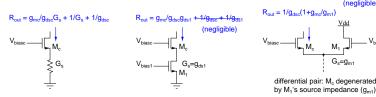

EE539: Analog Integrated Circuit Design Opamp-summary

Nagendra Krishnapura

Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India

7 April 2010


Differential pair opamp

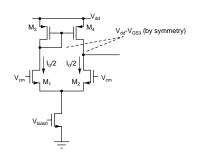
Differential pair opamp

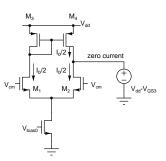
G_m	<i>G_m</i> 1				
G_{out}	$g_{d\mathrm{s}1}+g_{d\mathrm{s}3}$				
A_o	$g_{ extit{m1}}/(g_{ extit{ds}1}+g_{ extit{ds}3})$				
A_{cm}	g_{ds0}/g_{m3}				
C_i	$C_{ m gs1}/2$				
ω_{u}	g_{m1}/C_L				
p_k, z_k	$p_2 = -g_{m3}/(C_{db1} + C_{db3} + 2C_{gs3}); z_1 = 2p_2$				
S_{vi}	$16kT/3g_{m1}\left(1+g_{m3}/g_{m1} ight)$				
σ_{Vos}^2	$\sigma_{VT1}^2 + (g_{m3}/g_{m1})^2 \sigma_{VT3}^2$				
V _{cm}	$\geq V_{T1} + V_{DSAT1} + V_{DSAT0}$				
	$\leq V_{dd} - V_{DSAT_3} - V_{T_3} + V_{T_1}$				
V _{out}	$\geq V_{cm} - V_{T1}$				
	$\leq V_{dd} - V_{DSAT3}$				
SR	$\pm I_0/C_L$				
I _{supply}	$I_0 + I_{ref}$				

Cascode output resistance

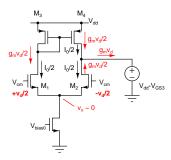
 Output resistance looking into one side of the differential pair is $2/g_{ds1}$ ($g_{m1} = g_{mc}$ in the figure)

 $R_{out} = g_{mc}/g_{dec}g_{m1} + 1/g_{dec} + 1/g_{m1}$

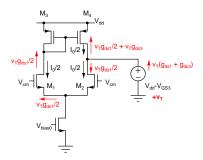

(negligible)

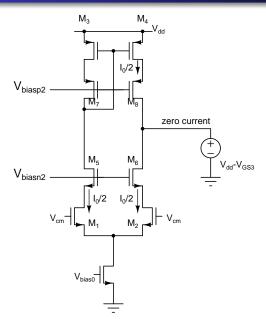

Opamp: dc small signal analysis

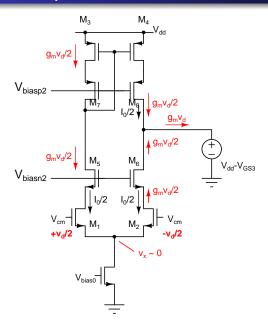
- Bias values in black
- Incremental values in red
- Impedances in blue

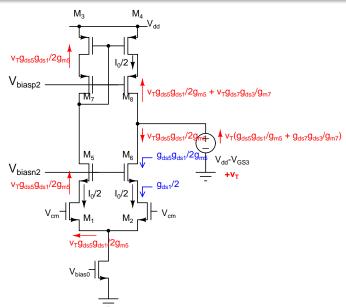

Total quantity = Bias + increment

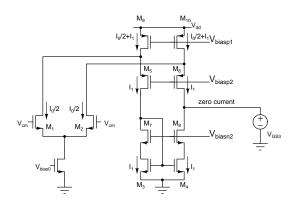
Differential pair: Quiescent condition

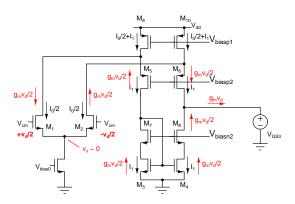


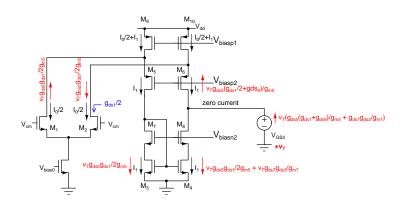

Differential pair: Transconductance

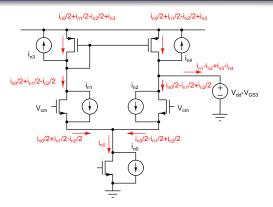

Differential pair: Output conductance


Telescopic cascode: Quiescent condition

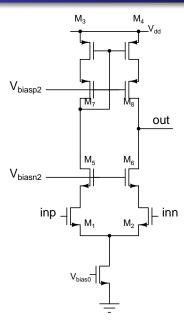

Telescopic cascode: Transconductance


Telescopic cascode: Output conductance

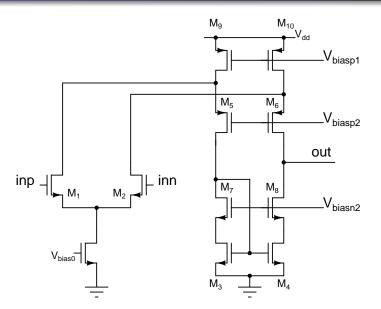

Folded cascode: Quiescent condition


Folded cascode: Transconductance

Folded cascode: Output conductance


Differential pair: Noise

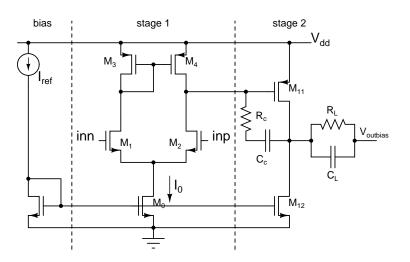
- Carry out small signal linear analysis with one noise source at a time
- Add up the results at the output (current in this case)
- Add up corresponding spectral densities
- Divide by gain squared to get input referred noise


Telescopic cascode opamp

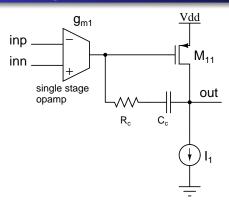
Telescopic cascode opamp

G_m	g_{m1}					
G_{out}	$g_{d extsf{s}1}g_{d extsf{s}5}/g_{ extsf{m}5}+g_{d extsf{s}3}g_{d extsf{s}7}/g_{ extsf{m}7}$					
A_o	$g_{ extit{m1}}/(g_{ extit{ds1}}g_{ extit{ds5}}/g_{ extit{m5}}+g_{ extit{ds3}}g_{ extit{ds7}}/g_{ extit{m7}})$					
A_{cm}	$g_{d\mathrm{s}0}/g_{m3}$					
C_i	$C_{gs1}/2$					
$\omega_{\sf u}$	g_{m1}/C_L					
p_k, z_k	$ ho_2 = -g_{m3}/(C_{db1} + C_{db3} + 2C_{gs3})$					
	$ ho_3=-g_{m5}/C_{p5}$					
	$ ho_{\!\scriptscriptstyle 4} = -g_{m7}/ extsf{C}_{\hspace{1em}p7}$					
	$p_{2,4}$ appear for one half and cause mirrror zeros					
S_{vi}	$16kT/3g_{m1}\left(1+g_{m3}/g_{m1} ight)$					
$\frac{\sigma_{Vos}^2}{V}$	$\sigma_{VT1}^2 + (g_{m3}/g_{m1})^2 \sigma_{VT3}^2$					
V _{out}	$\geq V_{\it biasn1} - V_{\it T5}$					
	$\leq V_{\it biasp1} + V_{\it T7}$					
SR	$\pm \emph{I}_0/\emph{C}_{\it L}$					
I _{supply}	$I_0 + I_{ref}$					

Folded cascode opamp


Folded cascode opamp

G_m	g_{m1}				
G_{out}	$(g_{d exttt{s}1} + g_{d exttt{s}9})g_{d exttt{s}5}/g_{m exttt{5}} + g_{d exttt{s}3}g_{d exttt{s}7}/g_{m exttt{7}}$				
A_o	$g_{m1}/((g_{d ext{s}1}+g_{d ext{s}9})g_{d ext{s}5}/g_{m5}+g_{d ext{s}3}g_{d ext{s}7}/g_{m7})$				
A_{cm}	g_{ds0}/g_{m3}				
C_i	$C_{gs1}/2$				
ω_{u}	$g_{m1}/\mathit{C}_{\mathit{L}}$				
p_k, z_k	$ ho_2 = -g_{m3}/(C_{db1} + C_{db3} + 2C_{gs3})$				
	$ ho_3=-g_{m5}/C_{ ho 5}$				
	$ ho_4=-g_{m7}/C_{p7}$				
	$p_{2,4}$ appear for one half and cause mirrror zeros				
S_{vi}	$16kT/3g_{m1}\left(1+g_{m3}/g_{m1}+g_{m9}/g_{m1} ight)$				
σ_{Vos}^{2}	$\sigma_{VT1}^2 + (g_{m3}/g_{m1})^2 \sigma_{VT3}^2 + (g_{m9}/g_{m1})^2 \sigma_{VT9}^2$				
V _{out}	$\geq V_{\it biasn1} - V_{\it T5}$				
	$\leq V_{biasp1} + V_{T7}$				
SR	$\pm \min\{I_0,I_1\}/C_L$				
I _{supply}	$I_0 + I_1 + I_{ref}$				


Body effect

- All nMOS bulk terminals to ground
- All pMOS bulk terminals to V_{dd}
- ullet A_{cm} has an additional factor $g_{m1}/(g_{m1}+g_{mb1})$
- $g_{m5} + g_{mb5}$ instead of g_{m5} in cascode opamp results
- $g_{m7} + g_{mb7}$ instead of g_{m7} in cascode opamp results

Two stage opamp

Two stage opamp

- First stage can be Differential pair, Telescopic cascode, or Folded cascode; Ideal g_{m1} assumed in the analysis
- Second stage: Common source amplifier
- Frequency response is the product of frequency responses of the first stage g_m and a common source amplifier driven from a current source

Common source amplifier: Frequency response

$$\frac{V_o(s)}{V_d(s)} = \left(\frac{g_{m_1}g_{m_{11}}}{G_1G_L}\right)\frac{sC_c(R_c - 1/g_{m_{11}}) + 1}{a_3s^3 + a_2s^2 + a_1s + 1}$$
(1)

$$a_3 = \frac{R_c C_1 C_L C_c}{G_1 G_L} \tag{2}$$

$$a_2 = \frac{C_1 C_c + C_c C_L + C_L C_1 + R_c C_c (G_1 C_L + C_1 G_L)}{G_1 G_L}$$
 (3)

$$a_1 = \frac{C_c(g_{m_{11}} + G_1 + G_L + G_1G_LR_c) + C_1G_L + G_1C_L}{G_1G_L}$$
(4)

- G₁: Total conductive load at the input
- G_L: Total conductive load at the output
- C₁: Total capacitive load at the input
- C_L: Total capacitive load at the output

Common source amplifier: Poles and zeros

$$p_1 \approx -\frac{G_1}{C_c(\frac{g_{m_{11}}}{G_L} + 1 + \frac{G_1}{G_L} + G_1 R_c) + C_1(1 + \frac{G_1}{G_L})}$$
 (5)

$$p_{2} \approx -\frac{g_{m11}\frac{C_{c}}{C_{1}+C_{c}}+G_{L}+G_{1}\frac{C_{c}+C_{L}}{C_{1}+C_{C}}+G_{1}G_{L}R_{c}\frac{C_{c}}{C_{1}+C_{c}}}{\frac{C_{1}C_{c}}{C_{1}+C_{c}}+C_{L}+\frac{R_{c}C_{c}(G_{1}C_{L}+G_{L}C_{1})}{C_{c}+C_{L}}}$$
(6)

$$p_{3} \approx -\left(\frac{1}{R_{c}}\left(\frac{1}{C_{L}} + \frac{1}{C_{c}} + \frac{1}{C_{1}}\right) + \frac{G_{1}}{C_{1}} + \frac{G_{L}}{C_{L}}\right)$$

$$z_{1} = \frac{1}{(1/g_{m_{11}} - R_{c})C_{c}}$$
(8)

$$z_1 = \frac{1}{(1/g_{m_{11}} - R_c)C_c} \tag{8}$$

Unity gain frequency

$$\omega_{u} \approx \frac{g_{m_{1}}}{C_{c}\left(1+\frac{G_{L}}{g_{m_{11}}}+\frac{G_{1}}{g_{m_{11}}}+\frac{G_{1}G_{L}R_{c}}{g_{m_{11}}}\right)+C_{1}\left(\frac{G_{L}}{g_{m_{11}}}+\frac{G_{1}}{g_{m_{11}}}\right)}$$

Common source amplifier: Frequency response

- Pole splitting using compensation capacitor C_c
 - p₁ moves to a lower frequency
 - p_2 moves to a higher frequency (For large C_c , $p_2 = g_{m_{11}}/C_L$)
- Zero cancelling resistor R_c moves z_1 towards the left half s plane and results in a third pole p_3
 - z_1 can be moved to ∞ with $R_c = 1/g_{m_{11}}$
 - z_1 can be moved to cancel p_2 with $R_c > 1/g_{m_{11}}$ (needs to be verified against process variations)
 - Third pole p₃ at a high frequency
- Poles and zeros from the first stage will appear in the frequency response— $Y_{m1}(s)$ instead of g_{m1} in V_o/V_i above
 - Mirror pole and zero
 - Poles due to cascode amplifiers

Compensation cap sizing

$$\rho_2 \approx -\frac{g_{m_{11}} \frac{C_c}{C_1 + C_c}}{\frac{C_1 C_c}{C_1 + C_c} + C_L}$$

$$\omega_u \approx \frac{g_{m_1}}{C_c}$$
(10)

$$\omega_u \approx \frac{g_{m1}}{C_c}$$
 (11)

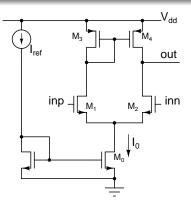
Phase margin (Ignoring p_3, z_1, \ldots)

$$\phi_M = \tan^{-1} \frac{|p_2|}{\omega_u} \tag{12}$$

$$\frac{|p_2|}{\omega_u} = \tan \phi_M \tag{13}$$

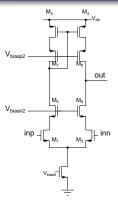
$$\frac{g_{m11}}{g_{m1}} \left(\frac{C_c}{C_L}\right)^2 = \frac{C_c}{C_L} \left(1 + \frac{C_1}{C_L}\right) \tan \phi_M + \frac{C_1}{C_L} \tan \phi_M \quad (14)$$

- For a given ϕ_M , solve the quadratic to obtain C_c/C_l
- If C_1 is very small, $p_2 \approx -g_{m2}/C_L$; further simplifies calculations

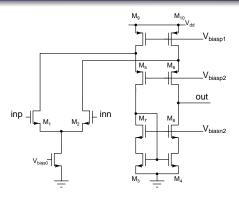

Two stage opamp

A_o	$g_{m1}g_{m11}/(g_{ds1}+g_{ds3})(g_{ds11}+g_{ds12})$			
A_{cm}	$g_{ds0}g_{m11}/g_{m3}(g_{ds11}+g_{ds12})$			
C_i	$C_{gs1}/2$			
$\omega_{\it u}$	g_{m1}/C_c			
p_k, z_k	See previous pages			
S_{vi}	$pprox 16kT/3g_{m1}(1+g_{m3}/g_{m1})$			
σ_{Vos}^2	$pprox \sigma_{VT1}^2 + (g_{m3}/g_{m1})^2 \sigma_{VT3}^2$			
V_{cm}	$\geq V_{T1} + V_{DSAT1} + V_{DSAT0}$			
	$\leq V_{dd} - V_{DSAT_3} - V_{T_3} + V_{T_1}$			
V_{out}	$\geq V_{DSAT_{12}}$			
	$\leq V_{dd} - V_{DSAT_{11}}$			
SR+	I_0/C_c			
SR-	$\min\{I_0/C_c,I_1/(C_L+C_c)\}$			
I _{supply}	$I_0 + I_1 + I_{ref}$			

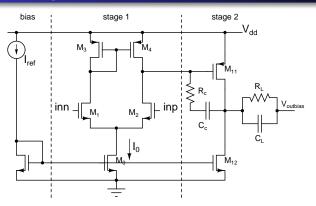
Opamp comparison


	Differential	Telescopic	Folded	Two
	pair	cascode	cascode	stage
Gain	_	++	+	++
Noise	=	=	high	=
Offset	=	=	high	=
Swing	_	_	+	++
Speed	++	+	_	+

Differential pair


- Low accuracy (low gain) applications
- Voltage follower (capacitive load)
- Voltage follower with source follower (resistive load)
- In bias stabilization loops (effectively two stages in feedback)

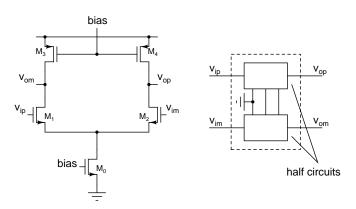
Telescopic cascode


- Low swing circuits
- Switched capacitor circuits
 - Capacitive load
 - Different input and output common mode voltages
- First stage of a two stage opamp
 - Only way to get high gain in fine line processes

Folded cascode

- Higher swing circuits
- Higher noise and offset
- Lower speed than telescopic cascode
 - Low frequency pole at the drain of the input pair
- Switched capacitor circuits (Capacitive load)
- First stage of a two stage class AB opamp

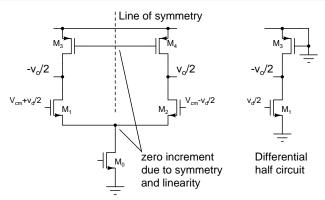
Two stage opamp



- Highest possible swing
- Resistive loads
- Capacitive loads at high speed
- "Standard" opamp: Miller compensated two stage opamp
- Class AB opamp: Always two (or more) stages

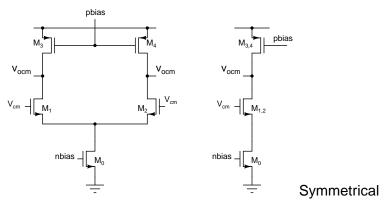
Opamps: pMOS versus nMOS input stage

- nMOS input stage
 - Higher g_m for the same current
 - Suitable for large bandwidths
 - Higher flicker noise (usually)
- pMOS input stage
 - Lower g_m for the same current
 - Lower flicker noise (usually)
 - Suitable for low noise low frequency applications


Fully differential circuits

- Two identical half circuits with some common nodes
- Two arms of the differential input applied to each half
- Two arms of the differential output taken from each half

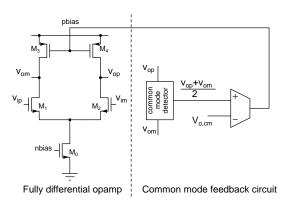
Differential half circuit


Symmetrical

linear (or small signal linear) circuit under fully differential (antisymmmetric) excitation

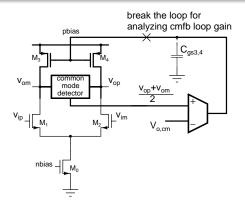
- Nodes along the line of symmetry at 0 V (symmetry, linearity)
- Analyze only the half circuit to find the transfer function

Common mode half circuit



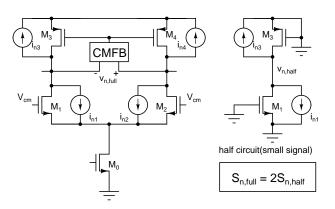
circuit (maybe nonlinear) under common mode (symmmetric) excitation

- Nodes in each half at identical voltages (symmetry)
- Fold over the circuit and analyze the half circuit

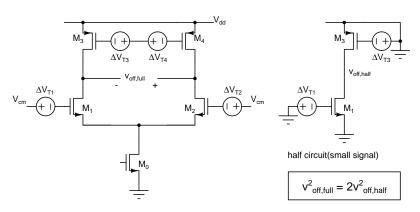


Common mode feedback

- Common mode feedback circuit for setting the bias
- Detect the output common mode and force it to be V_{o,cm} via feedback


Common mode feedback loop

- Common mode feedback loop has to be stable
- Analyze it by breaking the loop and computing the loop gain with appropriate loading at the broken point
- Apply a common mode step/pulse in closed loop and ensure stability



Fully differential circuits: Noise

- Calculate noise spectral density of the half circuit
- Multiply by 2×

Fully differential circuits: Offset

- Calculate mean squared offset of the half circuit
- Multiply by $2 \times$ if mismatch (e.g. ΔV_T) wrt ideal device is used

Fully differential circuits: Offset

- Calculate mean squared offset of the half circuit
- Multiply by 1x if mismatch between two real devices is used

