EE539: Analog Integrated Circuit Design; HW2

Nagendra Krishnapura (nagendra@iitm.ac.in)

due on 5 Feb. 2007

0.18 μ m technology parameters: $V_{Tn} = 0.5 \text{ V};$ $V_{Tp} = 0.5 \text{ V};$ $K_n = 300 \ \mu\text{A}/V^2;$ $K_p = 75 \ \mu\text{A}/V^2;$ $A_{VT} = 3.5 \ mV \ \mu\text{m};$ $A_{\beta} = 1\% \ \mu\text{m};$ $V_{dd} = 1.8 \text{ V};$ $L_{min} = 0.18 \ \mu\text{m},$ $W_{min} = 0.24 \ \mu\text{m};$ Ignore body effect unless mentioned otherwise.

1. Plot the f_T of an nMOS device (biased with $V_{GS} = 1 \text{ V}$) versus L with W/L doubling at each step from $4 \,\mu\text{m}/0.2 \,\mu\text{m}$ to $128 \,\mu\text{m}/6.4 \,\mu\text{m}$. Comment on the results.

Figure 1:

- Two transistors carrying a current I_D are required to have a current mismatch ≤ σ_{ID} and operate in saturation with an output voltage V_{out} (Fig. 1). Compute the transistor dimensions and its f_T in terms of the mismatch constants A_{VT} and A_β, I_D, σ_{ID} and V_{out}. Comment on tradeoffs between speed, voltage, and precision.
- 3. Bias a pMOS transistor with $V_{GS} = V_{DS} = 1 V$ and determine W (with $L = 0.2 \mu$ m) to get a current of 100 μ A. Simulate S_{I_D} the noise spectral density of drain current from 100 Hz to 100 MHz.

Double the length and resize W to get $100 \,\mu\text{A}$, and simulate S_{I_D} . Repeat until $L = 6.4 \,\mu\text{m}$. Overlay the spectral density plots (log y axis) and identify the 1/f noise corners. Plot the 1/fnoise corners vs. L. Briefly explain the results.

4. Repeat the previous simulations for nMOS. How do the noise of nMOS and pMOS transistors compare for the same channel length?

- 5. For the circuits in Fig. 2(a) and Fig. 2(b), evaluate the transfer function $H(s) = V_o(s)/V_i(s)$ and the output rms noise voltage.
- 6. In the circuits in Fig. 2(c) and Fig. 2(d), evaluate the current i_i(t) through the input voltage source. Evaluate the average power dissipated in the voltage source and the resistor, and the output rms signal voltage. Compare the signal

to noise ratio (S/N) and the power dissipation of the two circuits.

7. Evaluate analytically the output signal to noise ratio (S/N) for an input peak voltage V_p, the power dissipation P in the resistor, and the bandwidth f_b (in Hz) of the circuit in Fig. 2(c). Express the power dissipation in terms of S/N and f_b. What tradeoff does this expression represent?

Don't submit the following problems, just try them out.

- 1. Plot g_m , g_{ds} , g_{mbs} , g_m/g_{ds} , f_T , V_{GS} , and $V_{DS,SAT}^{1}$ as a function of I_D (from 2 μ A to 200 μ A) for a diode connected nMOS transistor for two cases: $W/L = 5 \,\mu m/0.5 \,\mu m$ and $W/L = 25 \,\mu m/2.5 \,\mu m$. In each case, overlay the plots for 0°C and 100°C.
- 2. Repeat the previous problem for pMOS.
- 3. Textbook problem 2.12 (Textbook Fig. 2.49)

 $^{^{1}}g_{m}, g_{ds}, g_{mbs}, V_{GS}$, and $V_{DS,SAT}$ will be reported by the simulator at the dc operating point. Calculate f_{T}