EE539: Analog Integrated Circuit Design; HW1

Nagendra Krishnapura (nagendra@iitm.ac.in)

due on 13 Jan. 2008

Figure 1: Problem 1

1. Calculate the transfer function $V_{o}(s) / V_{i}(s)$ in Fig. 1. Express it in the form $A_{d c} \frac{1+s()+\ldots}{1+s()+\ldots}$. Calculate the zeros and poles of the transfer function assuming that the poles are well separated ${ }^{1}$.
What is the phase shift at very low and very high frequencies?

How do the poles and zeros change as $C_{c} \rightarrow 0$?

Figure 2: Problem 2
2. Calculate the transfer function $V_{o}(s) / I_{i}(s)$ in Fig. 2. Calculate the zeros and poles of the transfer function assuming that the poles are well separated ${ }^{1}$.
3. Calculate the input impedance $Z_{i n}(s)$ in Fig. 3. Do you see anything special? What is the input impedance with $g_{m}=0$?
Express $Z_{i n}(s) \mid g_{m} \neq 0$ as a parallel combination of $Z_{i n}(s) \mid g_{m=0}$ and another branch $Z_{1}(s)$. What does $Z_{1}(s)$ consist of?

[^0]

Figure 3: Problem 3

Figure 4: Problem 4
4. Calculate the input impedance $Z_{i n}(s)$ in Fig. 4. Do you see anything special? Derive an equivalent circuit with passive elements that has an impedance $Z_{i n}$.

Figure 5: Problem 5
5. Calculate V_{1} and V_{2} as a function of I_{b} in Fig. 5. The bipolar transistors are modeled by ideal exponential behavior: $I_{c}=A_{e} J_{s} \exp \left(V_{B E} / V_{t}\right)$ where A_{e} is the emitter area and J_{s} is the saturation current density.

Calculate $I_{b 0}$, the value of I_{b} for which $V_{1}=V_{2}$. What is the temperature coefficient of $I_{b 0}$? If the transistors are biased at $I_{b 0}$, what are their transconductances $\left(\partial I_{c} / \partial V_{B E}\right)$?

Figure 6: Problem 6
6. Calculate V_{1} and V_{2} as a function of I_{b} in Fig. 6. The MOS transistors are modeled by ideal square law behavior: $I_{D}=\left(\mu C_{o x} / 2\right)(W / L)\left(V_{G S}-V_{T}\right)^{2}$.

Calculate $I_{b 0}$, the value of I_{b} for which $V_{1}=V_{2}$. If the transistors are biased at $I_{b 0}$, what are their transconductances $\left(\partial I_{D} / \partial V_{G S}\right)$?
7. Fig. 7 shows a nonlinearity f enclosed in a negative feedback loop with a feedback fraction β. The transfer characteristic of the overall system is denoted by

Figure 7: Problem 7
g, i.e. $V_{o}=g\left(V_{i}\right)$. Calculate the first four terms of the Taylor series of g about the operating point of the circuit in terms of f and its derivatives. Assume that $f(0)=0$. What do you infer from the results?

[^0]: ${ }^{1}$ For approximate solutions to the quadratic equation, refer to the handout

