Spring 2004; E4215: Analog Filter Synthesis and Design; HW5

Nagendra Krishnapura (nkrishna@ vitesse.com)

due on 3 Mar. 2004

For 1-5, give the schematic of the passive filter with all the element values. For 1-3, give the the transfer function in the normalized form which is

$$
\frac{b_{0}+b_{1}\left(s / Q / \omega_{n}\right)+b_{2}\left(s / \omega_{n}\right)^{2}}{1+s / Q / \omega_{n}+\left(s / \omega_{n}\right)^{2}}
$$

where ω_{n} is an appropriate normalizing frequency. For 3-5, give the expression for the frequency transformation along with the numerical values for the parameters in the transformation. For 6, give the final schematic and explain very briefly the purpose of each feedforward component ${ }^{1}$.

1. (1 pt.) Assume that you have a lowpass notch

Figure 1:
filter (Fig. 1) with $Q=1 / \sqrt{2}, \omega_{p}=2 \pi \times$ $10^{6} \mathrm{rad} / \mathrm{s}$, and a notch at 10 MHz . (Use the filter from HW4, P3). What is the attenuation (in dB) at 1 MHz ? Call this A_{p}.
2. (3 pts.) Scale the filter in (1) so that it uses $R=1 \Omega$ and has a notch at $10 \mathrm{rad} / \mathrm{s}$. What is the frequency Ω_{p} at which the attenuation is
A_{p} ? What is the smallest frequency ${ }^{2}$ at which the attenuation is $A_{s}=-20 \mathrm{~dB}$? Call this Ω_{s}.
3. (4 pts.) Transform the prototype in (2) to a passive RLC highpass filter with an attenuation A_{p} (determined in (1)) at $10 \mathrm{Mrad} / \mathrm{s}$ and a termination resistance $R=10 \mathrm{k} \Omega$. What is the frequency of the notch in this filter? Draw the schematic replacing the inductors with capacitively terminated gyrators whose gyration resistance ${ }^{3}$ is $10 \mathrm{k} \Omega$.
4. (4 pts.) Transform the prototype in (2) to a passive RLC bandpass filter whose attenuation is A_{p} at $\omega_{p 1}=100 \mathrm{Mrad} / \mathrm{s}$ and $\omega_{p 2}=$ $121 \mathrm{Mrad} / \mathrm{s}$. The termination resistance should be $2 \mathrm{k} \Omega$. What are the "stopband" edges $\omega_{s 1}$ and $\omega_{s 2}$ where the attenuation is A_{s} ? What is the gain of the filter at $110 \mathrm{Mrad} / \mathrm{s}$? If one of the notches of the filter is at $47 \mathrm{Mrad} / \mathrm{s}$, where is the other notch?
5. (4 pts.) Transform the prototype in (2) to a passive RLC bandstop filter whose attenuation is at least A_{s} in the range $8.1 \mathrm{Mrad} / \mathrm{s} \leq$ $\omega \leq 10 \mathrm{Mrad} / \mathrm{s}$. Use a termination resistance of $10 \mathrm{k} \Omega$. What are the "passband" edges $\omega_{p 1}$

[^0][^1]and $\omega_{p 2}$ where the attenuation is A_{p} ? What is the filter's attenuation at $9 \mathrm{Mrad} / \mathrm{s}$?
6. (3 pts.) Realize an an opamp-RC version of the highpass filter in (3). Use the Tow-Thomas biquad with feedforward technique to realize the zeros at the output of the first opamp. Use $C=100 \mathrm{pF}$ for the 2 integrators.
7. (1 pt.) Realize a bandpass filter whose attenuation is A_{p} at $f_{p 1}=10 \mathrm{MHz}$ and $f_{p 2}=$ 12.1 MHz . (Hint: You don't have to go through the whole synthesis again. Use the result from (4)).

[^0]: ${ }^{2}$ You can calculate this analytically-you'll get a $2{ }^{\text {nd }}$ order equation in Ω^{2}; or use a numerical tool such as MATLAB.
 ${ }^{3}$ The gyration resistance is $1 / g_{m}$ where g_{m} is the transconductance of the two transconductors in the gyrator.

[^1]: ${ }^{1}$ Elements from the input to various opamps.

