EE539: Analog Integrated Circuit Design; HW1

Nagendra Krishnapura (nagendra@iitm.ac.in)

due on 17 Jan. 2007

Submit all solutions by email as a single pdf file; Present the solutions in the same order as the problems below.
$0.18 \mu \mathrm{~m}$ technology parameters: $V_{T n}=0.5 \mathrm{~V}$; $V_{T p}=0.5 \mathrm{~V} ; K_{n}=300 \mu \mathrm{~A} / V^{2} ; K_{p}=75 \mu \mathrm{~A} / V^{2} ;$ $A_{V T}=3.5 \mathrm{mV} \mu \mathrm{m} ; A_{\beta}=1 \% \mu \mathrm{~m} ; V_{d d}=1.8 \mathrm{~V}$; $L_{\text {min }}=0.18 \mu \mathrm{~m}, W_{\text {min }}=0.24 \mu \mathrm{~m}$; Ignore body effect unless mentioned otherwise.

Figure 1: Problem 1

1. Calculate $V_{\text {out }}$ in Fig. 1. What is the function of the circuit? (Assume that all transistors are in the saturation region)

Figure 2: Problem 2
2. Calculate $V_{\text {out }}$ in Fig. 2. Comment. (Assume that all transistors are in the saturation region)

$$
\mathrm{V}_{0}+\mathrm{v}_{\mathrm{x}} / 2 \underset{100 \mathrm{k} \Omega}{\mathrm{M}_{0}} \mathrm{~V}_{0}-\mathrm{v}_{\mathrm{x}} / 2
$$

Figure 3: Problem 3
3. (For this problem, The minimum usable dimension is $0.25 \mu \mathrm{~m}$.) A MOSFET is used as a $200 \mathrm{k} \Omega$ resistor (Fig. 3) $V_{0}=0.5 \mathrm{~V}$ and v_{x} is restricted to 0.2 V . The nonlinear part of the current in the resistor should be at most 5%. Calculate the gate bias $V_{\text {bias }}$ and the dimensions of the transistor. If a linear resistive material with a sheet resistance of $8 \Omega / \mathrm{sq}$. is available, what would be its dimensions? What is the motivation for using a transistor instead of a resistive material?
4. Simulate and plot (overlaid) the magnitude and phase response of the circuit shown in Fig. 4 using the four resistor models shown. $R=10 \mathrm{k} \Omega$, $C=1.5 \mathrm{pF}$. Comment on the results.
5. Design a 0.5 pF capacitor using A square nMOS device (drain/source shorted). Plot its capacitance as a function of voltage (0 to 1.8 V). What

Figure 4: Problem 4
is the usable voltage range of this capacitor? Repeat the above for a square pMOS device.

A square Metal1-Metal2 structure.
A square sandwiched structure with poly, M2, M4 tied together and M1, M3, M5 tied together. For the last two structures, determine the bottom plate parasitic capacitance.

Figure 5: Problem 5
6. Determine the value of the ac coupling capacitor C_{c} in Fig. 5 so that it and the load capacitor form a highpass filter with a cutoff frequency of $10 / \pi \mathrm{MHz}$.

Design the desired C_{c} using the last two options in the previous problem. Simulate the circuit
including the parasitics with a) an ideal capacitor, b) M1-M2 capacitor with both orientations, and c) poly-M1-M2-M3-M4-M5 sandwich with both orientations. Overlay the magnitude response plots. Comment on the results.

Don't submit the following problems, just try them out.

1. Textbook problem 2.6 (Textbook Figure 2.43). I_{x} and g_{m} of M_{1}.

The following are to be simulated. Repeat for pMOS and nMOS.

1. Plot I_{D} vs. $V_{D S}(0$ to 1.8 V$)$ for $V_{G S}$ from 0 to 1.5 V in steps of 0.25 V and $V_{B S}=0 \mathrm{~V}$. Overlay the plots for $W / L=5 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}$ and $W / L=$ $25 \mu \mathrm{~m} / 2.5 \mu \mathrm{~m}$. Comment on the results.
2. Plot I_{D} vs. $V_{D S}(0$ to 1.8 V$)$ for $V_{B S}$ from 1 V to 0 V in steps of 0.25 V and $V_{G S}=1.5 \mathrm{~V}$. Overlay the plots for $W / L=5 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}$ and $W / L=25 \mu \mathrm{~m} / 2.5 \mu \mathrm{~m}$. Comment on the results.
3. Plot $(\log -\log) I_{D}$ vs. $\quad V_{G S}(18 \mathrm{mV}$ to 1.8 V$)$ for $V_{D S}=1 \mathrm{~V}$ and $V_{B S}=0 \mathrm{~V}$. Overlay the plots for $W / L=5 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}$ and $W / L=25 \mu \mathrm{~m} / 2.5 \mu \mathrm{~m}$ and temperatures of $\{0,27,100\}^{\circ}$ C. Comment on the results. Calculate the subthreshold slope η.
4. Plot $(\log -\log) I_{D}$ vs. $V_{B S}(-1.5 \mathrm{~V}$ to $-15 \mathrm{mV})$ for $V_{D S}=1 \mathrm{~V}$ and $V_{G S}=1 \mathrm{~V}$. Overlay the plots for $W / L=5 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}$ and $W / L=25 \mu \mathrm{~m} / 2.5 \mu \mathrm{~m}$ and temperatures of $\{0,27,100\}^{\circ} \mathrm{C}$. Comment on the results.
