EE539: Analog Integrated Circuit Design; HW1

Nagendra Krishnapura (nagendra@iitm.ac.in)

due on 13 Jan. 2008

Figure 1: Problem 1

1. Calculate the transfer function $V_o(s)/V_i(s)$ in Fig. 1. Express it in the form $A_{dc} \frac{1+s()+...}{1+s()+...}$. Calculate the zeros and poles of the transfer function assuming that the poles are well separated¹.

What is the phase shift at very low and very high frequencies?

How do the poles and zeros change as $C_c \rightarrow 0$?

- 2. Calculate the transfer function $V_o(s)/I_i(s)$ in Fig. 2. Calculate the zeros and poles of the transfer function assuming that the poles are well separated¹.
- 3. Calculate the input impedance $Z_{in}(s)$ in Fig. 3. Do you see anything special? What is the input impedance with $g_m = 0$?

Express $Z_{in}(s)|g_{m\neq0}$ as a parallel combination of $Z_{in}(s)|g_{m=0}$ and another branch $Z_1(s)$. What does $Z_1(s)$ consist of?

Figure 3: Problem 3

Figure 4: Problem 4

Calculate the input impedance Z_{in}(s) in Fig. 4. Do you see anything special? Derive an equivalent circuit with passive elements that has an impedance Z_{in}.

 $^{^1\}mbox{For approximate solutions to the quadratic equation, refer to the handout$

Figure 5: Problem 5

5. Calculate V_1 and V_2 as a function of I_b in Fig. 5. The bipolar transistors are modeled by ideal exponential behavior: $I_c = A_e J_s \exp(V_{BE}/V_t)$ where A_e is the emitter area and J_s is the saturation current density.

Calculate I_{b0} , the value of I_b for which $V_1 = V_2$. What is the temperature coefficient of I_{b0} ? If the transistors are biased at I_{b0} , what are their transconductances $(\partial I_c / \partial V_{BE})$?

Figure 6: Problem 6

 Calculate V₁ and V₂ as a function of I_b in Fig. 6. The MOS transistors are modeled by ideal square law behavior: I_D = (μC_{ox}/2)(W/L)(V_{GS} − V_T)².

Calculate I_{b0} , the value of I_b for which $V_1 = V_2$. If the transistors are biased at I_{b0} , what are their transconductances $(\partial I_D / \partial V_{GS})$?

7. Fig. 7 shows a nonlinearity f enclosed in a negative feedback loop with a feedback fraction β . The transfer characteristic of the overall system is denoted by

Figure 7: Problem 7

g, i.e. $V_o = g(V_i)$. Calculate the first four terms of the Taylor series of g about the operating point of the circuit in terms of f and its derivatives. Assume that f(0) = 0. What do you infer from the results?