Spring 2004; E4215: Analog Filter Synthesis and Design; HW8

Nagendra Krishnapura (nkrishna@vitesse.com)

due on 14 Apr. 2004

1. (6 pts.) A continous time first order filter has a transfer function

$$
H_{c}(s)=\frac{2}{1+s / \omega_{p}}
$$

$\omega_{p}=2 \pi \times 20 \mathrm{krad} / \mathrm{s}$. Transform $H_{c}(s)$ into discrete time transfer functions $H_{d}(z)$ using a) bilinear transformation, b) LDI transformation. The sampling frequency $f_{s}=1 \mathrm{MHz}$.

Plot the magnitude and phase responses of H_{c} and H_{d} with the real frequency (Hz) from 0 to 1 MHz along the x axis. Are the magnitude and phase responses the same for all the cases? Comment on the results.

Repeat for $\omega_{p}=2 \pi \times 200 \mathrm{krad} / \mathrm{s}$.
2. (8 pts .) Design the above filter $\left(H_{c}(s)\right.$ or $H_{d}(z)$) as
(a) a continuous time opamp-RC filter
(b) bilinear transformed switched capacitor filter (for this, assume that both the input V_{i} and its inverted form $-V_{i}$ are available)
(c) switched capacitor version of a) with the resistor replaced by a switched capacitor
(d) Noninverting delayed switched capacitor integrator whose magnitude response is equal to that of the LDI transformed filter at dc and the 3 dB frequency (i.e., the pole of the SC integrator should be adjusted such that its -3 dB frequency is the same as that of the LDI transformed filter).

Do it for both $\omega_{p}=2 \pi \times 20 \mathrm{krad} / \mathrm{sand} \omega_{p}=2 \pi \times 200 \mathrm{krad} / \mathrm{s}$. In each case, give the schematic and the component values.
3. (8 pts.) Simulate each of the filters designed in problem 3 in Cadence. Plot the magnitude and phase responses.
4. A second order filter has a transfer function has the form

$$
H(s)=\frac{N(s)}{1+\left(s / Q_{p} \omega_{p}\right)+\left(s / \omega_{p}\right)^{2}}
$$

(a) (1 pt.) What is $\mathrm{N}(\mathrm{s})$ for lowpass, bandpass, highpass, and band elimination filters? (In each case, assume that the gain in the center of the passband is unity)
(b) (3 pts.) Transform each of these into a discrete time filter using bilinear transformation. Assume that $Q_{p}=4$ and $\omega_{p}=f_{s} / 10$, where f_{s} is the sampling frequency.
(c) (4 pts.) Sketch the pole zero plots of the continumous time filters and their discrete time counterparts.

