EE539: Analog Integrated Circuit Design Course summary

Nagendra Krishnapura

Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India

21 April 2008

Course goals

Learn to design negative feedback amplifiers on CMOS ICs

- Negative feedback for controlling the output
- Amplifiers, voltage references, voltage regulators, biasing

Course contents-Amplifi ers on ICs

- Components available in CMOS integrated circuit (IC) processes
- Device models-dc small signal, dc large signal, ac small signal, mismatch, noise
- Basic single transistor amplifier stages
- Transistor biasing, compound amplifier stages
- Differential amplifiers
- Fully differential amplifiers and common mode feedback

Course contents-Design of opamps

- Single stage opamp
- Folded, telescopic cascode opamps
- Two stage opamp
- Fully differential opamps and common mode feedback
- Applications: Bandgap reference, constant g_m bias generation

What you should be able to do now

- Analyze negative feedback loops for stability
- Compensate negative feedback loops
- Design transconductors and opamps
- Design appropriate biasing circuits
- Understand other opamp architectures
- Design fully differential circuits with common mode feedback
- Analyze circuit noise and offsets

What you should be able to do now

Feedback amplifiers

Other opamp architectures

- Class AB output stage
- More than two stages
- Multi path opamp

Class AB opamp

- Large output current drive with a small quiescent current
- Signal coupled to both transistors of the output stage
- Crossover distortion
- Used with heavy loads-headphone driver etc.

Class AB opamp

Class AB opamp: References

- D. M. Monticelli, "A quad CMOS single-supply op amp with rail-to-rail output swing," *IEEE Journal of Solid-State Circuits*, vol. 21, pp. 1026 - 1034, December 1986.
- T. Prabu Sankar, Shanthi Pavan, IITM
 - Switched capacitor "batteries" to couple to the output stage
- S. Rabii and B. A. Wooley, "A 1.8-V digital-audio sigma-delta modulator in 0.8- μm CMOS," *IEEE Journal of Solid-State Circuits*, vol. 32, pp. 783 - 796, June 1997.

Three stage opamp

- Very high dc gain for high accuracy
- High accuracy DACs (16b)
- Complicated compensation schemes
- Low speed applications
- K. N. Leung and P. Mok, "Analysis of multistage amplifier frequency compensation," *IEEE TCAS-II*, vol. 48, no. 9, Sep. 2001.

Multi path opamps

- Very high ω_u in a given technology
- Low power dissipation
- Low swing-differential pair output
- Pole zero doublets in close loop transfer functions
 - Not suitable for discrete time applications ???

Multi path opamps

- J. N. Harrison, "Dynamic Range and Bandwidth of Analog CMOS Circuits," PhD dissertation, Macquarie University, Sydney, 2002.
- T. Laxminidhi, V. Prasadu and S. Pavan, "A Low Power 44-300 MHz Programmable Active-RC Filter in 0.18um CMOS," Proceedings of the Custom Integrated Circuits Conference, San Jose, September 2007.

References

- P. R. Gray and R. G. Meyer, "MOS operational amplifi er design-A tutorial overview," IEEE Journal of Solid-State Circuits, vol. 17, pp. 969 - 982, December 1982.
- D. M. Monticelli, "A quad CMOS single-supply op amp with rail-to-rail output swing," IEEE Journal of Solid-State Circuits, vol. 21, pp. 1026 - 1034, December 1986.
- K. N. Leung and P. Mok, "Analysis of multistage amplifier frequency compensation," IEEE TCAS-II, vol. 48, no. 9, Sep. 2001.
- J. N. Harrison, "Dynamic Range and Bandwidth of Analog CMOS Circuits," PhD dissertation, Macquarie University, Sydney, 2002.