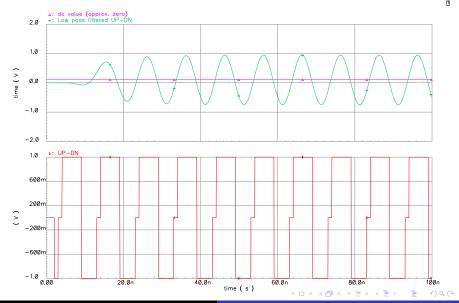
Phase frequency detector simulation; Tc=9/10*Td=1ns


Hogge phase detector: $f_c = 19/20 f_d$

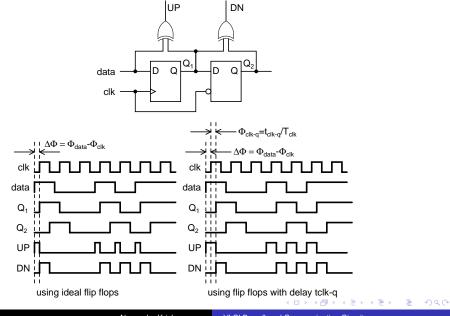
Hogge phase detector simulation; Tc=19/20*Td=1ns


Hogge phase detector: $f_c = 9/10f_d$

Hogge phase detector simulation; Tc=9/10*Td=1ns

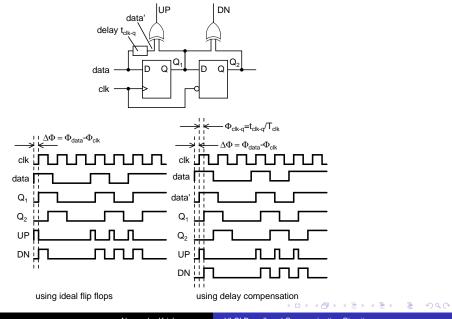

Bang bang phase detector: $f_c = 19/20 f_d$

Bang Bang phase detector simulation; Tc=19/20*Td=1ns



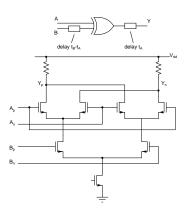
Bang bang phase detector: $f_c = 9/10 f_d$

Bang Bang phase detector simulation; Tc=9/10*Td=1ns

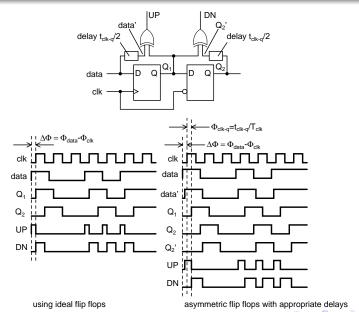

Hogge phase detector: effects of flip flop delay

Hogge phase detector: effects of flip flop delay

- Clock to Q delay widens UP pulse by t_{clk-q}
- UP pulse width is unaltered
- Phase offset of t_{clk-q}/T_{clk} to obtain zero average of UP-DN


Hogge phase detector: offset correction

Hogge phase detector: offset correction


- Delay the input by t_{clk-q} before feeding to the XOR gate
- Reduces UP pulse width t_{clk-q} and eliminates the offset

CML XOR gate

- Delay from B more than delay from A
- Use this asymmetry to correct Hogge phase detector offset

Hogge phase detector: offset correction

Hogge phase detector: offset correction

- Reduce *UP* pulse width by $t_{clk-q}/2$ and increase *DN* pulse width by $t_{clk-q}/2$ to correct the offset
- Difference is XOR input delays must be $t_{clk-q}/2$
- In practice, cancellation won't be exact

EE685: VLSI Broadband Communication Circuits

- Serial communication link
 - Equalizers to enhance eye opening
 - Clock and data recovery
- Topics covered
 - Generate discrete time channel model from continuous-time channel response
 - Determine optimal equalizer coeffi cients
 - Design high speed transmit FIR feedforward or receive decision feedback equalizers
 - Design clock and data recovery circuits, given a VCO
 - Eye diagrams
- Topics left out
 - Transmission lines—channels
 - Fractionally spaced equalizers
 - Oscillator design
 - Detailed treatment of jitter

References

- John G. Proakis, *Digital Communications*, McGraw Hill, 2000.
- B. Razavi (editor), *Monolithic Phase Locked Loops and Clock Recovery Circuits-Theory and Design*, IEEE Press, 1996.
- B. Razavi (editor), *Phase-Locking in High-Performance Systems: From Devices to Architectures*, Wiley-IEEE Press, 2003.
- Rick Walker's papers at http://www.omnisterra.com/walker/pubs.html